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Abstract: Let da(n, 5) and dl(n, 5) be the minimum weights of optimal binary [n, 5] linear codes
and linear complementary dual (LCD) codes, respectively. This article aims to investigate dl(n, 5)
of some families of binary [n, 5] LCD codes when n = 31s + t ≥ 14 with s integer and
t ∈ {2, 8, 10, 12, 14, 16, 18}. By determining the defining vectors of optimal linear codes and discussing
their reduced codes, we classify optimal linear codes and calculate their hull dimensions. Thus, the
non-existence of these classes of binary [n, 5, da(n, 5)] LCD codes is verified, and we further derive
that dl(n, 5) = da(n, 5) − 1 for t , 16 and dl(n, 5) = 16s + 6 = da(n, 5) − 2 for t = 16. Combining them
with known results on optimal LCD codes, dl(n, 5) of all [n, 5] LCD codes are completely determined.
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1. Introduction

Let Fn
2 be the n-dimensional row vector space over the binary field F2. An binary [n, k] linear code

is a k-dimensional subspace of Fn
2 . The weight w(X) of a vector X ∈ Fn

2 is the number of its nonzero
coordinates. If the minimum weight of nonzero vectors in an [n, k] code is d, then d is called the
minimum distance of C and the code C is denoted as [n, k, d]. C is optimal if d can meet the largest
value for n, k, which is denoted as [n, k, da(n, k)] or [n, k, da]. Two binary codes C and C′ are equivalent
if one can be obtained from the other by permuting the coordinates [1]. They are denoted as C � C′. A
matrix whose rows form a basis of C is called a generator matrix of this code.

The dual code C⊥ of C is defined as C⊥= {X ∈ Fn
2 | X · Y = 0 for all Y ∈ C}. A code C is self-

orthogonal (SO) if C ⊆ C⊥. The hull of a linear code C was defined as Hu(C) = C⊥ ∩ C in [2], and
was called a radical code of C in the nomenclature of classical groups in [3]. Define h(C) =dimHu(C)
as the hull dimension of C, and h([n, k, d]) = min{h(C) | C is a binary [n, k, d] code}.

If Hu(C) = {0} (or h(C) = 0), then C is an LCD code [4]. LCD cyclic codes were introduced by
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Massey [4] and gave an optimal linear coding solution for the two-user binary adder channel. Carlet
et al. showed that LCD codes can be used to fight against side-channel attacks [5]. In recent years,
much work has been done on the properties and construction of LCD codes [5–20]. It has been shown
in [6] that any code over Fq is equivalent to some LCD code for q ≥ 4, which motivates people to study
binary and ternary LCD codes. In this paper, we focus on the hull dimensions of binary optimal linear
codes and LCD codes.

It is an important problem to determine the largest minimum weight dl(n, k) among all LCD codes
for n, k. Recently, constructions of optimal LCD codes with short lengths or low dimensions have been
discussed, and low and upper bounds for dl(n, k) have been established [5–20]. If n ≤ 24 and 1 ≤ k ≤ n,
dl(n, k) were determined, and for k ≤ n ≤ 40, most of dl(n, k) were given in [6–15]. For n ≤ 50 and
k < 13, Ref. [17] obtained dl(n, k) by exhaustive search. If k ≤ 4, all dl(n, k) were determined
in [8–12]. As for k = 5, dl(n, 5) was partially determined in [11–13] except for n = 31s + t ≥ 40
when t ∈ {2, 8, 10, 12, 14, 16, 18}. In [15], Li et al. introduced the reduced code of a linear code and
developed some new approaches to determine upper bounds on optimal linear codes.

Let C be an [n, k, d] linear code with generator matrix G and parity-check matrix H, C is LCD if
and only if the matrix GGT or HHT is invertible [4]. Thus, to prove C is not LCD, one only needs to
verify h(C) = k − (rank(GGT )) ≥ 1 or h(C) = n − k − (rank(HHT )) ≥ 1. If all [n, k, d] linear codes
have hull dimensions greater than 1, that is to say that h([n, k, d]) ≥ 1, then there is no LCD code with
minimum distance d for given n, k.

In [19], Li et al. introduced two concepts called the defining vector and the weight vector of an
[n, 5, d] linear code with a given generator matrix, and further established relations among parameters
of this code, its defining vector, and weight vector. They changed the classification problem of binary
optimal self-orthogonal codes into solving the system of linear equations. Further research on defining
vectors and weight vectors of optimal linear codes and their applications was made in [20]. The
classifications of all optimal [n, k] codes with k ≤ 4 and some optimal [n, k] codes with k ≥ 5 were
determined [20].

Inspired by Refs. [15,19,20], we will show all optimal [n, 5] codes are not LCD for n = 31s+ t ≥ 14
and t ∈ {2, 8, 10, 12, 14, 16, 18}. Set k = 5 and N = 31. Denote L = (l1, l2, · · · , l31) as the defining vector
of an [n, 5, da] code with generator matrix G (for details see Section 2), and let lmax = max1≤i≤N{li},
lmin = min1≤i≤N{li}. The main techniques used in this manuscript can be briefly described as follows:

(1) From the parameters of all [n, 5, da] codes, estimate lmax and lmin according to Ref. [20].
(2) According to lmax and lmin , one can first analyze the following two items:

i) Whether C has a reduced codeD with a hull dimension greater than 2.
ii) Whether C is equivalent to a code that is not LCD.

(3) If lmax and lmin do not meet any of (2), determine all such L’s and all [n, 5, da] codes with defining
vectors L’s, classify [n, 5, da] codes, and calculate their hull dimensions and weight enumerators.

For details, see Definition 1, Lemmas 2 and 5. One can clearly understand the above three steps
according to the proof of Lemma 5. If h(D) ≥ 2, then h(C) ≥ 1, it follows that C is not LCD. For all
[n, 5, da] codes, if all of their hull dimensions are greater than 1, then one can know any [n, 5, da] code
is not LCD.

Our main conclusion is given by Theorem 1.

Theorem 1. If s is an integer, t ∈ {2, 8, 10, 12, 14, 16, 18} and n = 31s + t ≥ 14, then an optimal
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[n, 5, da(n, 5)] linear code is not LCD, and we further have

dl(n, 5) =
{

da − 1 if t ∈ {2, 8, 10, 12, 14, 18};
da − 2 if t = 16.

Combining it with the results of Refs. [7–14,17,19] on optimal LCD codes, one can completely
determine dl(n, 5) for all n ≥ 5, which is shown in Table 1 and Theorem 2.

Table 1. Minimum distances of optimal binary [n, 5] LCD codes with n = 31s + t ≥ 14.

n 31s 31s + 1 31s + 2 31s + 3 31s + 4 31s + 5 31s + 6
da 16s 16s 16s 16s 16s 16s + 1 16s + 2
dl 16s − 2 16s − 1 16s − 1 16s 16s 16s + 1 16s + 1
n 31s + 7 31s + 8 31s + 9 31s + 10 31s + 11 31s + 12 31s + 13
da 16s + 2 16s + 3 16s + 4 16s + 4 16s + 4 16s + 5 16s + 6
dl 16s + 2 16s + 2 16s + 3 16s + 3 16s + 4 16s + 4 16s + 5
n 31s + 14 31s + 15 31s + 16 31s + 17 31s + 18 31s + 19 31s + 20
da 16s + 6 16s + 7 16s + 8 16s + 8 16s + 8 16s + 8 16s + 9
dl 16s + 5 16s + 6 16s + 6 16s + 7 16s + 7 16s + 8 16s + 9
n 31s + 21 31s + 22 31s + 23 31s + 24 31s + 25 31s + 26 31s + 27
da 16s + 10 16s + 10 16s + 11 16s + 12 16s + 12 16s + 12 16s + 13
dl 16s + 9 16s + 10 16s + 10 16s + 11 16s + 11 16s + 12 16s + 12
n 31s + 28 31s + 29 31s + 30
da 16s + 14 16s + 14 16s + 15
dl 16s + 13 16s + 13 16s + 14
*Note: da and dl denote the minimum weights of optimal binary [n, 5] linear codes and LCD codes, respectively.

Theorem 2. If n = 31s + t ≥ 5, then there are optimal LCD codes as follows:
(1) ([7,8,17]) If 5 ≤ n ≤ 13 and n , 6, 10, then there is an optimal LCD [n, 5, da(n, 5)] code, while

n = 6, 10, an optimal [n, 5, da(n, 5) − 1] LCD code exists.
(2) ([9–13,17]) If t = 3, 4, 5, 7, 11, 19, 20, 22, 26, n = 31s + t ≥ 14, then there is an optimal

[n, 5, da(n, 5)] LCD code.
(3) If t , 0, 3, 4, 5, 7, 11, 16, 19, 20, 22, 26 and n = 31s + t ≥ 14, then there is an optimal

[n, 5, da(n, 5) − 1] LCD code according to Refs. [9–13,17] and Theorem 1 above.
(4) If t = 0, 16 and n = 31s + t ≥ 14, there is an optimal [n, 5, da(n, 5) − 2] LCD code according to

Ref. [19] and Theorem 1 above.

Remark 1. From Ref. [18], it is easy to know all optimal [n,5] codes can achieve the Griesmer bound
for 14 ≤ n ≤ 256. For n > 256, the length n can be denoted as n = 31s+t, where s ≥ 7 and 31 ≤ t ≤ 61
are integers. By the juxtaposition of s simplex codes [31,5,16] and an optimal [t, 5, da(t, 5)] code, one
can easily obtain all optimal [n, 5, da(n, 5)] linear codes with da(n, 5) achieving the Griesmer bound
for n > 256. That is to say, any da(n, 5) can be obtained by the Griesmer bound for all lengths n ≥ 14.
It naturally follows that dl(n, 5) can be denoted by da(n, 5) for some code lengths in Theorems 1 and 2.

The rest of this paper is organized as follows: In Section 2, some definitions, notations, and basic
results about optimal LCD codes are given. The proof of the main result, Theorem 1, is provided in
Section 3. Section 4 gives conclusions and discussions.

AIMS Mathematics Volume 9, Issue 7, 19137–19153.



19140

2. Preliminaries

In this section, some concepts and notations will be given for later use [19,20]. The all-one vector
and zero vector of length n are defined as 1n=(1, 1, · · · , 1)1×n and 0n=(0, 0, ..., 0)1×n, respectively. Let
iG = (G,G, · · · ,G) be the juxtaposition of i copies of G for given matrix G, then the juxtaposition of
i copies of C can be denoted as iC with generator matrix iG. In this article, we consider linear codes
without zero coordinates and matrices without zero columns.

Let N = 2k − 1, consider

S2 =

(
101
011

)
, S3 =

(
S2 0T

2 S2

03 1 13

)
, · · · , Sk+1 =

(
Sk 0T

k Sk

02k−1 1 12k−1

)
.

The matrix Sk generates the k-dimensional simplex code Sk = [2k − 1, k, 2k−1]. Let αi be the i-th
column of Sk for 1 ≤ i ≤ N. The last 2k − 2m columns of Sk form a matrix Mk,m for 1 ≤ m ≤ k − 1,
Mk,m generates the k-dimensionalMDk,m = [2k − 2m, k, 2k−1 − 2m−1] MacDonald code [21]. Simplex
codes Sk and MacDonald codesMDk,m for k ≥ 4 will be used to discuss the hull dimensions of some
optimal codes.

Let G = Gk×n be a generator matrix of C. If there are li copies of αi in G for 1 ≤ i ≤ N, we then
denote G as G = (l1α1, · · · , lNαN) for short, and call L = (l1, · · · , lN) the defining vector of C with
generator matrix G. Let l jl (1 ≤ l ≤ t) be different coordinates of L = (l1, l2, · · · , lN) with l j1 < l j2 <

· · · < l jt in ascending order by the number of equal l jl . If there are ml entries equal to l jl , we say L is
of type ]](l j1)m1 | · · · | (l jt)mt]]. For example, a code with defining vector L1 = (3, 1, 1, 3, 1, 3, 1) is an SO
code, this can be derived from the type ]](1)4 | (3)3]] of L1, and L2 = (s+ 1, s− 1, s, s, s+ 1, s− 1, s+ 1)
is of type ]](s − 1)2 | (s)2 | (s + 1)3]].

Some properties of an [n, k, d] code can be characterized by its defining vectors. Relations among
these objects are connected by some matrices Pk and Qk derived from the simplex code Sk [19]. On the
other hand, if an [n, k, da] code is optimal, we can determine all defining vectors whose corresponding
codes have such parameters by solving linear equations [19].

Let Jk be the (2k − 1) × (2k − 1) all-one matrix, and P2 be a (22 − 1) × (22 − 1) matrix whose rows
are the non-zero codewords of S2. Using the recursive method, one can construct

P2 =


101
011
110

 , P3 =


P2 0 P2

03 1 13

P2 1T
3 Q2

 , · · · , Pk+1 =


Pk 0T

2k−1 Pk

02k−1 1 12k−1
Pk 1T

2k−1 Qk

 ,
where Qk = Jk − Pk for k ≥ 2. Then, the seven rows of P3 are just the seven nonzero vectors of the
simplex code S3 = [7, 3, 4]. For k ≥ 3, then the matrix formed by nonzero codewords of (k + 1)-
dimensional simplex code can be obtained from Pk. Each row of Pk has (2k−1)’s ones and (2k−1 − 1)’s
zeros. Hence, each row of Qk has (2k−1 − 1)’s ones and (2k−1)’s zeros. According to Ref. [20], Pk and
Qk are symmetric matrices, and the matrix Pk is invertible over the rational field and

P−1
k =

1
2k−1 [Jk − 2Qk].

If C has a generator matrix G = (l1α1, · · · , lNαN), the minimum distance d of C and its codeword
weights can be determined by its defining vector L = (l1, · · · , lN). Let WT = PkLT , then W =
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(w1,w2, · · · ,wN) is a vector formed by weights of 2k−1 nonzero codewords of C, and d= min1≤i≤2k−1{wi}

is the distance of C. W is called the weight vector of C [19,20].
Suppose W = d12k−1 + Λ, where Λ = (λ1, λ2, · · · , λN) with λi = wi − d ≥ 0 and at least one λi = 0.

Denote σ = λ1 + λ2 + · · · + λN , then σ = 2k−1n − d(2k − 1) from WT=PkLT .
For an [n, k, d] code, to determine all defining vectors, one can solve the system of linear equations

P−1
k =

1
2k−1 [Jk − 2Qk]

WT = PkLT

W = d12k−1 + Λ

Λ = (λ1, λ2, · · · , λN)
σ = λ1 + λ2 + · · · + λN

and then obtain this equation

LT = P−1
k WT =

1
2k−1 [(d + σ)1T

2k−1 − 2QkΛ
T ]. (⋆)

By determining all nonnegative integer solutions L of Eq (⋆) for given σ, one can obtain all [n, k, d]
codes and their weight distributions using MATLAB [22]. The process of solving the linear equations
was simplified in [19,20], and the uniqueness of some optimal codes was derived from the following
known conclusions:

Proposition 3. ([19] Theorem 1.1) Suppose k ≥ 3, s ≥ 1, 1 ≤ t ≤ 2k − 2 and n = (2k − 1)s + t. Then
every binary [n, k, d] code with d ≥ (2k−1)s and without zero coordinates is equivalent to a code with
generator matrix G = ((s − c(k, s, t))S k| B), where c(k, s, t) ≤ min{s, t} is a function of k, s, and t, and
B has (2k − 1)c(k, s, t) + t columns.

Notation 1. For s ≥ 0, n = 31s + t ≥ 14 with t ∈ {2, 8, 10, 12, 14, 16, 18}, one can check that an
optimal [n, 5, da(n, 5)] linear code without zero coordinates is equivalent to a code with generator
matrix G = ((s−c(k, s, t))S k| B), where c(k, s, t) ≤ 2 and B has (2k−1)c(k, s, t)+t columns. To determine
all nonnegative integer solutions L of the system of linear equations for given σ = 2k−1n − d(2k − 1),
one only needs to determine all nonnegative integer solutions for fixed lengths n′ = (2k − 1)c(k, s, t)+ t
(see Section 3 for details).

Lemma 1. Let s ≥ 1, k ≥ 4, 1 ≤ m ≤ k − 1, N = 2k − 1. Then the following holds:
1) ( [19] Corollary 2.2) Every [sN, k, s2k−1] code is equivalent to the SO code with generator matrix
sS k.
2) ([20] Theorem 2) Each [n, k, da] = [sN + 2k − 2m, k, s2k−1 + 2k−1 − 2m−1] code is equivalent to the
codeMDs(k,m), the juxtaposition of sSk and aMD(k,m) code.

Hence, if m = 1, 2, and ≥ 3, then h([n, k, da]) = k − 1, k − 2, k, respectively.

Notice that h([n, k, da]) can be estimated from extended codes or codes of low dimensions in [15].
We will introduce some results referring to h([n, k, da]). Since Ref. [15] is a conference report that has
not been published, the detailed proofs of two lemmas will be given for readability.

Definition 1. Let C be an [n, k, d] code with generator matrix G and C1 be an [n − m, k − 1,≥ d] code
with generator matrix G1. Suppose U1,n−m is a matrix of 1 row and n−m columns. Define 0k−1,m as the
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zero matrix with k − 1 rows and m columns. If

G =
(

1m U1,n−m

0k−1,m G1

)
,

then C1 is called a reduced code of C.

Lemma 2. If C1 is a reduced code of C and h(C1) = r ≥ 2, then h(C) ≥ r − 1 ≥ 1 and C is not LCD.

Proof. If C is an [n, k, d] code and G =
(

1m U1,n−m

0k−1,m G1

)
.

Let G1 and G be the generator matrices of C1 and C, respectively. One can calculate that

GGT =

(
1m1T

m + UUT UGT
1

G1UT G1GT
1

)
.

Since h(C1) = r ≥ 2, we have R(G1G⊥1 ) = k−h(C1) = k−r ≤ k−2 and then R(GGT ) ≤ R(G1GT
1 )+1 =

k− 1. It naturally follows that h(C) = k−R(GGT ) ≥ 1 and C is not an LCD code, the lemma holds. □

Lemma 3. Let C be an [n, k, d] code with d odd. If Ce is an extended code of C and h(Ce) = r ≥ 2,
then Ce is an [n + 1, k, d + 1] code, h(C) ≥ r − 1 ≥ 1, and C is not LCD.

Proof. If Ce is an extended code of C and He =

(
1n 1

Hn−k−1,n 0T
n−k−1

)
.

Let He and H be the parity-check matrices of Ce and C, respectively. We have

He(He)T =

(
1n1T

n + 1 1nHT

H1T
n HHT

)
.

When d is odd, one can know Ce is an [n+1, k, d+1] code from Ref. [1]. Since h(Ce) = r ≥ 2, we have
R(He(He)T ) = n+1− k−h(Ce) = n+1− k− r ≤ n− k−1, and then R(HHT ) ≤ R(He(He)T ) = n− k−1.
Then one can infer that h(C) = n − k − R(HHT ) ≥ 1 and C is not LCD. The lemma holds. □

3. The proof of Theorem 1

In this section, Theorem 1 will be proved by showing h([31s + t, 5, da − 1]) ≥ 1 for t = 16 and
h([31s + t, 5, da]) ≥ 1 for t ∈ {2, 8, 10, 12, 14, 16, 18}. In the rest of this section, let C be an [n, k, d]
code. Fix k = 5 and N = 31, and let L = (l1, l2, · · · , lN) be the defining vector of C with generator
matrix G. Set lmax = max1≤i≤N{li} and lmin = min1≤i≤N{li}. We will use some results from Section 2
to calculate h(C). Our discussions are presented in four subsections. The first subsection verifies
h([31s + t, 5, da]) ≥ 1 for t ∈ {2, 8, 12, 16}, while the other subsections prove h([31s + t, 5, da]) ≥ 1 for
t = 10, 14, and 18, respectively.

3.1. h([32s + 2, 5, da]) ≥ 1 and h([32s + t, 5, da]) ≥ 2 for t = 8, 12, 16

Lemma 4. If s ≥ 1, a [31s + 2, 5, 16s] code has hull dimension h ≥ 1 and a [31s + 9, 5, 16s + 4] code
has hull dimension h ≥ 3.
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Proof. A [31s + 2, 5, 16s] code has a reduced code [30s + 1, 4, 16s], which can give a reduced code
[28s, 3, 16s] = [7 × 4s, 3, 4 × 4s]. Notice its self-orthogonality, one can infer h([31s + 2, 5, 16s]) ≥ 1.

A [31s + 9, 5, 16s + 4] code has a reduced code [30s + 8, 4, 16s + 4]= [15 × 2s + 8, 4, 8 × 2s + 4]. It
follows that a [30s + 8, 4, 16s + 4] code is SO, and then h([31s + 9, 5, 16s + 4]) ≥ 3. □

For clarity, the following example is given to show the process of finding L and calculating
h([n, 5, da]).

Example 1. Let s ≥ 1 and C be an optimal [31s + 13, 5, 16s + 6] code. One can check σ = 24 + 6
and s − 1 ≤ li ≤ s + 1 for L = (l1, l2, · · · , lN). According to Ref. [16], there is no [13, 5, 6] code, thus
lmax = s + 1 and lmin = s − 1. Hence, L = (s − 1)1N + L′, where L′ is the defining vector of a [44, 5, 22]
code with given generator matrix. We can assume the type of L′ is ]](0)a | (1)b | (2)c]], where a ≥ 1,
a + b + c = 31, and b + 2c = 44. From Eq (⋆), one can obtain

(L′)T =
1

16
[12 · 1T

2k−1 − 2QkΛ
T ]. (⋆′)

By solving Eq (⋆′), we get all possible L′ and L. There are a total of 4805 solutions; these (L′)’s
can be divided into two groups, one group has 3720 solutions, and the other has 1085 solutions. Using
Magma [23], one can check that all (L′)’s in the same group give equivalent codes. Hence, there are
altogether two inequivalent [31s + 13, 5, 16s + 6] codes. More details of h([31s + 13, 5, 16s + 6]) and
weight enumerators of inequivalent [31s + 13, 5, 16s + 6] codes are given in the following lemma.

Lemma 5. If s ≥ 1, then a [31s + 13, 5, 16s + 6] code and a [31s + 17, 5, 16s + 8] code both have hull
dimension h ≥ 3.

Proof. Case 1. Let n = 31s+ 13 and d = 16s+ 6. Then one can check σ = 24 + 6 and s− 1 ≤ li ≤ s+ 1
for 1 ≤ i ≤ N. Since there is no [13, 5, 6] code, L may have lmax = s + 1 and lmin = s − 1, which
implies L = (s − 1)1N + L′, where L′ is the defining vector of a [44, 5, 22] code with a given generator
matrix. In this case, C is the juxtaposition of (s − 1)S5 and a [44, 5, 22] code. Suppose L is of type
]](s − 1)a | (s)b | (s + 1)c]] with a ≥ 1. By solving Eq (⋆), one can obtain that L′ is one of the following
two types ]](0)a | (1)b | (2)c]]:

L′1: ]](0)1 | (1)16 | (2)14]]; L′2: ]](0)3 | (1)12 | (2)16]].
There are 3720 solutions (L′)’s that are of type L′1, all these 3720 defining vectors give

equivalent [44, 5, 22] codes. They are equivalent to a code with defining vector L′1,1, where L′1,1
= (1111101111111112222222222212122). One can check that the corresponding code C has h =
h(C) = 3 and weight enumerator 1 + 23y16s+6 + 7y16s+8 + y16s+14.

There are 1085 solutions (L′)’s that are of type L′2, all these 1085 defining vectors give
equivalent [44, 5, 22] codes. They are equivalent to a code with defining vector L′2,1, where L′2,1
= (1111101111010112222222222222222). Similarly, one can further calculate that the corresponding
code C has hull dimension h = 3 and weight enumerator 1 + 24y16s+6 + 6y16s+8 + y16s+16.

Summarizing previous discussions, we have h([31s + 13, 5, 16s + 6]) = 3.
Case 2. Let n = 31s + 17 and d = 16s + 8. It is easy to check σ = 24 + 8 and s − 1 ≤ li ≤ s + 2 for

1 ≤ i ≤ N. Thus, L may be one of the following types:
(1) lmax = s + 2; (2) lmax = s + 1 and lmin = s; (3) lmax = s + 1 and lmin = s − 1.
If lmax = s + 2, then C has a reduced code [30s + 15, 4, 16s + 8] = [15m, 4, 8m] where m = 2s + 1.

It is easy to know a [30s + 15, 4, 16s + 8] code is SO, and one can further deduce that h(C) ≥ 3.
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If lmax = s + 1 and lmin = s, then L = s1N + L0, where L0 is the defining vector of a
projective [17, 5, 8] code with the given generator matrix. In this case, C is the juxtaposition of sS5 and
a projective [17, 5, 8] code. According to Ref. [24], a [17, 5, 8] code is unique, and its hull dimension
h = 4.

If lmax = s+1 and lmin = s−1, then L = (s−1)1N+L′, where L′ is the defining vector of a [48, 5, 24]
code with given generator matrix. In this case C is the juxtaposition of (s− 1)S5 and a [48, 5, 24] code.
Suppose L is of type ]](s − 1)a | (s)b | (s + 1)c]] with a ≥ 1. By solving Eq (⋆), we obtain the following
types ]](0)a | (1)b | (2)c]] of L′:

L′1: ]](0)1 | (1)12 | (2)18]]; L′2: ]](0)3 | (1)8 | (2)20]]; L′3: ]](0)7 | (1)0 | (2)24]].
There are altogether two classes of inequivalent [48, 5, 24] codes with defining vectors of type ]](0)1 |

(1)12 | (2)18]]. Denote their defining vectors as L′1,i (i = 1, 2), respectively. Then the corresponding
codesD have h and weight enumerators as follows:
L′1,1= (2201111211212212222222221122112), h = 5, 1 + 24y16s+8 + 6y16s+12;
L′1,2= (2202112211212212222211221121221), h = 3, 1 + 24y16s+8 + 8y16s+10 + y16s+16.

There are a class of [48, 5, 24] codes with defining vectors of type ]](0)3 | (1)8 | (2)20]] and a class
of [48, 5, 24] codes with defining vectors of type ]](0)7 | (1)0 | (2)24]], respectively. Denote their
defining vectors as L′j ( j = 3, 4). Then the corresponding codes D have hull dimensions h and weight
enumerators as follows:
L′3= (2202002211212212222222221121221), h = 5, 1 + 26y16s+8 + 4y16s+12 + y16s+16;
L′4= (2202002200202202222222222222222), h = 5, 1 + 28y16s+8 + 3y16s+16.

Summarizing previous discussions, we have h([31s + 17, 5, 16s + 8]) ≥ 3. □

From the previous lemmas, one can derive the following conclusion:

Lemma 6. The codes [31s + 8, 5, 16s + 3], [31s + 12, 5, 16s + 5] and [31s + 16, 5, 16s + 7] all have
hull dimension h ≥ 2, hence they are not LCD codes.

Combining with known results on [n, 5] LCD codes of lengths n = 8, 9, 12, 13, 16, 33, we can obtain
that [31s + t, 5, 16s + dt] are optimal LCD codes, where dt = −1, 2, 3, 4, 5, 6 for t = 2, 8, 9, 12, 13, 16,
respectively.

Thus, Theorem 1 holds for the cases of t = 2, 8, 12, 16.

3.2. h([31s + 10, 5, 16s + 4]) ≥ 1

In this subsection, set n = 31s + 10 and d = 16s + 4. It is easy to check σ = 2 × 24 + 4 and
s − 2 ≤ li ≤ s + 2 for 1 ≤ i ≤ N. Thus, L may be one of the following types:

(1) lmax = s + 2; (2) lmax = s + 1 and lmin = s;
(3) lmax = s + 1 and lmin = s − 1; (4) lmax = s + 1 and lmin = s − 2.
If lmax = s + 2, then C has a reduced [30s + 8, 4, 16s + 4] SO code. Hence, in this case, one can

deduce that h(C) ≥ 3 and C is not LCD.
If lmax = s+1 and lmin = s, then L = s1N+L0, where L0 is the defining vector of a projective [10, 5, 4]

code with the given generator matrix. In this case, C is the juxtaposition of sS5 and a [10, 5, 4] code.
According to Ref. [10], a [10, 5, 4] code is not an LCD code. Hence C is also not LCD.

For verifying Cases (3) and (4), two additional lemmas to determine h(C) are provided as follows:

Lemma 7. If L satisfies lmax = s + 1 and lmin = s − 1, then h(C) ≥ 1 and C is not an LCD code.
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Proof. If lmax = s+1 and lmin = s−1, then s ≥ 1 and L = (s−1)1N+ L′, where L′ is the defining vector
of a [41, 5, 20] code with the given generator matrix. In this case, C is the juxtaposition of (s − 1)S5

and a [41, 5, 20] code. Suppose L is of type ]](s − 1)a | (s)b | (s + 1)c]] with a ≥ 1. By solving Eq (⋆),
we obtain the following types of L′:

L′1: ]](0)1 | (1)19 | (2)11]]; L′2: ]](0)2 | (1)17 | (2)12]]; L′3: ]](0)3 | (1)15 | (2)13]];
L′4: ]](0)4 | (1)13 | (2)14]]; L′5: ]](0)5 | (1)11 | (2)15]]; L′6: ]](0)6 | (1)9 | (2)16]];
L′7: ]](0)7 | (1)7 | (2)17]].
There are nineteen classes of inequivalent [41, 5, 20] codes with defining vectors of the above seven

types; all these codes have hull dimension h ≥ 1, hence h([31s+ 10, 5, 16s+ 4]) ≥ 1 when L satisfying
lmax = s + 1 and lmin = s − 1. For the defining vectors L′i, j of these inequivalent [41, 5, 20] codes, h(C),
and weight enumerators of their corresponding [31s+10, 5, 16s+4] codes, one can refer to Table 2. □

Table 2. 19 inequivalent [31s + 10, 5, 16s + 4] codes.

Type of defining vector of L′: ]](0)1 | (1)19 | (2)11]]
Defining vector h Weight enumerator of C
(2212121201212112211111121111112) 3 1 + 18y16s+4 + 8y16s+6 + 5y16s+8

(2212112201212112211111121111121) 1 1 + 17y16s+4 + 11y16s+6 + 2y16s+8 + y16s+10

(2212111201212112211112121111112) 4 1 + 12y16s+4 + 14y16s+5 + 3y16s+8 + 2y16s+9

Type of defining vector: ]](0)2 | (1)17 | (2)12]]
(0111111222222211122222101111111) 1 1 + 17y16s+4 + 12y16s+6 + y16s+8 + y16s+12

(2202112122021121111122111111221) 4 1 + 11y16s+4 + 16y16s+5 + 3y16s+8 + y16s+12

(2222111201212112210112121111112) 3 1 + 19y16s+4 + 7y16s+6 + 4y16s+8 + y16s+10

(2222111201212112210111221111121) 1 1 + 18y16s+4 + 10y16s+6 + y16s+8 + 2y16s+10

Type of defining vector: ]](0)3 | (1)15 | (2)13]]
(2222021201212112210121121111112) 5 1 + 22y16s+4 + 9y16s+8

(2122211202121111021221102122111) 1 1 + 19y16s+4 + 9y16s+6 + 3y16s+10

(2202112200212112221111121121121) 3 1 + 19y16s+4 + 8y16s+6 + 3y16s+8 + y16s+12

(0111111212222221122222200111111) 4 1 + 12y16s+4 + 15y16s+5 + 3y16s+8 + y16s+13

(2202112200212212221111121121111) 4 1+13y16s+4+14y16s+5+y16s+8+2y16s+9+y16s+12

Type of defining vector: ]](0)4 | (1)13 | (2)14]]
(2021212202121211011212102121212) 1 1 + 18y16s+4 + 11y16s+6 + y16s+8 + y16s+14

(2202212200212212221101121121111) 3 1+20y16s+4+7y16s+6 + 2y16s+8+y16s+10+y16s+12

Type of defining vector: ]](0)5 | (1)11 | (2)15]]
(2202221201212112221100221021121) 5 1 + 23y16s+4 + 7y16s+8 + y16s+12

Type of defining vector: ]](0)6 | (1)9 | (2)16]]
(1222201102222110022220101222211) 1 1 + 18y16s+4 + 12y16s+8 + y16s+16

(1102222111022221001222210012222) 4 1 + 12y16s+4 + 16y16s+6 + 2y16s+8 + y16s+16

Type of defining vector: ]](0)7 | (1)7 | (2)17]]
(2202002200202212221211221121220) 3 1 + 20y16s+4 + 8y16s+6 + 2y16s+8 + y16s+16

(2202002200202202221211221121221) 4 1 + 14y16s+4 + 14y16s+5 + 2y16s+9 + y16s+16
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Lemma 8. If L meets lmax = s + 1 and lmin = s − 2, then h(C) ≥ 3 and C is not an LCD code.

Proof. If lmax = s+ 1 and lmin = s− 2, then s ≥ 2 and L = (s− 2)1N + L′′, where L′′ is a defining vector
of a [72, 5, 36] code with the given generator matrix. In this case, C is the juxtaposition of (s − 2)S5

and a [72, 5, 36] code. Suppose L is of type ]](s − 2)a | (s − 1)b | (s)c | (s + 1)d]] with a ≥ 1. By solving
Eq (⋆), we obtain the following six types of L′′:

L′′1,0: ]](0)1 | (1)0 | (2)18 | (3)12]]; L′′1,2: ]](0)1 | (1)2 | (2)14 | (3)14]];
L′′1,4: ]](0)1 | (1)4 | (2)10 | (3)16]]; L′′1,6: ]](0)1 | (1)6 | (2)6 | (3)18]];
L′′3,4: ]](0)3 | (1)4 | (2)4 | (3)20]]; L′′7,0: ]](0)7 | (1)0 | (2)0 | (3)24]].
There are thirteen classes of inequivalent [72, 5, 36] codes with defining vectors of the above types,

seven classes have hull dimension h = 5, and six classes have hull dimension h = 3, thus all these
codes have hull dimensions greater than 3 and h([31s+10, 5, 16s+4]) ≥ 3 when L satisfies lmax = s+1
and lmin = s − 2. For details of the defining vectors L′′i, j of these inequivalent [72, 5, 36] codes, h(C),
and weight enumerators of their corresponding [31s + 10, 5, 16s + 4] codes, see Table 3.

Table 3. 13 inequivalent [31s + 10, 5, 16s + 4] codes.

Type of defining vector of L′′: ]](0)1 | (1)0 | (2)18 | (3)12]]
Defining vector h Weight enumerator of C
(3323232332222220332323233222222) 5 1 + 22y16s+4 + 9y16s+8

(3323232332222220332323233222222) 3 1 + 20y16s+4 + 6y16s+6 + 3y16s+8 + 2y16s+10

(3323232332222220332323233222222) 3 1 + 19y16s+4 + 8y16s+6 + 3y16s+8 + y16s+12

Type of defining vector: ]](0)1 | (1)2 | (2)14 | (3)14]]
(3222203333232332122222133323233) 5 1 + 23y16s+4 + 7y16s+8 + y16s+12

(3323213233031232332322223322223) 3 1 + 20y16s+4 + 7y16s+6 + 3y16s+8 + y16s+14

(3333222333022232331222313323222) 3 1+21y16s+4+6y16s+6+y16s+8 + 2y16s+10+y16s+12

Type of defining vector: ]](0)1 | (1)4 | (2)10 | (3)16]]
(3333303332121332331312322323222) 5 1 + 24y16s+4 + 5y16s+8 + 2y16s+12

(3323203332131232332322323313123) 3 1 + 20y16s+4 + 8y16s+6 + 2y16s+8 + y16s+16

Type of defining vector: ]](0)1 | (1)6 | (2)6 | (3)18]]
(3333303233131232331312323313123) 5 1 + 24y16s+4 + 6y16s+8 + y16s+16

(3313103333232332113132133323233) 5 1 + 20y16s+4 + 7y16s+6 + 3y16s+8 + y16s+14

(3333123333032132331321313323123) 3 1 + 22y16s+4 + 6y16s+6 + 2y16s+10 + y16s+16

Type of defining vector: ]](0)3 | (1)4 | (2)4 | (3)20]]
(3333303333030332331312313323213) 5 1 + 26y16s+4 + 2y16s+8 + 2y16s+12 + y16s+16

Type of defining vector: ]](0)7 | (1)0 | (2)0 | (3)24]]
(3333303333030330333330333303033) 5 1 + 28y16s+4 + 3y16s+16

Summarizing the above, we have shown h([31s + 10, 5, 16s + 4]) ≥ 1 for all s ≥ 1. □

AIMS Mathematics Volume 9, Issue 7, 19137–19153.



19147

3.3. h([31s + 14, 5, 16s + 6]) ≥ 1

In this subsection, let n = 31s+ 14 and d = 16s+ 6. It is easy to check for this code, σ = 2× 24 + 6
and s − 2 ≤ li ≤ s + 2 for 1 ≤ i ≤ N. Thus, L may have the following types:

(1) lmax = s + 2;
(2) lmax = s + 1 and lmin = s;
(3) lmax = s + 1 and lmin = s − 1;
(4) lmax = s + 1 and lmin = s − 2.
If lmax = s+ 2, then C has a reduced code [30s+ 12, 4, 16s+ 6] with hull dimension h = 2. Thus, in

this case, one can deduce that h(C) ≥ 1, and C is not an LCD code.
If lmax = s+1 and lmin = s, then L = s1N+L0, where L0 is the defining vector of a projective [14, 5, 6]

code with the given generator matrix. In this case, C is the juxtaposition of sS5 and a [14, 5, 6] code.
According to Refs. [10,11], one can know a [14, 5, 6] code is not LCD, and then neither is C.

Lemma 9. If L satisfies lmax = s + 1 and lmin = s − 1, then h(C) ≥ 1 and C is not an LCD code.

Proof. If lmax = s + 1 and lmin = s − 1, then L = (s − 1)1N + L′, where L′ is the defining vector of a
[45, 5, 22] code with the given generator matrix. In this case, C is the juxtaposition of (s − 1)S5 and a
[45, 5, 22] code. Suppose L is of type ]](s − 1)a | (s)b | (s + 1)c]] with a ≥ 1. By solving Eq (⋆), we
obtain the following seven types ]](0)a | (1)b | (2)c]] of L′:

L′1: ]](0)1 | (1)15 | (2)15]]; L′2: ]](0)2 | (1)13 | (2)16]]; L′3: ]](0)3 | (1)11 | (2)17]]; L′4: ]](0)4 | (1)9 | (2)18]];
L′5: ]](0)5 | (1)7 | (2)19]]; L′6: ]](0)6 | (1)5 | (2)20]]; L′7: ]](0)7 | (1)3 | (2)21]].
There are twenty-one classes of inequivalent [45, 5, 22] codes with defining vectors of the above

seven types. And all these codes have hull dimension h ≥ 1, hence h([31s + 14, 5, 16s + 6]) ≥ 1 when
L satisfies lmax = s + 1 and lmin = s − 1. For details of the defining vectors L′i, j of these inequivalent
[45, 5, 22] codes, h(C), and weight enumerators of their corresponding [31s+14, 5, 16s+6] codes, one
can refer to Table 4.
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Table 4. 21 inequivalent [31s + 14, 5, 16s + 6] codes.

Type of defining vector of L′: ]](0)1 | (1)15 | (2)15]]
Defining vector h Weight enumerator of C
(2212112122121120112122121121221) 5 1 + 15y16s+6 + 15y16s+8 + y16s+14

(2212112211211112220211221121221) 3 1 + 15y16s+6 + 15y16s+8 + y16s+14

(2211111211112112221221221122022) 3 1 + 18y16s+6 + 7y16s+8 + 6y16s+10

(2111112121222220111111221122222) 1 1 + 17y16s+6 + 10y16s+8+3y16s+10+y16s+12

(1111111222222221222222201111111) 3 1 + 8y16s+6+15y16s+7+7y16s+8+y16s+15

(2212112211211212220211221121211) 2 1+11y16s+6+12y16s+6+3y16s+8+4y16s+9+y16s+14

Type of defining vector: ]](0)2 | (1)13 | (2)16]]
(1111112122222220011111221222222) 1 1 + 18y16s+6 + 10y16s+8 + 2y16s+10 + y16s+14

(1211112122122220012111221122222) 3 1 + 19y16s+6 + 6y16s+8 + 5y16s+10 + y16s+12

(1112222111122220111222201112222) 3 1 + 8y16s+6 + 16y16s+7 + 6y16s+8 + y16s+16

(1111122121222220011112221122222) 1 1 + 18y16s+6 + 9y16s+8 + 2y16s+10 + 2y16s+12

Type of defining vector: ]](0)3 | (1)11 | (2)17]]
(1112222111122220011222220112222) 3 1 + 18y16s+6 + 10y16s+8 + 2y16s+10 + y16s+14

(2111120122222220111112021222222) 1 1 + 18y16s+6 + 7y16s+8 + 4y16s+10 + 2y16s+14

(1111122122122220002112221122222) 1 1 + 20y16s+6 + 5y16s+8 + 4y16s+10 + 2y16s+12

(2111222122022210111122221202221) 3 1 + 20y16s+6 + 8y16s+8 + y16s+10 + 2y16s+12

(2212102211212212220201221121221) 2 1+14y16s+6+10y16s+7+2y16s+8+4y16s+9+y16s+16

Type of defining vector: ]](0)4 | (1)9 | (2)18]]
(1112222121022220011222221102222) 1 1 + 18y16s+6 + 10y16s+8 + 2y16s+10 + y16s+16

(1211022122122220012102221122222) 3 1 + 21y16s+6 + 4y16s+8 + 3y16s+10 + 3y16s+12

(1101222122122220001122221122222) 3 1+20y16s+6+6y16s+8+3y16s+10+y16s+12+y16s+14

Type of defining vector: ]](0)5 | (1)7 | (2)19]]
(1112222112022220002222220112222) 3 1 + 20y16s+6 + 6y16s+8 + 4y16s+10 + y16s+16

Type of defining vector: ]](0)6 | (1)5 | (2)20]]
(1122222120022220012222221002222) 1 1+20y16s+6+8y16s+8+2y16s+12+y16s+16

Type of defining vector: ]](0)7 | (1)3 | (2)21]]
(2222220122002220122222021200222) 3 1 + 21y16s+6 + 7y16s+8 + 3y16s+14

□

Lemma 10. If L has lmax = s + 1 and lmin = s − 2, then h(C) ≥ 3, and C is not an LCD code.

Proof. If lmax = s + 1 and lmin = s − 2, then s ≥ 2 and L = (s − 2)1N + L′′, where L′′ is the defining
vector of a [76, 5, 38] code with given generator matrix. In this case, C is the juxtaposition of (s− 2)S5

and a [76, 5, 38] code. Suppose L is of type ]](s − 2)a | (s − 1)b | (s)c | (s + 1)d]] with a ≥ 1. By solving
Eq (⋆), we obtain the following types ]](0)a | (1)b | (2)c | (3)d]] of L′′:

L′′1,0: ]](0)1 | (1)0 | (2)14 | (3)16]]; L′′1,2: ]](0)1 | (2)2 | (2)10 | (3)18]];
L′′1,4: ]](0)1 | (1)4 | (2)6 | (3)20]]; L′′1,6: ]](0)1 | (1)6 | (2)2 | (3)22]];
L′′3,0: ]](0)3 | (1)0 | (2)8 | (3)20]]; L′′3,4: ]](0)3 | (1)4 | (2)0 | (3)24]].
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There are ten classes of inequivalent [76, 5, 38] codes with the defining vectors of the above six
types. And all these codes have hull dimension h ≥ 3, hence h([31s + 14, 5, 16s + 6]) ≥ 3 when L
satisfies lmax = s + 1 and lmin = s − 2. For the defining vectors L′′i, j of these inequivalent [76, 5, 38]
codes, h(C), and their weight enumerators of [31s + 14, 5, 16s + 6] codes, see Table 5.

Table 5. 10 inequivalent [31s + 14, 5, 16s + 6] codes.

Type of defining vector of L′′: ]](0)1 | (1)0 | (2)14 | (3)16]]
Defining vector h Weight enumerator of C
(3323223233232232332322303323223) 5 1 + 16y16s+6 + 14y16s+8 + y16s+16

(3323223233322232330322333323222) 3 1 + 19y16s+6 + 7y16s+8 + 4y16s+10 + y16s+14

(3323223323322232330322333233222) 3 1 + 20y16s+6 + 5y16s+8 + 4y16s+10 + 2y16s+12

Type of defining vector: ]](0)1 | (1)2 | (2)10 | (3)18]]
(3323223233332132330322333323123) 3 1 + 20y16s+6 + 6y16s+8 + 4y16s+10 + y16s+16

(3323313323332222330313333232223) 3 1 + 22y16s+6 + 3y16s+8 + 2y16s+10 + 4y16s+12

(3323213233323232330312333323232) 3 1+21y16s+6+5y16s+8+2y16s+10+2y16s+12+y16s+14

Type of defining vector: ]](0)1 | (1)4 | (2)2 | (3)20]]
(3323113233332332330311333323323) 3 1+22y16s+6+4y16s+8+2y16s+10+2y16s+12+y16s+16

Type of defining vector: ]](0)1 | (1)6 | (2)2 | (3)22]]
(3323203333131333331313313333313) 3 1 + 22y16s+6 + 6y16s+8 + 2y16s+14 + y16s+16

Type of defining vector: ]](0)3 | (1)0 | (2)8 | (3)20]]
(3323203233333232330302333323233) 3 1 + 24y16s+6 + 2y16s+8 + 4y16s+12 + y16s+16

Type of defining vector: ]](0)3 | (1)4 | (2)0 | (3)24]]
(3333303333131333330303313333313) 3 1 + 24y16s+6 + 4y16s+8 + 3y16s+16

Summarizing the above, we have shown h([31s + 14, 5, 16s + 6]) ≥ 1 for all s ≥ 1. □

3.4. h([31s + 18, 5, 16s + 8]) ≥ 1

In this subsection, fix n = 31s + 18 and d = 16s + 8. It is easy to check σ = 2 × 24 + 8 and
s − 2 ≤ li ≤ s + 3 for 1 ≤ i ≤ N. Thus, L may have the following types:

(1) lmax = s + 3; (2) lmax = s + 2; (3) lmax = s + 1 and lmin = s;
(4) lmax = s + 1 and lmin = s − 1; (5) lmax = s + 1 and lmin = s − 2.
If lmax = s+3, then C has a reduced [30s+15, 4, 16s+8] SO code. It naturally follows that h(C) ≥ 3

and C is not LCD.
If lmax = s + 2, then C has a reduced code [30s + 16, 4, 16s + 8]= [15m + 1, 4, 8m] for m = 2s + 1,

which is a code with hull dimension h ≥ 2, and one can deduce that h(C) ≥ 1 and C is not LCD.
If lmax = s + 1 and lmin = s, then L = s1N + L0, where L0 is the defining vector of a projective

[18, 5, 8] code. In this case, C is the juxtaposition of sS5 and an [18, 5, 8] code. According to [10,11],
an [18, 5, 8] code is not LCD and h([18, 5, 8]) ≥ 1, hence h(C) ≥ 1 and C is not LCD.

For L satisfying Cases (4) or (5), we use the following two lemmas to verify h(C) ≥ 1.

Lemma 11. If L meets lmax = s + 1 and lmin = s − 2, then h(C) ≥ 1 and C is not an LCD code.
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Proof. If lmax = s + 1 and lmin = s − 2, then L = (s − 1)1N + L′, where L′ is the defining vector of a
[49, 5, 24] code with the given generator matrix. In this case, C is the juxtaposition of (s − 1)S5 and a
[49, 5, 24] code. By solving Eq (⋆), we obtain the following types of L′:

L′1: ]](0)1 | (1)11 | (2)19]]; L′2: ]](0)2 | (1)9 | (2)20]]; L′3: ]](0)3 | (1)7 | (2)21]];
L′4: ]](0)4 | (1)5 | (2)22]]; L′5: ]](0)6 | (1)1 | (2)24]].
There are fifteen classes of inequivalent [49, 5, 24] codes with defining vectors of the above five

types, all these codes have h ≥ 1, hence h([31s + 18, 5, 16s + 8]) ≥ 1 when L satisfies lmax = s + 1 and
lmin = s − 2. For details of the defining vectors L′i, j of these inequivalent [49, 5, 24] codes, h(C), and
their weight enumerators of [31s + 18, 5, 16s + 8] codes, see Table 6.

Table 6. 15 inequivalent [31s + 18, 5, 16s + 8] codes.

Type of defining vector of L′: ]](0)1 | (1)11 | (2)19]]
Defining vector h Weight enumerator of C
(2212112122121122221210222212122) 3 1 + 15y16s+8 + 16y16s+10 + y16s+16

(2212121211122122221210222221122) 3 1 + 17y16s+8 + 8y16s+10 + 6y16s+12

(2212121211221122221210222211222) 1 1 + 16y16s+8 + 11y16s+10 + 3y16s+12 + y16s+14

(2212122211122122221210222221121) 1 1 + 11y16s+8 + 14y16s+9 + 4y16s+12 + 2y16s+13

(2212112122121222221211222212102) 2 1+10y16s+8+12y16s+9+4y16s+10+4y16s+11+y16s+16

Type of defining vector:]](0)2 | (1)9 | (2)20]]
(2212112122122222221210222212012) 1 1 + 16y16s+8 + 12y16s+10 + 2y16s+12 + y16s+16

(2212122122121222221210222212102) 4 1 + 10y16s+8 + 16y16s+9 + 4y16s+12 + y16s+16

(2212212212122212221200222121122) 3 1 + 18y16s+8 + 7y16s+10 + 5y16s+12 + y16s+14

(2212212211122222221200222221121) 1 1 + 17y16s+8 + 10y16s+10 + 2y16s+12 + 2y16s+14

Type of defining vector:]](0)3 | (1)7 | (2)21]]
2212112211212012220222222222022) 5 (1 + 21y16s+8 + 10y16s+12

(2222201212222122220202222111122) 3 1 + 18y16s+8 + 8y16s+10 + 4y16s+12 + y16s+16

(2222202212122212220201222121122) 1 1 + 10y16s+8 + 9y16s+10 + y16s+12 + 3y16s+14

(2222202212121212220202222121212) 4 1+12y16s+8+14y16s+9+2y16s+12+2y16s+13+y16s+16

Type of defining vector:]](0)4 | (1)5 | (2)22]]
(2212212122222022221200222222012) 1 1 + 18y16s+8 + 10y16s+10 + 2y16s+14 + y16s+16

Type of defining vector:]](0)6 | (1)1 | (2)24]]
(2222202122222022220202222202022) 4 1 + 12y16s+8 + 16y16s+9 + 3y16s+16

□

Lemma 12. If L has lmax = s + 1 and lmin = s − 2, then h(C) ≥ 3, and C is not an LCD code.

Proof. If lmax = s+1 and lmin = s−2, then s ≥ 2 and L = (s−2)1N+L′′, where L′′ is the defining vector
of an [80, 5, 40] code with the given generator matrix. In this case, C is the juxtaposition of (s − 2)S5

and an [80, 5, 40] code. Suppose L is of type ]](s− 2)a | (s− 1)b | (s)c | (s+ 1)d]] with a ≥ 1. By solving
Eq (⋆), we obtain the following types of L′′:

L′′1,0: ]](0)1 | (1)0 | (2)10 | (3)20]]; L′′1,2: ]](0)1 | (2)2 | (2)6 | (3)22]];
L′′1,4: ]](0)1 | (1)4 | (2)2 | (3)24]]; L′′3,0: ]](0)3 | (1)0 | (2)4 | (3)24]].

AIMS Mathematics Volume 9, Issue 7, 19137–19153.



19151

There are seven classes of inequivalent [80, 5, 40] codes with defining vectors of the above four
types; all these codes have h ≥ 3, hence h([31s + 18, 5, 16s + 8]) ≥ 3 when L satisfying lmax = s + 1
and lmin = s− 2. For details of the defining vectors L′′i, j of these inequivalent [80, 5, 40] codes, and h(C)
and weight enumerators of their corresponding [31s + 18, 5, 16s + 8] codes, see Table 7.

Table 7. 7 inequivalent [31s + 18, 5, 16s + 8] codes.

Type of defining vector L′′: ]](0)1 | (1)0 | (2)10 | (3)20]]
Defining vector h Weight enumerator of C
(3333233323332223330332333232223) 5 1 + 21y16s+8 + 10y16s+12

(3332332323332233330233233233223) 3 1 + 18y16s+8 + 8y16s+10 + 4y16s+12 + y16s+16

(3323233322233333332320333332232) 3 1 + 19y16s+6 + 6y16s+10 + 4y16s+12 + 2y16s+14

Type of defining vector: ]](0)1 | (1)2 | (2)6 | (3)22]]
(3323203322323323331313333333333) 5 1 + 22y16s+8 + 8y16s+12 + y16s+16

(3333303323232323331313333232333) 3 1+20y16s+8+6y16s+10+2y16s+12+2y16s+14+y16s+16

Type of defining vector: ]](0)1 | (1)4 | (2)2 | (3)24]]
(33333313233333133330133333233133) 3 1 + 21y16s+8 + 8y16s+10 + 3y16s+16

Type of defining vector: ]](0)3 | (1)0 | (2)4 | (3)24]]
(3333303323333323330303333232333) 5 1 + 24y16s+8 + 4y16s+12 + 3y16s+16

Summarizing the above, we have shown h([31s + 18, 5, 16s + 8]) ≥ 1 for all s ≥ 1.
□

4. Conclusions

Combining with known results on optimal LCD codes, the minimum distances of all binary
optimal LCD codes of dimension 5 have been wiped out in this manuscript. More precisely, we
have determined the minimum distances of optimal [n, 5] LCD codes with n = 31s + t ≥ 14 and
t ∈ {2, 8, 10, 12, 14, 16, 18}, which have not been systematically investigated in the literature. By the
methods of reduced codes, classifying optimal linear codes and calculating the hull dimension of C,
one may further study the classification of optimal linear codes, and determine the minimum distances
of optimal LCD codes with higher dimensions.
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