Citation: Yin Deng, Gao Jia, Fanglan Li. Multiple solutions to a quasilinear Schrödinger equation with Robin boundary condition[J]. AIMS Mathematics, 2020, 5(4): 3825-3839. doi: 10.3934/math.2020248
[1] | X. W. Li, G. Jia, Multiplicity of solutions for quasilinear elliptic problems involving Φ-Laplacian operator and critical growth, Electron. J. Qual. Theory Differ. Equ., 6 (2019), 1-15. |
[2] | N. S. Papageorgiou, V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010 |
[3] | N. S. Papageorgiou, V. D. Rădulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Revista Mat. Complut., 29 (2016), 91-126. |
[4] | N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Robin problems with a general potential and a superlinear reaction, J. Differential Equations, 263 (2017), 3244-3290. doi: 10.1016/j.jde.2017.04.032 |
[5] | N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589-2618. doi: 10.3934/dcds.2017111 |
[6] | N. S. Papageorgiou, V. D. Rădulescu, Positive solutions of nonlinear Robin eigenvalue problems, Proc. Amer. Math. Soc., 144 (2016), 4913-4928. doi: 10.1090/proc/13107 |
[7] | M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105 |
[8] | J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5 |
[9] | M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008 |
[10] | S. Liu, J. Zhou, Standing waves for quasilinear Schrödinger equations with indefinite potentials, J. Differential Equations, 265, (2018), 3970-3987. |
[11] | D. Motreanu, V. V. Motreanu, N. S. Papageorgiou, Topological and variational me thods with applications to nonlinear boundary value problems, Springer, New York, 2013. |
[12] | S. Liu, S. J. Li, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795. doi: 10.1016/j.na.2010.04.016 |
[13] | P. Winkert, L∞ estimates for nonlinear elliptic Neumann boundary value problems, Nonlin. Differ. Equations Appl., 17 (2010), 289-302. doi: 10.1007/s00030-009-0054-5 |
[14] | G. M. Liberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1209. doi: 10.1016/0362-546X(88)90053-3 |
[15] | J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202. doi: 10.1007/BF01449041 |
[16] | M. Willem, Minimax Theorems, Birkhäuser: Progress in Nonlinear Differential Equations and Their Applications, 1996. |
[17] | G. D'Aguì, S. Marano, N.S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821-1845. doi: 10.1016/j.jmaa.2015.08.065 |
[18] | S. Hu, N. S. Papageorgiou, Positive solutions for Robin problems with general potential and logistic reaction, Comm. Pure. Appl. Anal., 15 (2016), 2489-2507. doi: 10.3934/cpaa.2016046 |
[19] | S. A. Marano, N. S. Papageorgiou,On a Robin problem with p-Laplacian and reaction bounded only from above, Monatsh. Math., 180 (2016), 317-336. doi: 10.1007/s00605-015-0796-6 |
[20] | R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998. |