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1. Introduction

In this article, we let (Hs; ⟨., .⟩) denote a complex Hilbert space. Now, we recall several concepts and
definitions that were investigated in [14]. An arbitrary operator E belongs to B(Hs) is called positive,
when ⟨Ex, x⟩ ≥ 0, ∀x ∈ Hs, and surely E is self-adjoint. In other words, E will be positive if, and only
if, E = C∗C for several operators, and C belongs to B(Hs). We write E ≥ 0, if E is positive. Note that
|E| denotes for the considered positive operator (E∗E)

1
2 .

For the assumed E, the numerical radius is defined as follows:

ω(E) = sup{|⟨Ex, x⟩| : x ∈ Hs, ∥x∥ = 1}.

This is obvious that ω(.) defines a norm on B(Hs), that can be equivalent to the common operator norm
∥.∥. Note that, ∀E ∈ B(Hs), and the following inequality holds;

1
2
∥E∥ ≤ ω(E) ≤ ∥E∥. (1.1)
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More information on the numerical range and the numerical radius of bounded linear operators on
complex Hilbert spaces can be found. For example, these applications can be seen in [5] written by
Elin et al.

Kittaneh in [10] makes an improvement of the above inequality such that is stated in the following:

ω(E) ≤
1
2
∥|E| + |E∗|∥

≤
1
2

(∥E∥ + ∥E2∥
1
2 ), ∀E ∈ B(Hs). (1.2)

Similarly, El-Haddad et al. in the research [4] investigated the following inequality as an
improvement of the left-hand side of the (1.2) form as follows:

ωr(E) ≤
1
2

∥∥∥|E|2rθ + |E∗|2rν
∥∥∥, r ≥ 1, θ + ν = 1. (1.3)

We note that this inequality improves at the end of Section 2. It is our research motivation in this
paper.

The purpose of this paper is to describe some new inequalities for numerical radius of the bounded
and linear operator in Hilbert spaceHs.

Authors of [15] in [15, Corollary 2.1] and [15, Proposition 2.2], respectively, investigated the
following sharp inequalities:

ωr(E) ≤
∥∥∥ ∫ 1

0
(τ|E| + (1 − τ)|E∗|)rdτ

∥∥∥
≤

1
2

∥∥∥|E|r + |E∗|r∥∥∥, (1.4)

and

ωr(F∗E) ≤
∥∥∥ ∫ 1

0
(τ|E|2 + (1 − τ)|F|2)rdτ

∥∥∥ ≤ 1
2

∥∥∥|E|2r + |F|2r
∥∥∥ (1.5)

for any 1 ≤ r ≤ 2.
As our basic motivation in this research paper in Section 2, we will improve and generalize the

left-hand side of inequalities (1.4) and (1.5).
Also, the following inequality has been investigated in [3, Theorem 1], which we try to improve in

Section 3:

ω2(C∗XE)

≤
1
2

∥∥∥∥X 1
2 C
∥∥∥∥2(∥∥∥∥ |X 1

2 E|2 + |X
1
2 F|2

2

∥∥∥∥ + ω(F∗XE)
)
,

such that X is a positive operator onHs and E, F,C in B(Hs).
In several particular cases, we illustrate our consequence, providing a sharper estimation for the

numerical radius than the associated consequence obtained in [3].
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2. Results

The essential aim of Section 2 is to give notable improvements of the inequalities (1.2), (1.4), and
(1.5). In order to reach our basic purpose, we need to the following lemmas, which will be crucial in
our analysis.

Lemma 2.1. Note that if θ, ν ≥ 0 and that real numbers m,M ≥ 0 apply in the inequality max{θ, ν} ≥
M > m ≥ min{θ, ν}, then we have

M + m

2
√

Mm

√
θν ≤

θ + ν

2
. (2.1)

Proof. Put g(x) = 2
√

x
1+x on x ≥ M

m ≥ 1. We imply g(x) ≤ g( M
m ), (since g′(x) = 1−x

√
x(x+1)2 ≤ 0, for x ≥ 1),

which leads to an interesting result by a simple calculation. □

Now, we introduce the Hermite–Hadamard inequalities for a convex function h : J → R, which
looking for it

h
(c + d

2

)
≤

∫ 1

0
h(τc + (1 − τ)d)dτ

≤
h(c) + h(d)

2
, (2.2)

for each c, d ∈ J, J is a real interval. The following investigation can be an application of Jensen’s
inequality, which is found in [7].

Lemma 2.2. Assume that h is a convex function in the real interval J involving sp(E), which E = E∗

is an operator. Therefore, we have

h(⟨Ex, x⟩) ≤ ⟨h(E)x, x⟩ (2.3)

for every unit vector x ∈ Hs.
The second lemma in this section follows from the Theorem 2.3 in [1] directly.

Lemma 2.3. Suppose that E, F ∈ B(Hs) are positive operators and h is an increasing nonnegative
convex function on the interval [0,∞). Therefore,

∥h((1 − α)E + αF)∥ ≤ ∥(1 − α)h(E) + αh(F)∥

for every 0 ≤ α ≤ 1.
The following inequality is well-known to be a generalized mixed Schwarz inequality:

For E ∈ B(Hs), we have

|⟨Ex, y⟩|2

≤ ⟨|E|2θx, x⟩⟨|E∗|2νy, y⟩ (2.4)

for x, y ∈ Hs and θ + ν = 1, (see [11, Lemma 1]).
Next, we present a lemma that will be beneficial in Section 2.
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Lemma 2.4. [15, Proposition 2.1] Suppose that Φ : B(Hs) → B(Hs) is a positive and unital linear
function, E ∈ B(Hs), and h : R+ → R+ is an increasing operator and convex function. Hence,

h(ω2(Φ(E)))

≤

∥∥∥∥Φ( ∫ 1

0
h(τ|E|2 + (1 − τ)|E∗|2)dτ

)∥∥∥∥.
In the special case, for every r ∈ [1, 2], it concludes that

ω2r(E) ≤
∥∥∥∥ ∫ 1

0
(τ|E|2 + (1 − τ)|E∗|2)rdτ

∥∥∥∥,
where ω(E) is the numerical radius of E.

Lemma 2.5. [10, Lemma 2] If E, F ∈ B(Hs) are positive operators, then,

∥E
1
2 F

1
2 ∥ ≤ ∥EF∥

1
2 .

Kittaneh also proved the effect including a norm inequality for sums of positive operators and that
it will be sharper than the triangle inequality, as follows.

Lemma 2.6. Suppose that E, F ∈ B(Hs). Therefore,

∥E + F∥

≤
1
2

(
∥E∥ + ∥F∥ +

√
(∥E∥ + ∥F∥)2 + 4∥E

1
2 F

1
2 ∥2
)
,

(see [10, Lemma 3]), and |⟨Ex, y⟩| ≤ ⟨|E|x, x⟩
1
2 ⟨|E∗|y, y⟩

1
2 for every x, y ∈ Hs, (see [10, Lemma 1]).

Notice the recent definition for the functions tγ and (1 − γ) + γt, such that γ ∈ [0, 1] will end at the
operator γ-weighted geometric mean and the operator γ-weighted arithmetic mean, respectively.

In the next theorem, we improve and generalize the inequality (1.4).

Theorem 2.7. Assume that E ∈ B(Hs) is an operator, and also h : R+ → R+ is an increasing operator
and convex function. Suppose that real numbers m,M ≥ 0 apply one of the conditions, as follows:

(i) 0 ≤ |E|2θ ≤ mI ≤ MI ≤ |E∗|2ν,
(ii) 0 ≤ |E∗|2ν ≤ mI ≤ MI ≤ |E|2θ.

Then, for θ + ν = 1,

h(ω(E)) ≤

√
Mm

M + m
∥h(|E|2θ) + h(|E∗|2ν)∥ (2.5)

for every operator E ∈ B(Hs).

Proof. Let x ∈ Hs be a unit vector. We know 2
√

Mm
M+m ≤ 1 and h is a nonnegative operator increasing

and convex function (we use the fact if h is an operator convex and increasing function, for k ≤ 1, we
reach: h(kt) ≤ kh(t)), then for θ + ν = 1, and by using generalized mixed Schwarz inequality, we have

h(|⟨Ex, x⟩|)
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≤ h
( √
⟨|E|2θx, x⟩⟨|E∗|2νx, x⟩

)
≤ h
( √Mm

M + m
(
⟨|E|2θx, x⟩ + ⟨|E∗|2νx, x⟩

))
(Lemma 2.1)

≤
2
√

Mm
M + m

h
(⟨|E|2θx, x⟩ + ⟨|E∗|2νx, x⟩

2

)
≤

√
Mm

M + m

(
h(⟨|E|2θx, x⟩) + h(⟨|E∗|2νx, x⟩)

)
(inequality (2.2))

≤

√
Mm

M + m

(
⟨h(|E|2θ)x, x⟩) + ⟨h(|E∗|2ν)x, x⟩)

)
(inequality 2.3)

≤

√
Mm

M + m

(
⟨(h(|E|2θ) + h(|E∗|2ν))x, x⟩

)
.

We take the supremum over x ∈ Hs , ∥x∥ = 1 and imply the desired inequality (2.5). □

It should be noted that the map h(t) = tr (for r ∈ [1, 2]) is an increasing operator and convex
function.

Theorem 2.8. Suppose that E ∈ B(Hs), and h is a positive increasing operator and convex function
on real numbers R. Also, we assume that positive operators |E|2θ and |E∗|2ν (with θ + ν = 1) and that
real numbers m,M ≥ 0 apply in the conditions (i) or (ii) as follows:

(i) |E|2θ ≤ mI ≤ MI ≤ |E∗|2ν,
(ii) |E∗|2ν ≤ mI ≤ MI ≤ |E|2θ.

Then, for every x ∈ Hs, we reach

h(⟨Ex, x⟩) ≤

√
Mm

M + m

[〈
h(|E|2θ)x, x

〉
+
〈
h
(
|E∗|2ν

)
x, x
〉]
. (2.6)

Specifically, for any r ≥ 1, we reach the following inequality;

ωr(E) ≤ (

√
Mm

M + m
)r
∥∥∥|E|2rθ + |E∗|2rν

∥∥∥. (2.7)

Proof. Assume that E = U |E| is the polar decomposition of E. Using the generalized mixed Schwarz
inequality (2.4) in the Hilbert space and Lemma 2.1, and also utilizing the convexity property of the
function h(t) = tr (with r ≥ 1), we reach

|⟨Ex, x⟩| = |⟨|E|θx, |E|νU∗x⟩| (2.8)
≤
∥∥∥|E|θx∥∥∥.∥∥∥|E|νU∗x∥∥∥

= ⟨|E|2θx, x⟩
1
2 ⟨|E∗|2νx, x⟩

1
2

≤

√
Mm

M + m

(
⟨|E|2θx, x⟩ + ⟨|E∗|2νx, x⟩

)
≤

√
Mm

M + m

(
⟨|E|2θx, x⟩r + ⟨|E∗|2νx, x⟩r

) 1
r
, (2.9)
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for any x ∈ Hs. Now, using the Lemma 2.1, we have

h
[
⟨|E|2θx, x⟩

1
2 ⟨|E∗|2νx, x⟩

1
2
]
≤ h
[2√Mm

M + m

(⟨|E|2θx, x⟩ + ⟨|E∗|2νx, x⟩
2

)]
≤

2
√

Mm
M + m

h
(⟨|E|2θx, x⟩ + ⟨|E∗|2νx, x⟩

2

)
(2.10)

≤

√
Mm

M + m
h
(
⟨|E|2θx, x⟩) + h(⟨|E∗|2νx, x⟩

)
≤

√
Mm

M + m

[〈
h(|E|2θ)x, x

〉
+
〈
h
(
|E∗|2ν

)
x, x
〉]

(2.11)

(by inequality 2.3).

Note that the inequality (2.10) implies the fact that if h is an increasing operator and convex function
and γ = 2

√
Mm

M+m ≤ 1, then h(γt) ≤ γh(t). Therefore, by combining inequalities (2.8) and (2.11), we get
the desired result (2.6).

Now, by using (2.9), the H’́older-McCarthy inequality for the positive operators |E|2θ and |E∗|2ν, and
the convexity property of the function h(u) = ur, (for r ≥ 1), it implies that

√
Mm

M + m

(
⟨|E|2θx, x⟩r + ⟨|E∗|2νx, x⟩r

) 1
r (2.12)

≤

√
Mm

M + m

(
⟨|E|2rθx, x⟩ + ⟨|E∗|2rνx, x⟩

) 1
r

=

√
Mm

M + m

(
⟨(|E|2rθ + |E∗|2rν)x, x⟩

) 1
r

for all x ∈ Hs such that ∥x∥ = 1.
We combine inequalities (2.8) and (2.12) and get

|⟨Ex, x⟩|r ≤ (

√
Mm

M + m
)r〈(|E|2rθ + |E∗|2rν)x, x

〉
,

for every unit vector x ∈ Hs. Because the operator |E|2rθ + |E∗|2rν is self-adjoint, we take the supremum
over unit vector x ∈ Hs, and it results in the desired inequality, as follows:

ωr(E) ≤ (

√
Mm

M + m
)r
∥∥∥|E|2rθ + |E∗|2rν

∥∥∥.
□

This inequality improves (1.3). Also, we can improve this inequality by utilizing the following
lemma.

We introduce some improvements of the famous inequalities, such as H’́older-McCarthy’s
inequality, in the following lemma.

Lemma 2.9. ( [9, corollary 3.1]) Assume that E is a positive operator onHs. If x ∈ Hs with ∥x∥ = 1,
then,
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⟨Ex, x⟩r ≤ ⟨Er x, x⟩ − ⟨|E − ⟨Ex, x⟩|r x, x⟩, f or r ≥ 2.

Proposition 2.10. Under the assumption of Theorem 2.8, if we apply Lemma 2.9, then we get to the
following inequality, which is an improvement of inequality (2.7):

ωr(E) ≤ (

√
Mm

M + m
)r
∥∥∥|E|2rθ + |E∗|2rν

∥∥∥ − inf
∥x∥=1
ξ(x),

such that

ξ(x) =
( √Mm
M + m

)r〈
(
∣∣∣|E|2θ − ⟨|E|2θx, x⟩∣∣∣r + ∣∣∣|E∗|2ν − ⟨|E∗|2νx, x⟩∣∣∣r)x, x

〉
.

Proof. We know
∣∣∣|E|2θ − ⟨|E|2θx, x⟩∣∣∣r + ∣∣∣|E∗|2ν − ⟨|E∗|2νx, x⟩∣∣∣r is a positive operator, then

〈
(
∣∣∣|E|2θ −

⟨|E|2θx, x⟩
∣∣∣r + ∣∣∣|E∗|2ν − ⟨|E∗|2νx, x⟩∣∣∣r)x, x

〉
≥ 0, and so inf ξ(x) ≥ 0, for x ∈ Hs with ∥x∥ = 1. From

inequalities (2.8) and (2.9), applying Lemma 2.9 for the positive operator |E|2θ and |E∗|2ν and convexity
property of the function h(u) = ur (for r ≥ 2) implies that

|⟨Ex, x⟩| ≤

√
Mm

M + m

(
⟨|E|2θx, x⟩r + ⟨|E∗|2νx, x⟩r

) 1
r

≤

√
Mm

M + m

(
⟨|E|2rθx, x⟩ + ⟨|E∗|2rνx, x⟩

−
〈∣∣∣|E|2θ − ⟨|E|2θx, x⟩∣∣∣r x, x

〉
−
〈∣∣∣|E∗|2ν − ⟨|E∗|2νx, x⟩∣∣∣r x, x

〉) 1
r

=

√
Mm

M + m

(〈
(|E|2rθ + |E∗|2rν −

∣∣∣|E|2θ − ⟨|E|2θx, x⟩∣∣∣r − ∣∣∣|E∗|2ν − ⟨|E∗|2νx, x⟩∣∣∣r)x, x
〉) 1

r
,

therefore,

|⟨Ex, x⟩|r ≤
( √Mm
M + m

)r〈
(|E|2rθ + |E∗|2rν)x, x

〉
−
( √Mm
M + m

)r〈
(
∣∣∣|E|2θ − ⟨|E|2θx, x⟩∣∣∣r + ∣∣∣|E∗|2ν − ⟨|E∗|2νx, x⟩∣∣∣r)x, x

〉
,

for every x ∈ Hs such that ∥x∥ = 1. Now, we take supremum over unit vector x ∈ Hs, resulting in the
following interest inequality:

ωr(E) ≤ (

√
Mm

M + m
)r
∥∥∥|E|2rθ + |E∗|2rν

∥∥∥ − inf
∥x∥=1
ξ(x),

where

ξ(x) =
( √Mm
M + m

)r〈
(
∣∣∣|E|2θ − ⟨|E|2θx, x⟩∣∣∣r + ∣∣∣|E∗|2ν − ⟨|E∗|2νx, x⟩∣∣∣r)x, x

〉
.

This inequality improves inequality (2.7). □

Theorem 2.11. Suppose that E ∈ B(Hs) and that h : R+ → R+ is an increasing operator and convex
function, and assume that the real numbers m,M ≥ 0 apply in the conditions (i) or (ii) as follows:

(i) 0 ≤ |E|2θ ≤ mI ≤ MI ≤ F∗|E∗|2νF,

AIMS Mathematics Volume 9, Issue 7, 19089–19103.
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(ii) 0 ≤ F∗|E∗|2νF ≤ mI ≤ MI ≤ |E|2θ.

Hence, for θ + ν = 1,

h(ω(F∗E)) ≤
2
√

Mm
M + m

sup
( ∫ 1

0
h
(∥∥∥∥(t|E|2θ + (1 − t)F∗|E∗|2νF)

1
2 x
∥∥∥∥2)dt
)
, (2.13)

for every unit vector x ∈ Hs.

Proof. Lemma 2.1 and the generalized mixed Schwarz inequality (2.4) imply that

h(|⟨F∗Ex, x⟩|) = h(|⟨Ex, Fx⟩|)
≤ h
( √
⟨|E|2θx, x⟩⟨F∗|E∗|2νFx, x⟩

)
≤ h
( √Mm

M + m
(⟨|E|2θx, x⟩ + ⟨F∗|E∗|2νFx, x⟩)

)
≤

2
√

Mm
M + m

h
(⟨|E|2θx, x⟩ + ⟨F∗|E∗|2νFx, x⟩

2

)
. (2.14)

We know the fact that if h is an increasing operator and convex function and γ = 2
√

Mm
M+m ≤ 1, then

h(γt) ≤ γh(t), so the inequality (2.14) follows from it.
Now, we take a = ⟨|E|2θx, x⟩ and b = ⟨F∗|E∗|2νFx, x⟩ in the inequality (2.2), where x ∈ Hs, ∥x∥ = 1

is a vector. Therefore,

h
(⟨|E|2θx, x⟩ + ⟨F∗|E∗|2νFx, x⟩

2

)
≤

∫ 1

0
h
(〈

(t|E|2θ + (1 − t)F∗|E∗|2νF)x, x
〉)

dt. (2.15)

Next, combining inequalities (2.14) and (2.15) implies that

h(|⟨F∗Ex, x⟩|) ≤
2
√

Mm
M + m

∫ 1

0
h
(〈

(t|E|2θ + (1 − t)F∗|E∗|2νF)x, x
〉)

dt

≤
2
√

Mm
M + m

∫ 1

0
h
(∥∥∥∥(t|E|2θ + (1 − t)F∗|E∗|2νF

)
x
∥∥∥∥)dt

for each unit vector x ∈ Hs. Then, we take the supremum over unit vector x ∈ Hs, resulting in the
interest inequality (2.13). □

In the next result, by using Lemma 2.4, we try to improve and generalize inequality (1.5).

Corollary 2.12. Consider the assumption of Theorem 2.11, and take φ = I in Lemma 2.4. Hence, for
θ + ν = 1,

h(ω(F∗E)) ≤ 2
√

Mm
M+m

∥∥∥∥ ∫ 1

0
h(t|E|2θ + (1 − t)F∗|E∗|2νF)dt

∥∥∥∥.
Especially, for every r ∈ [1, 2], it implies that

ωr(F∗E)) ≤ 2
√

Mm
M+m

∥∥∥∥ ∫ 1

0
(t|E|2θ + (1 − t)F∗|E∗|2νF)rdt

∥∥∥∥.
AIMS Mathematics Volume 9, Issue 7, 19089–19103.
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3. Some refinements inequalities related to product operators

In this section, with four operators, we create several new numerical radius inequalities on a Hilbert
space. Also, several special cases that generalize and improve upon a previous result are presented.

In the first theorem, as we said, we will improve inequalities related to the product of operators
(see [3]).

Theorem 3.1. Assume that E, F,C, X ∈ B(Hs), and X is a positive operator where F∗XC = C∗XE.
Suppose that the real numbers m,M ≥ 0 apply in the conditions (i) or (ii) as follows:

(i) E∗XE ≤ mI ≤ MI ≤ F∗XF,
(ii) F∗XF ≤ mI ≤ MI ≤ E∗XE.

Hence,

ω2(C∗XE)

≤
1
2

∥∥∥∥X 1
2 C
∥∥∥∥2(∥∥∥∥ √Mm

M + m
(
|X

1
2 E|2 + |X

1
2 F|2
)∥∥∥∥ + ω(F∗XE)

)
Proof. We use inequality (2.6) of ( [3, Theorem 8]), and have

1
2

(
⟨E∗XEx, x⟩

1
2 ⟨F∗XFx, x⟩

1
2 + |⟨F∗XEx, x⟩|

)
⟨C∗XCx, x⟩

≥ |⟨x, E∗XCx⟩⟨x, F∗XCx⟩|. (3.1)

for every x inHs. We have F∗XC = C∗XE = (E∗XC)∗. Hence,

|⟨x, E∗XCx⟩⟨x, F∗XCx⟩|

= |⟨x, E∗XCx⟩⟨x, (E∗XC)∗x⟩| (3.2)
= |⟨E∗XCx, x⟩|2

= |⟨C∗XEx, x⟩|2

for all x inHs. Using inequality (3.1) and equality (3.2) leads to

|⟨C∗XEx, x⟩|2

≤
1
2

[
⟨E∗XEx, x⟩

1
2 ⟨F∗XFx, x⟩

1
2 + |⟨F∗XEx, x⟩|

]
× ⟨C∗XCx, x⟩ (3.3)

for all x inHs. Also, utilizing Lemma 2.1, we create

⟨E∗XEx, x⟩
1
2 ⟨F∗XFx, x⟩

1
2 ≤

√
Mm

M + m

(〈
E∗XEx, x

〉
+
〈
F∗XFx, x

〉)
=
〈 √Mm

M + m
(E∗XE + F∗XF)x, x

〉
for all x inHs. Therefore, by (3.3), we reach

|⟨C∗XEx, x⟩|2 ≤
1
2

(
⟨

√
Mm

M + m
(E∗XE + F∗XF)x, x⟩ + |⟨F∗XEx, x⟩|

)
× ⟨C∗XCx, x⟩.
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In particular, because

E∗XE = |X
1
2 E|2,

F∗XF = |X
1
2 F|2,C∗XC = |X

1
2 C|2,

we have

|⟨C∗XEx, x⟩|2

≤
1
2

(
⟨

√
Mm

M + m
(|X

1
2 E|2 + |X

1
2 F|2)x, x⟩ + |⟨F∗XEx, x⟩|

)
× ⟨|X

1
2 C|2x, x⟩ (3.4)

for all x inHs. Hence, we take the supremum in (3.4) over the unit vector x inHs, implying the desired
inequality, as follows:

ω2(C∗XE) ≤
1
2

∥∥∥∥X 1
2 C
∥∥∥∥(∥∥∥∥ √Mm

M + m
(
|X

1
2 E|2 + |X

1
2 F|2
)∥∥∥∥ + ω(F∗XE)

)
.

□

Corollary 3.2. By putting X = I in Theorem 3.1, we get

ω2(C∗E)

≤
1
2
∥C∥2
(∥∥∥∥ √Mm

M + m
(
|E|2 + |F|2

)∥∥∥∥ + ω(F∗E)
)
.

Next, using the following lemma leads to obtaining the improved inequalities.

Lemma 3.3. [13, page 5] Suppose that h on [a, b] is twice differentiable. Assume that h is a convex
function such that h

′′

≥ λ.I (where λ := min
x∈[a,b]

h(x) > 0). Hence,

h
(a + b

2

)
≤

h(a) + h(b)
2

−
1
8
λ(b − a)2

≤
h(a) + h(b)

2
. (3.5)

Below is an extension of Furuta’s inequality given by Dragomir:

|⟨DCFEx, y⟩|2 ≤ ⟨E∗|F|2Ex, x⟩⟨D|C∗|2D∗y, y⟩, (3.6)

for all E, F,C,D in B(Hs) and every vector x, y ∈ Hs. The last inequality (3.6) becomes an equality if,
and only if, the vectors FEx and C∗D∗y are linearly dependent (see [2]).

Theorem 3.4. Assume that E, F,C,D ∈ B(Hs) are operators and h on R is an increasing and positive
operator and convex function, and notice that h is twice differentiable where h′′ ≥ λ.I > 0. Suppose
that the real numbers m,M ≥ 0 apply in the conditions (i) or (ii) as follows:

(i) E∗|F|2E ≤ mI ≤ MI ≤ D|C∗|2D∗,
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(ii) D|C∗|2D∗ ≤ mI ≤ MI ≤ E∗|F|2E.

Hence, for all x inHs, results that

h(|⟨DCFEx, y⟩|)

≤

√
Mm

M + m
[
⟨h(E∗|F|2E)x, x⟩ + ⟨h(D|C∗|2D∗)y, y⟩

]
−

1
8
λ(⟨E∗|F|2Ex, x⟩ − ⟨D|C∗|2D∗y, y⟩)2, (3.7)

for all x, y inHs.

Proof. In inequality (3.6), since h is an increasing function, utilizing the convexity and monotocity of
h, leads to

h(|⟨DCFEx, y⟩|)

≤ h
(
⟨E∗|F|2Ex, x⟩

1
2 ⟨D|C∗|2D∗y, y⟩

1
2
)

≤ h
( √Mm

M + m
(
⟨E∗|F|2Ex, x⟩ + ⟨D|C∗|2D∗y, y⟩

))
(Lemma 2.1)

≤
2
√

Mm
M + m

h
(⟨E∗|F|2Ex, x⟩ + ⟨D|C∗|2D∗y, y⟩

2

)
(3.8)

≤
2
√

Mm
M + m

.
h(⟨E∗|F|2Ex, x⟩) + h(⟨D|C∗|2D∗y, y⟩)

2
(Lemma 3.3)

−
1
8
λ(⟨E∗|F|2Ex, x⟩ − ⟨D|C∗|2D∗y, y⟩)2

≤

√
Mm

M + m
[
⟨h(E∗|F|2E)x, x⟩ + ⟨h(D|C∗|2D∗)y, y⟩

]
(inequality 2.3)

−
1
8
λ(⟨E∗|F|2Ex, x⟩ − ⟨D|C∗|2D∗y, y⟩)2,

for every vectors x, y inHs, which proves the interest inequality. Note that the inequality (3.8) implies
the fact that h is an increasing operator and convex function and γ = 2

√
Mm

M+m ≤ 1, then, we have
h(γt) ≤ γh(t). □

Corollary 3.5. Assume that P ∈ B(Hs) and h on R is a positive increasing operator and convex
function. Also, let h be twice differentiable where h′′ ≥ λ.I > 0. Suppose that the real numbers
m,M ≥ 0 apply in the conditions (i) or (ii) as follows:

(i) |P|2θ ≤ mI ≤ MI ≤ |P∗|2ν,
(ii) |P∗|2ν ≤ mI ≤ MI ≤ |P|2θ.

Then,

h
(∣∣∣∣〈P|P|θ+ν−1x, y

〉∣∣∣∣)
≤

√
Mm

M + m

[〈
h(|P|2θ)x, x

〉
+
〈
h
(
|P∗|2ν

)
y, y
〉]
−

1
8
λ
(
⟨|P|2θx, x⟩ − ⟨|P∗|2νy, y⟩

)2
, (3.9)

for each x, y inHs, and every 0 ≤ θ, ν ≤ 1 such that θ + ν ≥ 1.
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Proof. We replace D by U, C by |P|ν, F by 1H , and E by |P|θ in (3.7) to conclude that

DCFE = U |P|ν|P|θ

= U |P||P|θ+ν−1 = P|P|θ+ν−1,

In addition, since E∗|F|2E = |P|2θ and D|C∗|2D∗ = U |P|2νU∗ = |P|2ν, then we achieved the desired
inequality (3.9). □

Remark 3.6. Under the assumption of Corollary 3.5, let h be twice differentiable, where h′′ ≥ λI > 0,
and by taking θ + ν = 1 implies the following result:

h(⟨Px, y⟩)

≤

√
Mm

M + m

[〈
h(|P|2θ)x, x

〉
+
〈
h
(
|P∗|2ν

)
y, y
〉]

−
1
8
λ
(
⟨|P|2θx, x⟩ − ⟨|P∗|2νy, y⟩

)2
.

Lemma 3.7. ( [12, Lemma 2.1]) (H’́older-McCarthy inequality) Suppose that E in B(Hs) is a positive
operator. Therefore, two inequalities are established as follows:

⟨Er x, x⟩ ≥ ∥x∥2(1−r)⟨Ex, x⟩r, f or x ∈ Hs, r ≥ 1. (3.10)

⟨Er x, x⟩ ≤ ∥x∥2(1−r)⟨Ex, x⟩r, f or x ∈ Hs, 0 ≤ r ≤ 1. (3.11)

In addition, in [6, Lemma 2.4] asserts that, for a, b ≥ 0, r , 0, and θ ∈ [0, 1],

aθb(1−θ) ≤ (θar + (1 − θ)br)
1
r , f or r > 0. (3.12)

Theorem 3.8. Assume that E, F in B(Hs) and r, r′ ≥ 1 and 0 ≤ θ ≤ 1. Suppose that the real numbers
m,M ≥ 0 apply in the conditions (i) or (ii) as follows:

(i) |E|2θ ≤ mI ≤ MI ≤ |F|2θ,
(ii) |F|2θ ≤ mI ≤ MI ≤ |E|2θ.

Hence, for each vector x ∈ Hs, ∥x∥ = 1,

|⟨Ex, x⟩|r|⟨Fx, x⟩|r
′

≤

√
Mm

M + m
(∥θ|E|2r + (1 − θ)|E∗|2r + θ|F|2r

′

+ (1 − θ)|F∗|2r
′

∥).

Proof. Let x inHs be an arbitrary vector, ∥x∥ = 1, hence,∣∣∣⟨Ex, x⟩
∣∣∣r∣∣∣⟨Fx, x⟩

∣∣∣r′
≤ (⟨|E|2θx, x⟩⟨|E∗|2(1−θ)x, x⟩)

r
2 (⟨|F|2θx, x⟩⟨|F∗|2(1−θ)x, x⟩)

r
′

2 (inequality 2.4)

≤

√
Mm

M + m
(
(⟨|E|2θx, x⟩⟨|E∗|2(1−θ)x, x⟩)r + (⟨|F|2θx, x⟩⟨|F∗|2(1−θ)x, x⟩)r

′ )
(Lemma 2.1)

≤

√
Mm

M + m
(
(⟨|E|2θr x, x⟩⟨|E∗|2(1−θ)r x, x⟩) + (⟨|F|2θr

′

x, x⟩⟨|F∗|2(1−θ)r
′

x, x⟩)
)

(inequality 3.10)
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≤

√
Mm

M + m
(
⟨|E|2r x, x⟩θ⟨|E∗|2r x, x⟩(1−θ) + ⟨|F|2r

′

x, x⟩θ⟨|F∗|2r
′

x, x⟩(1−θ)
)

((inequality 3.11))

≤

√
Mm

M + m
(
⟨(θ|E|2r + (1 − θ)|E∗|2r)x, x⟩ + ⟨(θ|F|2r

′

+ (1 − θ)|F∗|2r
′

)x, x⟩
)

(inequality 3.12)

≤

√
Mm

M + m
(
∥θ|E|2r + (1 − θ)|E∗|2r + θ|F|2r

′

+ (1 − θ)|F∗|2r
′

∥
)
.

□

Therefore, we provide a sharp estimate for the spectral radius of several operators.

Corollary 3.9. Assume that X in B(Hs) and r(X) specifies the spectral radius of X. Hence,

r(X) ≤
8√Mm

4√M + m

∥∥∥∥|X2|2 + |(X∗)2|2
∥∥∥∥ 1

4

≤ ∥X∥.

Proof. Put θ = 1
2 , E = F = X2, and r = r

′

= 1 in Theorem 3.8. We earn

ω(X2) ≤
4√Mm
√

M + m

∥∥∥∥|X2|2 + |(X∗)2|2
∥∥∥∥ 1

2
.

Therefore, it is obtained that

r2(X) = r(X2) ≤ ω(X2) ≤
4√Mm
√

M + m

∥∥∥∥|X2|2 + |(X∗)2|2
∥∥∥∥ 1

2
.

Then,

r(X) ≤
8√Mm

4√M + m

∥∥∥∥|X2|2 + |(X∗)2|2
∥∥∥∥ 1

4
≤ ∥X∥.

□

4. Conclusions

In this article, we have worked on several numerical radius inequalities, and we have improved and
refined them. Using other articles such as [8] and [16] and other new coefficients for improvement and
elaboration, we will present new inequalities of numerical radius in new articles.
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