Research article

Inventory model with nonlinear price-dependent demand for non-instantaneous decaying items via advance payment and installment facility

  • Received: 27 April 2022 Revised: 04 August 2022 Accepted: 10 August 2022 Published: 07 September 2022
  • MSC : 90B05

  • Determining the joint pricing and ordering policy is a challenging task for policy-makers dealing with perishable items. This research deals with the inventory coordination for a decaying commodity under a non-linear price-sensitive demand structure where the policy-maker completes the payment partially in advance, exploiting the multiple installments facility to control supply disruptions. Moreover, an inventory-out situation is incorporated to make the model more representative; shortages are backlogged partially through a variable rate in exponential form, depending on the customer waiting times. Though the formulated inventory coordination creates a highly complex optimization problem, the existence of the joint optimal pricing and ordering policy is explored by developing several theoretical outcomes. Three numerical illustrations are adopted to ensure the effectiveness of the model in providing the joint optimal pricing and ordering policy for the decision manager. Furthermore, to visualize the concavity of the average profit of the policy manager, as well as to demonstrate the adequacy of the optimum condition, MATLAB software was utilized. Finally, sensitivity studies for known key parameters are done using graphic presentation and a few supportive guidelines for the manager are also shown. The inventory manager should motivate the supplier to allow a higher installment frequency to implement the prepayment regulation, thus reducing the capital cost against the prepayment amount.

    Citation: Avijit Duary, Md. Al-Amin Khan, Sayan Pani, Ali Akbar Shaikh, Ibrahim M. Hezam, Adel Fahad Alrasheedi, Jeonghwan Gwak. Inventory model with nonlinear price-dependent demand for non-instantaneous decaying items via advance payment and installment facility[J]. AIMS Mathematics, 2022, 7(11): 19794-19821. doi: 10.3934/math.20221085

    Related Papers:

  • Determining the joint pricing and ordering policy is a challenging task for policy-makers dealing with perishable items. This research deals with the inventory coordination for a decaying commodity under a non-linear price-sensitive demand structure where the policy-maker completes the payment partially in advance, exploiting the multiple installments facility to control supply disruptions. Moreover, an inventory-out situation is incorporated to make the model more representative; shortages are backlogged partially through a variable rate in exponential form, depending on the customer waiting times. Though the formulated inventory coordination creates a highly complex optimization problem, the existence of the joint optimal pricing and ordering policy is explored by developing several theoretical outcomes. Three numerical illustrations are adopted to ensure the effectiveness of the model in providing the joint optimal pricing and ordering policy for the decision manager. Furthermore, to visualize the concavity of the average profit of the policy manager, as well as to demonstrate the adequacy of the optimum condition, MATLAB software was utilized. Finally, sensitivity studies for known key parameters are done using graphic presentation and a few supportive guidelines for the manager are also shown. The inventory manager should motivate the supplier to allow a higher installment frequency to implement the prepayment regulation, thus reducing the capital cost against the prepayment amount.



    加载中


    [1] H. M. Alshanbari, A. A. A. H. El-Bagoury, M. Khan, S. Mondal, A. A. Shaikh, A. Rashid. Economic order quantity model with weibull distributed deterioration under a mixed cash and prepayment scheme, Comput. Intell. Neurosci., 2021 (2021), 9588685. https://doi.org/10.1155/2021/9588685 doi: 10.1155/2021/9588685
    [2] S. Banerjee, S. Agrawal, Inventory model for deteriorating items with freshness and price dependent demand: Optimal discounting and ordering policies, Appl. Math. Model., 52 (2017), 53–64. https://doi.org/10.1016/j.apm.2017.07.020 doi: 10.1016/j.apm.2017.07.020
    [3] L. Chen, X. Chen, M. F. Keblis, G. Li, Optimal pricing and replenishment policy for deteriorating inventory under stock-level-dependent, time-varying and price-dependent demand, Comput. Ind. Eng., 135 (2019), 1294–1299. https://doi.org/10.1016/j.cie.2018.06.005 doi: 10.1016/j.cie.2018.06.005
    [4] R. P. Covert, G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Trans., 5 (1973), 323–326. https://doi.org/10.1080/05695557308974918 doi: 10.1080/05695557308974918
    [5] A. Duary, S. Das, M. G. Arif, K. M. Abualnaja, M. A. A. Khan, M. Zakarya, et al., Advance and delay in payments with the price-discount inventory model for deteriorating items under capacity constraint and partially backlogged shortages, Alex. Eng. J., 61 (2022), 1735–1745. https://doi.org/10.1016/j.aej.2021.06.070 doi: 10.1016/j.aej.2021.06.070
    [6] D. Dutta, P. Kumar, A partial backlogging inventory model for deteriorating items with time-varying demand and holding cost, Int. J. Math. Oper. Res., 7 (2015), 281–296. https://doi.org/10.1504/IJMOR.2015.069144 doi: 10.1504/IJMOR.2015.069144
    [7] L. M. Gelsomino, R. Mangiaracina, A. Perego, A. Tumino, Supply chain finance: A literature review, Int. J. Phys. Distr. Log. Managet., 2016.
    [8] P. M. Ghare, G. F. Schrader, An inventory model for exponentially deteriorating items, J. Ind. Eng., 14 (1963), 238–243.
    [9] M. Ghoreishi, G. W. Weber, A. Mirzazadeh, An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation-and selling price-dependent demand and customer returns, Ann. Oper. Res., 226 (2015), 221–238. https://doi.org/10.1007/s10479-014-1739-7 doi: 10.1007/s10479-014-1739-7
    [10] C. Jaggi, A. Khanna, Nidhi, Effects of inflation and time value of money on an inventory system with deteriorating items and partially backlogged shortages, Int. J. Ind. Eng. Comput., 7 (2016), 267–282. https://doi.org/10.5267/j.ijiec.2015.10.003 doi: 10.5267/j.ijiec.2015.10.003
    [11] M. A. A. Khan, A. A. Shaikh, G. C. Panda, I. Konstantaras, Two-warehouse inventory model for deteriorating items with partial backlogging and advance payment scheme, RAIRO-Oper. Res., 53 (2019), 1691–1708. https://doi.org/10.1051/ro/2018093 doi: 10.1051/ro/2018093
    [12] M. A. A. Khan, A. A. Shaikh, G. C. Panda, I. Konstantaras, L. E. Cárdenas‐Barrón, The effect of advance payment with discount facility on supply decisions of deteriorating products whose demand is both price and stock dependent, Int. Trans. Oper. Res., 27 (2020), 1343–1367. https://doi.org/10.1111/itor.12733 doi: 10.1111/itor.12733
    [13] M. A. A. Khan, A. A. Shaikh, I. Konstantaras, A. K. Bhunia, L. E. Cárdenas-Barrón, Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price, Int. J. Prod. Econ., 230 (2020), 107804. https://doi.org/10.1016/j.ijpe.2020.107804 doi: 10.1016/j.ijpe.2020.107804
    [14] M. Khan, A. A. Shaikh, G. C. Panda, A. K. Bhunia, I. Konstantaras, Non-instantaneous deterioration effect in ordering decisions for a two-warehouse inventory system under advance payment and backlogging, Ann. Oper. Res., 289 (2020), 243–275. https://doi.org/10.1007/s10479-020-03568-x doi: 10.1007/s10479-020-03568-x
    [15] M. A. A. Khan, A. A. Shaikh, L. E. Cárdenas-Barrón, An inventory model under linked-to-order hybrid partial advance payment, partial credit policy, all-units discount and partial backlogging with capacity constraint, Omega, 103 (2021), 102418. https://doi.org/10.1016/j.omega.2021.102418 doi: 10.1016/j.omega.2021.102418
    [16] M. A. A. Khan, M. A. Halim, A. AlArjani, A. A. Shaikh, M. S. Uddin, Inventory management with hybrid cash-advance payment for time-dependent demand, time-varying holding cost and non-instantaneous deterioration under backordering and non-terminating situations, Alex. Eng. J., 61 (2022), 8469–8486. https://doi.org/10.1016/j.aej.2022.02.006 doi: 10.1016/j.aej.2022.02.006
    [17] R. Li, Y. L. Chan, C. T. Chang, L. E. Cárdenas-Barrón, Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis, Int. J. Prod. Econ., 193 (2017), 578–589. https://doi.org/10.1016/j.ijpe.2017.08.020 doi: 10.1016/j.ijpe.2017.08.020
    [18] A. K. Manna, M. A. A. Khan, M. S. Rahman, A. A. Shaikh, A. K. Bhunia, Interval valued demand and prepayment-based inventory model for perishable items via parametric approach of interval and meta-heuristic algorithms, Knowl.-Based Syst., 242 (2022), 108343. https://doi.org/10.1016/j.knosys.2022.108343 doi: 10.1016/j.knosys.2022.108343
    [19] B. Marchi, S. Zanoni, M. Y. Jaber, Improving supply chain profit through reverse factoring: A new multi-suppliers single-vendor joint economic lot size model, Int. J. Financ. Stud., 8 (2020), 23. https://doi.org/10.3390/ijfs8020023 doi: 10.3390/ijfs8020023
    [20] D. Nagaraju, A. R. Rao, S. Narayanan, Optimal lot sizing and inventory decisions in a centralised and decentralised two echelon inventory system with price dependent demand, Int. J. Logistics Syst. Manage., 20 (2015), 1–23. https://doi.org/10.1504/IJLSM.2015.065961 doi: 10.1504/IJLSM.2015.065961
    [21] V. Pando, L. A. San-José, J. Sicilia, D. Alcaide-López-de-Pablo, Maximization of the return on inventory management expense in a system with price-and stock-dependent demand rate, Comput. Oper. Res., 127 (2021), 105134. https://doi.org/10.1016/j.cor.2020.105134 doi: 10.1016/j.cor.2020.105134
    [22] H. C. Pfohl, M. Gomm, Supply chain finance: Optimizing financial flows in supply chains, Logistics Res., 1 (2009), 149–161. https://doi.org/10.1007/s12159-009-0020-y doi: 10.1007/s12159-009-0020-y
    [23] M. S. Rahman, M. A. A. Khan, M. A. Halim, T. A. Nofal, A. A. Shaikh, E. E. Mahmoud, Hybrid price and stock dependent inventory model for perishable goods with advance payment related discount facilities under preservation technology, Alex. Eng. J., 60 (2021), 3455–3465. https://doi.org/10.1016/j.aej.2021.01.045 doi: 10.1016/j.aej.2021.01.045
    [24] M. S. Rahman, A. Duary, M. Khan, A. A. Shaikh, A. K. Bhunia, Interval valued demand related inventory model under all units discount facility and deterioration via parametric approach, Artif. Intell. Rev., 55 (2022), 2455–2494. https://doi.org/10.1007/s10462-021-10069-1 doi: 10.1007/s10462-021-10069-1
    [25] M. Rastogi, S. R. Singh, An inventory system for varying deteriorating pharmaceutical items with price-sensitive demand and variable holding cost under partial backlogging in healthcare industries, Sādhanā, 44 (2019), 1–10. https://doi.org/10.1007/s12046-019-1075-3 doi: 10.1007/s12046-019-1075-3
    [26] M. Rezagholifam, S. J. Sadjadi, M. Heydari, M. Karimi, Optimal pricing and ordering strategy for non-instantaneous deteriorating items with price and stock sensitive demand and capacity constraint, Int. J. Syst. Sci.: Oper. Logistics, 9 (2022), 121–132. https://doi.org/10.1080/23302674.2020.1833259 doi: 10.1080/23302674.2020.1833259
    [27] S. Ruidas, M. R. Seikh, P. K. Nayak, M. Pal, Interval valued EOQ model with two types of defective items, J. Stat. Manage. Syst., 21 (2018), 1059–1082. https://doi.org/10.1080/09720510.2018.1479180 doi: 10.1080/09720510.2018.1479180
    [28] S. Ruidas, M. R. Seikh, P. K. Nayak, An EPQ model with stock and selling price dependent demand and variable production rate in interval environment, Int. J. Syst. Assur. Eng. Manage., 11 (2020), 385–399. https://doi.org/10.1007/s13198-019-00867-w doi: 10.1007/s13198-019-00867-w
    [29] S. Ruidas, M. R. Seikh, P. K. Nayak, A production inventory model with interval-valued carbon emission parameters under price-sensitive demand, Comput. Ind. Eng., 154 (2021), 107154. https://doi.org/10.1016/j.cie.2021.107154 doi: 10.1016/j.cie.2021.107154
    [30] S. Ruidas, M. R. Seikh, P. K. Nayak, A production inventory model for green products with emission reduction technology investment and green subsidy, Proc. Integr. Optim. Sustainability, 2022, 1–20.
    [31] S. Ruidas, M. R. Seikh, P. K. Nayak, A production inventory model for high-tech products involving two production runs and a product variation, J. Ind. Manage. Optim., 2022. https://doi.org/10.3934/jimo.2022038 doi: 10.3934/jimo.2022038
    [32] L. A. San-José, J. Sicilia, D. Alcaide-López-de-Pablo, An inventory system with demand dependent on both time and price assuming backlogged shortages, Eur. J. Oper. Res., 270 (2018), 889–897. https://doi.org/10.1016/j.ejor.2017.10.042 doi: 10.1016/j.ejor.2017.10.042
    [33] L. A. San-José, J. Sicilia, B. Abdul-Jalbar, Optimal policy for an inventory system with demand dependent on price, time and frequency of advertisement, Comput. Oper. Res., 128 (2021), 105169. https://doi.org/10.1016/j.cor.2020.105169 doi: 10.1016/j.cor.2020.105169
    [34] A. A. Shaikh, S. C. Das, A. K. Bhunia, G. C. Panda, M. A. A. Khan, A two-warehouse EOQ model with interval-valued inventory cost and advance payment for deteriorating item under particle swarm optimization, Soft Comput., 23 (2019), 13531–13546. https://doi.org/10.1007/s00500-019-03890-y doi: 10.1007/s00500-019-03890-y
    [35] A. A. Taleizadeh, Lot‐sizing model with advance payment pricing and disruption in supply under planned partial backordering, Int. Trans. Oper. Res., 24 (2017), 783–800. https://doi.org/10.1111/itor.12297 doi: 10.1111/itor.12297
    [36] R. Udayakumar, K. V. Geetha, S. S. Sana, Economic ordering policy for non‐instantaneous deteriorating items with price and advertisement dependent demand and permissible delay in payment under inflation, Math. Methods Appl. Sci., 44 (2021), 7697–7721. https://doi.org/10.1002/mma.6594 doi: 10.1002/mma.6594
    [37] X. Xu, X. Chen, F. Jia, S. Brown, Y. Gong, Y. Xu, Supply chain finance: A systematic literature review and bibliometric analysis, Int. J. Prod. Econ., 204 (2018), 160–173. https://doi.org/10.1016/j.ijpe.2018.08.003 doi: 10.1016/j.ijpe.2018.08.003
    [38] A. S. Yadav, A. Swami, S. Kumar, Inventory of electronic components model for deteriorating items with warehousing using genetic algorithm, Int. J. Pure Appl. Math., 119 (2018), 169–177.
    [39] D. Yadav, S. R. Singh, S. Kumar, L. E. Cárdenas-Barrón, Manufacturer-retailer integrated inventory model with controllable lead time and service level constraint under the effect of learning-forgetting in setup cost, Sci. Iran., 29 (2022), 800–815.
    [40] A. X. Zhang, Optimal advance payment scheme involving fixed per-payment costs, Omega, 24 (1996), 577–582. https://doi.org/10.1016/0305-0483(96)00023-0 doi: 10.1016/0305-0483(96)00023-0
    [41] Q. Zhang, D. Zhang, Y. C. Tsao, J. Luo, Optimal ordering policy in a two-stage supply chain with advance payment for stable supply capacity, Int. J. Prod. Econ., 177 (2016), 34–43. https://doi.org/10.1016/j.ijpe.2016.04.004 doi: 10.1016/j.ijpe.2016.04.004
    [42] N. P. Zia, A. A. Taleizadeh, A lot-sizing model with backordering under hybrid linked-to-order multiple advance payments and delayed payment, Trans. Res. Part E: Logistics Trans. Rev., 82 (2015), 19–37. https://doi.org/10.1016/j.tre.2015.07.008 doi: 10.1016/j.tre.2015.07.008
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1839) PDF downloads(145) Cited by(9)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog