Research article

Multiple solutions to a quasilinear Schrödinger equation with Robin boundary condition

  • Received: 30 December 2019 Accepted: 01 April 2020 Published: 21 April 2020
  • MSC : 35J60, 35J20

  • We study a quasilinear Schrödinger equation with Robin boundary condition. Using the variational methods and the truncation techniques, we prove the existence of two positive solutions when the parameter λ is large enough. We also establish the existence of infinitely many high energy solutions by using Fountain Theorem when λ > 1.

    Citation: Yin Deng, Gao Jia, Fanglan Li. Multiple solutions to a quasilinear Schrödinger equation with Robin boundary condition[J]. AIMS Mathematics, 2020, 5(4): 3825-3839. doi: 10.3934/math.2020248

    Related Papers:

  • We study a quasilinear Schrödinger equation with Robin boundary condition. Using the variational methods and the truncation techniques, we prove the existence of two positive solutions when the parameter λ is large enough. We also establish the existence of infinitely many high energy solutions by using Fountain Theorem when λ > 1.


    加载中


    [1] X. W. Li, G. Jia, Multiplicity of solutions for quasilinear elliptic problems involving Φ-Laplacian operator and critical growth, Electron. J. Qual. Theory Differ. Equ., 6 (2019), 1-15.
    [2] N. S. Papageorgiou, V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010
    [3] N. S. Papageorgiou, V. D. Rădulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Revista Mat. Complut., 29 (2016), 91-126.
    [4] N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Robin problems with a general potential and a superlinear reaction, J. Differential Equations, 263 (2017), 3244-3290. doi: 10.1016/j.jde.2017.04.032
    [5] N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589-2618. doi: 10.3934/dcds.2017111
    [6] N. S. Papageorgiou, V. D. Rădulescu, Positive solutions of nonlinear Robin eigenvalue problems, Proc. Amer. Math. Soc., 144 (2016), 4913-4928. doi: 10.1090/proc/13107
    [7] M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105
    [8] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5
    [9] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008
    [10] S. Liu, J. Zhou, Standing waves for quasilinear Schrödinger equations with indefinite potentials, J. Differential Equations, 265, (2018), 3970-3987.
    [11] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou, Topological and variational me thods with applications to nonlinear boundary value problems, Springer, New York, 2013.
    [12] S. Liu, S. J. Li, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795. doi: 10.1016/j.na.2010.04.016
    [13] P. Winkert, L estimates for nonlinear elliptic Neumann boundary value problems, Nonlin. Differ. Equations Appl., 17 (2010), 289-302. doi: 10.1007/s00030-009-0054-5
    [14] G. M. Liberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1209. doi: 10.1016/0362-546X(88)90053-3
    [15] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202. doi: 10.1007/BF01449041
    [16] M. Willem, Minimax Theorems, Birkhäuser: Progress in Nonlinear Differential Equations and Their Applications, 1996.
    [17] G. D'Aguì, S. Marano, N.S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821-1845. doi: 10.1016/j.jmaa.2015.08.065
    [18] S. Hu, N. S. Papageorgiou, Positive solutions for Robin problems with general potential and logistic reaction, Comm. Pure. Appl. Anal., 15 (2016), 2489-2507. doi: 10.3934/cpaa.2016046
    [19] S. A. Marano, N. S. Papageorgiou,On a Robin problem with p-Laplacian and reaction bounded only from above, Monatsh. Math., 180 (2016), 317-336. doi: 10.1007/s00605-015-0796-6
    [20] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3300) PDF downloads(288) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog