Research article

Equilibrium strategies of customers and optimal inventory levels in a make-to-stock retrial queueing system

  • Received: 19 December 2023 Revised: 09 February 2024 Accepted: 08 March 2024 Published: 28 March 2024
  • MSC : 60K25, 91A80

  • We examined a retrial make-to-stock system based on a double-ended queue. When the queue length was negative, the inventory system contained only products, and customers were waiting in the retrial queue when the queue length was positive. We developed a model to study the expected cost of the entire system with strategic customers in the observable case and the fully observable case. We also obtained the optimal inventory levels under these two levels of information based on numerical experiments.

    Citation: Yuejiao Wang, Chenguang Cai. Equilibrium strategies of customers and optimal inventory levels in a make-to-stock retrial queueing system[J]. AIMS Mathematics, 2024, 9(5): 12211-12224. doi: 10.3934/math.2024596

    Related Papers:

  • We examined a retrial make-to-stock system based on a double-ended queue. When the queue length was negative, the inventory system contained only products, and customers were waiting in the retrial queue when the queue length was positive. We developed a model to study the expected cost of the entire system with strategic customers in the observable case and the fully observable case. We also obtained the optimal inventory levels under these two levels of information based on numerical experiments.



    加载中


    [1] G. Arivarignan, M. Keerthana, B. Sivakumar, A production inventory system with renewal and retrial demands, Appl. Pro. Sto. Process., (2020), 129–142. https://doi.org/10.1007/978-981-15-5951-8_9 doi: 10.1007/978-981-15-5951-8_9
    [2] N. H. Do, T. VanDo, A. Melikov, Equilibrium customer behavior in the M/M/1 retrial queue with working vacations and a constant retrial rate, Oper. Res. Ger., 20 (2020), 627–646. https://doi.org/10.1007/s12351-017-0369-7 doi: 10.1007/s12351-017-0369-7
    [3] A. Economou, S. Kanta, Equilibrium customer strategies and social-profit maximization in the single‐server constant retrial queue, Nav. Res. Log., 58 (2011), 107–122. https://doi.org/10.1002/nav.20444 doi: 10.1002/nav.20444
    [4] S. Gao, H. Dong, X. Wang, Equilibrium and pricing analysis for an unreliable retrial queue with limited idle period and single vacation, Oper. Res. Ger., 21 (2021), 621–643. https://doi.org/10.1007/s12351-018-0437-7 doi: 10.1007/s12351-018-0437-7
    [5] K. Jeganathan, T. Harikrishnan, K. P. Lakshmi, D. Nagarajan, A multi-server retrial queueing-inventory system with asynchronous multiple vacations, Dec. Anal. J., 9 (2023), 100333. https://doi.org/10.1016/j.dajour.2023.100333 doi: 10.1016/j.dajour.2023.100333
    [6] K. Jeganathan, M. A. Reiyas, S. Selvakumar, N. Anbazhagan, Analysis of retrial queueing-inventory system with stock dependent demand rate: (s, S) versus (s, Q) ordering policies, Int. J. Appl. Comput. Math., 6 (2020), 1–29. https://doi.org/10.1007/s40819-020-00856-9 doi: 10.1007/s40819-020-00856-9
    [7] K. P. Jose, P. Beena, On a retrial production inventory system with vacation and multiple servers, Int. J. Appl. Comput. Math., 6 (2020), 108. https://doi.org/10.1007/s40819-020-00862-x doi: 10.1007/s40819-020-00862-x
    [8] K. P. Jose, S. S. Nair, Analysis of two production inventory systems with buffer, retrials and different production rates, J. Indust. Eng. Int., 13 (2017), 369–380. https://doi.org/10.1007/s40092-017-0191-0 doi: 10.1007/s40092-017-0191-0
    [9] K. P. Jose, P. S. Reshmi, A production inventory model with deteriorating items and retrial demands, Opsearch, 58 (2021), 71–82. https://doi.org/10.1007/s12597-020-00471-8 doi: 10.1007/s12597-020-00471-8
    [10] Y. Kerner, O. Shmuel-Bittner, Strategic behavior and optimization in a hybrid M/M/1 queue with retrials, Que. Syst., 96 (2020), 285–302. https://doi.org/10.1007/s11134-020-09672-w doi: 10.1007/s11134-020-09672-w
    [11] Q. Li, P. Guo, C. L. Li, J. S. Song, Equilibrium joining strategies and optimal control of a make-to-stock queue, Prod. Oper. Manag., 25 (2016), 1513–1527. https://doi.org/10.1111/poms.12565 doi: 10.1111/poms.12565
    [12] K. Li, J. Wang, Equilibrium balking strategies in the single-server retrial queue with constant retrial rate and catastrophes, Qual. Technol. Quant. M., 18 (2021), 156–178. https://doi.org/10.1080/16843703.2020.1760464 doi: 10.1080/16843703.2020.1760464
    [13] Z. Meng, L. Liu, X. Chai, Z. Wang, Equilibrium strategies in a constant retrial queue with setup time and the N-policy, Commum. Stat.-Theory M., 49 (2020), 1695–1711. https://doi.org/10.1080/03610926.2019.1565779 doi: 10.1080/03610926.2019.1565779
    [14] C. $\ddot{O}$z, F. Karaesmen, On a production/inventory system with strategic customers and unobservable inventory levels, SMMSO, 2015,161.
    [15] M. A. Reiyas, K. Jeganathan, A classical retrial queueing inventory system with two component demand rate, Int. J. Operat. Res., 74 (2023), 508–533. https://doi.org/10.1504/IJOR.2023.132813 doi: 10.1504/IJOR.2023.132813
    [16] A. Krishnamoorthy, D. Shajin, Stochastic decomposition in retrial queueing-inventory system, RAIRO-Oper. Res., 54 (2020), 88–91. https://doi.org/10.1145/3016032.3016043 doi: 10.1145/3016032.3016043
    [17] X. Shi, L. Liu, Equilibrium joining strategies in the retrial queue with two classes of customers and delayed vacations, Methodol. Comput. Appl., 25 (2023), 1–27. https://doi.org/10.1007/s11009-023-10029-y doi: 10.1007/s11009-023-10029-y
    [18] J. Wang, F. Zhang, Strategic joining in m/m/1 retrial queues, Eur. J. Oper. Res., 230 (2013), 76–87. https://doi.org/10.1016/j.ejor.2013.03.030 doi: 10.1016/j.ejor.2013.03.030
    [19] Z. Wang, L. Liu, Y. Q. Zhao, Equilibrium customer and socially optimal balking strategies in a constant retrial queue with multiple vacations and N-policy, J. Comb. Optim., 43 (2022), 870–908. https://doi.org/10.1007/s10878-021-00814-1 doi: 10.1007/s10878-021-00814-1
    [20] J. Wang, X. Zhang, P. Huang, Strategic behavior and social optimization in a constant retrial queue with the N-policy, Eur. J. Oper. Res., 256 (2017), 841–849. https://doi.org/10.1016/j.ejor.2016.06.034 doi: 10.1016/j.ejor.2016.06.034
    [21] Y. Zhang, Strategic behavior in the constant retrial queue with a single vacation, RAIRO-Oper. Res., 54 (2020), 569–583. https://doi.org/10.1051/ro/2019016 doi: 10.1051/ro/2019016
    [22] X. Zhang, J. Wang, Optimal inventory threshold for a dynamic service make-to-stock system with strategic customers, Appl. Stoch. Model. Bus., 35 (2019), 1103–1123. https://doi.org/10.1002/asmb.2454 doi: 10.1002/asmb.2454
    [23] Y. Zhang, J. Wang, Managing retrial queueing systems with boundedly rational customers, J. Oper. Res. Soc., 74 (2023), 748–761. https://doi.org/10.1080/01605682.2022.2053305 doi: 10.1080/01605682.2022.2053305
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(578) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog