This paper deals with a class of supercritical quasilinear Schrödinger equations
$ -\Delta u+V(x)u+\kappa\Delta(\sqrt{1+{u}^{2}})\frac{u}{2\sqrt{1+{u}^{2}}} = \lambda f(u), \; x\in \mathbb{R}^{N}, $
where $ \kappa\geq2, \; N\geq3, \; \lambda > 0. $ We suppose that the nonlinearity $ f(t):\mathbb{R}\rightarrow \mathbb{R} $ is continuous and only superlinear in a neighbourhood of $ t = 0. $ By using a change of variable and the variational methods, we obtain the existence of positive solutions for the above problem.
Citation: Yin Deng, Xiaojing Zhang, Gao Jia. Positive solutions for a class of supercritical quasilinear Schrödinger equations[J]. AIMS Mathematics, 2022, 7(4): 6565-6582. doi: 10.3934/math.2022366
This paper deals with a class of supercritical quasilinear Schrödinger equations
$ -\Delta u+V(x)u+\kappa\Delta(\sqrt{1+{u}^{2}})\frac{u}{2\sqrt{1+{u}^{2}}} = \lambda f(u), \; x\in \mathbb{R}^{N}, $
where $ \kappa\geq2, \; N\geq3, \; \lambda > 0. $ We suppose that the nonlinearity $ f(t):\mathbb{R}\rightarrow \mathbb{R} $ is continuous and only superlinear in a neighbourhood of $ t = 0. $ By using a change of variable and the variational methods, we obtain the existence of positive solutions for the above problem.
[1] | S. Kurihara, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. http://dx.doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262 |
[2] | V. Makhankov, V. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1–86. http://dx.doi.org/10.1016/0370-1573(84)90106-6 doi: 10.1016/0370-1573(84)90106-6 |
[3] | A. Borovskii, A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562–573. |
[4] | H. Brandi, C. Manus, G. Mainfray, T. Lehner, G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids, 5 (1993), 3539. http://dx.doi.org/10.1063/1.860828 doi: 10.1063/1.860828 |
[5] | M. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities, Nonlinear Anal.-Thero., 75 (2012), 5362–5373. http://dx.doi.org/10.1016/j.na.2012.04.054 doi: 10.1016/j.na.2012.04.054 |
[6] | Y. Shen, Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal.-Thero., 80 (2013), 194–201. http://dx.doi.org/10.1016/j.na.2012.10.005 doi: 10.1016/j.na.2012.10.005 |
[7] | H. Shi, H. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849–858. http://dx.doi.org/10.1016/j.camwa.2016.01.007 doi: 10.1016/j.camwa.2016.01.007 |
[8] | M. Colin, Stability of stationary waves for a quasilinear Schrödinger equation in dimension 2, Adv. Differential Equ., 8 (2003), 1–28. |
[9] | Y. Shen, Y. Wang, A class of quasilinear Schrödinger equations with improved (AR) condition, Acta. Appl. Math., 164 (2019), 123–135. http://doi.org/10.1007/s10440-018-00228-y doi: 10.1007/s10440-018-00228-y |
[10] | C. Alves, Y. Wang, Y. Shen, Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differ. Equations, 259 (2015), 318–343. http://dx.doi.org/10.1016/j.jde.2015.02.030 doi: 10.1016/j.jde.2015.02.030 |
[11] | Y. Wang, Z. Li, Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponent, Taiwan. J. Math., 22 (2018), 401–420. http://dx.doi.org/10.11650/tjm/8150 doi: 10.11650/tjm/8150 |
[12] | C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705–727. http://dx.doi.org/10.1016/j.jmaa.2018.11.048 doi: 10.1016/j.jmaa.2018.11.048 |
[13] | J. Liu, J. F. Liao, C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016), 965–976. http://dx.doi.org/10.1016/j.camwa.2016.01.004 doi: 10.1016/j.camwa.2016.01.004 |
[14] | Y. F. Xue, J. Liu, C. L. Tang, A ground state solution for an asymptotically periodic quasilinear Schrödinger equation, Comput. Math. Appl., 74 (2017), 1143–1157. http://dx.doi.org/10.1016/j.camwa.2017.05.033 doi: 10.1016/j.camwa.2017.05.033 |
[15] | D. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787–794. http://dx.doi.org/10.1090/S0002-9939-04-07635-X doi: 10.1090/S0002-9939-04-07635-X |
[16] | M. Willem, Minimax theorems, Boston: Birkh$\ddot{a}$user, 1996. http://dx.doi.org/10.1007/978-1-4612-4146-1 |
[17] | M. Struwe, Variational methods, New York: Springer, 2000. http://dx.doi.org/10.1007/978-3-662-04194-9 |
[18] | L. Jeanjean, K. Tanaka, A remark on least energy solutions in $\mathbb{R}^{N}$, Proc. Amer. Math. Soc., 131 (2003), 2399–2408. http://dx.doi.org/10.1090/S0002-9939-02-06821-1 doi: 10.1090/S0002-9939-02-06821-1 |