Research article

Stochastic modeling on M/M/1/N inventory system with queue-dependent service rate and retrial facility

  • Received: 28 January 2021 Accepted: 12 April 2021 Published: 30 April 2021
  • MSC : 60K25, 90B05, 91B70

  • This paper investigates the queue-dependent service rates(QDSR) in the stochastic queueing-inventory system(SQIS). This SQIS consists a single server service channel, $ S $ number of inventories, and a finite queue. An arriving customer gets the service immediately if the server is free and there exists a positive stock in the SQIS. When the server is busy, they have to wait in the finite queue. Suppose they find that the waiting hall is full, either they leave the system or enter into an infinite orbit under the Bernoulli trial. The service rate of any arrival is dependent on the number of customers in the queue at present. The orbital customer can compete for the service only through joining into the waiting hall based on the classical retrial policy. Whenever the number of inventories in SQIS is reached a certain limit $ s $, the replenishment of $ Q( = S-s) $ items is placed. Due to the structure of rate matrix, the stability analysis, minimal non-negative solutions of the quadratic systems are derived through the Neuts matrix-geometric approximation(MGA). Further, the waiting time distribution(WTD) of arrival and necessary system characteristics are derived. Finally, adequate numerical examples are presented to highlight the proposed SQIS.

    Citation: K. Jeganathan, S. Selvakumar, N. Anbazhagan, S. Amutha, Porpattama Hammachukiattikul. Stochastic modeling on M/M/1/N inventory system with queue-dependent service rate and retrial facility[J]. AIMS Mathematics, 2021, 6(7): 7386-7420. doi: 10.3934/math.2021433

    Related Papers:

  • This paper investigates the queue-dependent service rates(QDSR) in the stochastic queueing-inventory system(SQIS). This SQIS consists a single server service channel, $ S $ number of inventories, and a finite queue. An arriving customer gets the service immediately if the server is free and there exists a positive stock in the SQIS. When the server is busy, they have to wait in the finite queue. Suppose they find that the waiting hall is full, either they leave the system or enter into an infinite orbit under the Bernoulli trial. The service rate of any arrival is dependent on the number of customers in the queue at present. The orbital customer can compete for the service only through joining into the waiting hall based on the classical retrial policy. Whenever the number of inventories in SQIS is reached a certain limit $ s $, the replenishment of $ Q( = S-s) $ items is placed. Due to the structure of rate matrix, the stability analysis, minimal non-negative solutions of the quadratic systems are derived through the Neuts matrix-geometric approximation(MGA). Further, the waiting time distribution(WTD) of arrival and necessary system characteristics are derived. Finally, adequate numerical examples are presented to highlight the proposed SQIS.



    加载中


    [1] J. Abate, W. Whitt, Numerical inversion of laplace transformation of probability distributions, ORSA Journal on Computers, 7 (1995), 36-43. doi: 10.1287/ijoc.7.1.36
    [2] M. Amirthakodi, B. Sivakumar, An inventory system with service facility and feedback customers, IJISE, 33 (2019), 374-411. doi: 10.1504/IJISE.2019.103450
    [3] G. Arivarignan, V. S. S. Yadavalli, B. Sivakumar, A perishable inventory system with multi-server service facility and retrial customers, In: Management science and practice, New Delhi: Allied Publishers Pvt. Ltd, 2008, 3-27.
    [4] J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Sociedad de Estadística e Investigación Operativa Top, 7 (1999), 187-211.
    [5] J. R. Artalejo, A. Gomez-Corral, M. F. Neuts, Analysis of multi-server queues with constant retrial rate, Eur. J. Oper. Res., 135 (2001), 569-581. doi: 10.1016/S0377-2217(00)00330-1
    [6] J. R. Artalejo, A. Economou, M. J. Lopez-Herrero, Algorithmic approximations for the busy period distribution of the M/M/c retrial queue, Eur. J. Oper. Res., 176 (2007), 1687-1702. doi: 10.1016/j.ejor.2005.10.034
    [7] J. R. Artalejo, A. Gomez-Corral, Waiting time analysis of the M/G/1 queue with the finite retrial group, Nav. Res. Logis., 54 (2007), 524-529. doi: 10.1002/nav.20227
    [8] J. R. Artalejo, M. J. López-Herrero, A simulation study of a discrete-time multi-server retrial queue with finite population, J. Stat. Plan. Infer., 137 (2007), 2536-2542. doi: 10.1016/j.jspi.2006.04.018
    [9] O. Berman, E. H. Kaplan, D. G. Shimshak, Deterministic approximations for inventory management at service facilities, IIE Trans., 25 (1993), 98-104. doi: 10.1080/07408179308964320
    [10] O. Berman, E. Kim, Stochastic inventory policies for inventory management at service facilities, Stoch. Models, 15 (1999), 695-718.
    [11] O. Berman, K. P. Sapna, Inventory management at service facilities for systems with arbitrarily distributed service times, Stoch. Models, 16 (2000), 343-360.
    [12] S. Chakravarthy, A. Dudin, A multi-server retrial queue with BMAP arrivals and group services, Queueing Syst., 42 (2002), 5-31. doi: 10.1023/A:1019989127190
    [13] G. Choudhury, H. K. Baruah, Analysis of a Poisson queue with a threshold policy and a grand vacation process: an analytic approach, Indian J.Stat., 62 (2000), 303-316.
    [14] C. Elango, A continuous review perishable inventory system at service facilities, Ph. D. Thesis, Madurai Kamaraj University, Madurai, India, 2001.
    [15] G. I. Falin, J. R. Artalejo, A finite source retrial queue, Eur. J. Oper. Res., 108 (1998), 409-424. doi: 10.1016/S0377-2217(97)00170-7
    [16] G. I. Falin, J. G. C. Templeton, Retrial queues, London: Chapman and Hall, 1997.
    [17] C. M. Harris, Queues with state-dependent stochastic service rates, Oper. Res., 15 (1967), 117-130. doi: 10.1287/opre.15.1.117
    [18] Q. M. He, E. M. Jewkes, J. Buzacott, An efficient algorithm for computing the optimal replenishment policy for an inventory-production system, In: A. Alfa, S. Chakravarthy (Eds), Advanced matrix analytic methods for stochastic models, New Jersey, USA: Notable Publications, 1998,381-402.
    [19] M. Jain, Finite capacity M/M/r queueing system with queue-dependent servers, Comput. Math. Appl., 50 (2005), 187-199. doi: 10.1016/j.camwa.2004.11.018
    [20] K. Jeganathan, N. Anbazhagan, B. Vigneshwaran, Perishable inventory system with server interruptions, multiple server vacations and N policy, IJORIS, 6 (2015), 32-52.
    [21] K. Jeganathan, M. A. Reiyas, S. Padmasekaran, K. Lakshmanan, An $M/E_{K}/1/N$ queueing-inventory system with two service rates based on queue lengths, Int. J. Appl. Comput. Math., 3 (2017), 357-386. doi: 10.1007/s40819-017-0360-2
    [22] K. Jeganathan, A. Z. Melikov, S. Padmasekaran, S. Jehoashan Kingsly, K. Prasanna Lakshmi, A stochastic inventory model with two queues and a flexible server, Int. J. Appl. Comput. Math., 21 (2019), 1-27.
    [23] K. Jeganathan, M. Abdul Reiyas, K. Prasanna Lakshmi, S. Saravanan, Two server Markovian inventory systems with server interruptions: Heterogeneous vs. homogeneous servers, Math. Comput. Simulat., 155 (2019), 177-200. doi: 10.1016/j.matcom.2018.03.001
    [24] K. Jeganathan, M. Abdul Reiyas, Two parallel heterogeneous servers Markovian inventory, system with modified and delayed working vacations, Math. Comput. Simulat., 172 (2020), 273-304. doi: 10.1016/j.matcom.2019.12.002
    [25] T.-S. Kim, H.-M. Park, Cycle analysis of a two-phase queueing model with threshold, Eur. J. Oper. Res., 144 (2003), 157-165. doi: 10.1016/S0377-2217(01)00381-2
    [26] A. Krishnamoorthy, V. C. Narayanan, T. G. Deepak, P. Vineetha, Control polices for inventory with service time, J. Stoch. Ana. Appl., 24 (2006), 889-899. doi: 10.1080/07362990600753635
    [27] K. Lakshmanan, S. Padmasekaran, K. Jeganathan, A stochastic inventory system with a threshold based priority service, Commun. Optim. Theory, 2019 (2019), 1-23.
    [28] G. Latouche, V. Ramaswamy, Introduction to matrix analytic methods in stochastic model, Publisher ASA/SIAM Series on Statistics and Applied Probability, 1999.
    [29] M. J. Lopez-Herrero, Waiting time and other first passage time measures in an (s, S) inventory system with repeated attempts and finite retrial group, Comput. Oper. Res., 37 (2010), 1256-1261. doi: 10.1016/j.cor.2009.02.011
    [30] P. Manual, B. Sivakumar, G. Arivarignan, A perishable inventory system with service facilities and retrial customers, Comput. Ind. Eng., 54 (2008), 484-501. doi: 10.1016/j.cie.2007.08.010
    [31] A. Z. Melikov, A. A. Molchanov, Stock optimization in transport/storage, Cyber. Syst. Ana., 28 (1992), 484-487. doi: 10.1007/BF01125431
    [32] M. F. Neuts, B. M. Rao, Numerical investigation of a multi-server retrial model, Queueing Syst., 7 (1990), 169-190. doi: 10.1007/BF01158473
    [33] M. F. Neuts, Matrix-geometric solutions in stochastic models: an algorithmic approach, New York: Dover Publication Inc., 1994.
    [34] V. Perumal, G. Arivarignan, A continuous review perishable inventory system at infinite capacity service facilities, ANJAC J. Sci., 1 (2002), 37-45.
    [35] M. Reiser, Mean-value analysis and convolution method for queue-dependent servers in closed queueing networks, Perfor. Eval., 1 (1981), 7-18. doi: 10.1016/0166-5316(81)90040-7
    [36] M. Schwarz, C. Sauer, H. Daduna, R. Kulik, R. Szekli, M/M/1 queueing systems with inventory, Queueing Syst., 54 (2006), 55-78. doi: 10.1007/s11134-006-8710-5
    [37] K. Sigman, D. Simchi-Levi, Light traffic heuristic for an M/G/1 queue with limited inventory, Ann. Oper. Res., 40 (1992), 371-380. doi: 10.1007/BF02060488
    [38] W. J. Stewart, Introduction to the numerical solution of Markov chains, Princeton, NJ: Princeton University Press, 1994.
    [39] P. V. Ushakumari, On $(s, S)$ inventory system with random lead time and repeated demands, J. Appl. Math. Stoch. Anal., 2006 (2016), 1-22.
    [40] K.-H. Wang, K.-Y. Tai, A queueing system with queue-dependent servers and finite capacity, Appl. Math. Model., 24 (2000), 807-814. doi: 10.1016/S0307-904X(00)00013-5
    [41] V. S. S. Yadavalli, B. Sivakumar, G. Arivarignan, O. Adetunji, A finite source multi-server inventory system with service facility, Comput. Ind. Eng., 63 (2012), 739-753.
    [42] V. S. S. Yadavalli, K. Jeganathan, A finite source perishable inventory system with second optional service and server interruptions, ORiON, 32 (2015), 23-53.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3362) PDF downloads(312) Cited by(9)

Article outline

Figures and Tables

Figures(6)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog