Research article

Positive solutions for a class of supercritical quasilinear Schrödinger equations

  • Received: 21 October 2021 Revised: 04 January 2022 Accepted: 07 January 2022 Published: 21 January 2022
  • MSC : 35B45, 35J20, 35J62

  • This paper deals with a class of supercritical quasilinear Schrödinger equations

    $ -\Delta u+V(x)u+\kappa\Delta(\sqrt{1+{u}^{2}})\frac{u}{2\sqrt{1+{u}^{2}}} = \lambda f(u), \; x\in \mathbb{R}^{N}, $

    where $ \kappa\geq2, \; N\geq3, \; \lambda > 0. $ We suppose that the nonlinearity $ f(t):\mathbb{R}\rightarrow \mathbb{R} $ is continuous and only superlinear in a neighbourhood of $ t = 0. $ By using a change of variable and the variational methods, we obtain the existence of positive solutions for the above problem.

    Citation: Yin Deng, Xiaojing Zhang, Gao Jia. Positive solutions for a class of supercritical quasilinear Schrödinger equations[J]. AIMS Mathematics, 2022, 7(4): 6565-6582. doi: 10.3934/math.2022366

    Related Papers:

  • This paper deals with a class of supercritical quasilinear Schrödinger equations

    $ -\Delta u+V(x)u+\kappa\Delta(\sqrt{1+{u}^{2}})\frac{u}{2\sqrt{1+{u}^{2}}} = \lambda f(u), \; x\in \mathbb{R}^{N}, $

    where $ \kappa\geq2, \; N\geq3, \; \lambda > 0. $ We suppose that the nonlinearity $ f(t):\mathbb{R}\rightarrow \mathbb{R} $ is continuous and only superlinear in a neighbourhood of $ t = 0. $ By using a change of variable and the variational methods, we obtain the existence of positive solutions for the above problem.



    加载中


    [1] S. Kurihara, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. http://dx.doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262
    [2] V. Makhankov, V. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1–86. http://dx.doi.org/10.1016/0370-1573(84)90106-6 doi: 10.1016/0370-1573(84)90106-6
    [3] A. Borovskii, A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562–573.
    [4] H. Brandi, C. Manus, G. Mainfray, T. Lehner, G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids, 5 (1993), 3539. http://dx.doi.org/10.1063/1.860828 doi: 10.1063/1.860828
    [5] M. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities, Nonlinear Anal.-Thero., 75 (2012), 5362–5373. http://dx.doi.org/10.1016/j.na.2012.04.054 doi: 10.1016/j.na.2012.04.054
    [6] Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal.-Thero., 80 (2013), 194–201. http://dx.doi.org/10.1016/j.na.2012.10.005 doi: 10.1016/j.na.2012.10.005
    [7] H. Shi, H. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849–858. http://dx.doi.org/10.1016/j.camwa.2016.01.007 doi: 10.1016/j.camwa.2016.01.007
    [8] M. Colin, Stability of stationary waves for a quasilinear Schrödinger equation in dimension 2, Adv. Differential Equ., 8 (2003), 1–28.
    [9] Y. Shen, Y. Wang, A class of quasilinear Schrödinger equations with improved (AR) condition, Acta. Appl. Math., 164 (2019), 123–135. http://doi.org/10.1007/s10440-018-00228-y doi: 10.1007/s10440-018-00228-y
    [10] C. Alves, Y. Wang, Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differ. Equations, 259 (2015), 318–343. http://dx.doi.org/10.1016/j.jde.2015.02.030 doi: 10.1016/j.jde.2015.02.030
    [11] Y. Wang, Z. Li, Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponent, Taiwan. J. Math., 22 (2018), 401–420. http://dx.doi.org/10.11650/tjm/8150 doi: 10.11650/tjm/8150
    [12] C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705–727. http://dx.doi.org/10.1016/j.jmaa.2018.11.048 doi: 10.1016/j.jmaa.2018.11.048
    [13] J. Liu, J. F. Liao, C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016), 965–976. http://dx.doi.org/10.1016/j.camwa.2016.01.004 doi: 10.1016/j.camwa.2016.01.004
    [14] Y. F. Xue, J. Liu, C. L. Tang, A ground state solution for an asymptotically periodic quasilinear Schrödinger equation, Comput. Math. Appl., 74 (2017), 1143–1157. http://dx.doi.org/10.1016/j.camwa.2017.05.033 doi: 10.1016/j.camwa.2017.05.033
    [15] D. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787–794. http://dx.doi.org/10.1090/S0002-9939-04-07635-X doi: 10.1090/S0002-9939-04-07635-X
    [16] M. Willem, Minimax theorems, Boston: Birkh$\ddot{a}$user, 1996. http://dx.doi.org/10.1007/978-1-4612-4146-1
    [17] M. Struwe, Variational methods, New York: Springer, 2000. http://dx.doi.org/10.1007/978-3-662-04194-9
    [18] L. Jeanjean, K. Tanaka, A remark on least energy solutions in $\mathbb{R}^{N}$, Proc. Amer. Math. Soc., 131 (2003), 2399–2408. http://dx.doi.org/10.1090/S0002-9939-02-06821-1 doi: 10.1090/S0002-9939-02-06821-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1597) PDF downloads(76) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog