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Abstract: The aim of the paper was to give a description of nonlinear Jordan triple derivable mappings
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1. Introduction

Let R be a commutative ring with identity, ‘A a unital algebra over R, and A : A — A be an
additive (resp., without assumption of additivity) mapping. For any X,Y € A, denote the Jordan
product of X, Y by X o Y = XY + YX. Recall that A is an additive derivation (resp., nonlinear derivable
mapping) if A(XY) = A(X)Y + XA(Y) for all X, Y € A. It is an additive antiderivation (resp., nonlinear
antiderivable mapping) if A(XY) = A(Y)X + YA(X) for all X,Y € A. It is said an additive Jordan
derivation (resp., nonlinear Jordan derivable mapping) if A(XoY) = A(Y)oX+YoA(X) forall X, Y € A.
Obviously, every additive derivation or additive antiderivation is a Jordan derivation. However, the
inverse statement is not true in general (see [1]). In the study of additive Jordan derivations, one of the
most important problems is the following:

Problem A What conditions can imply additive Jordan derivation is an additive derivation.

In past decades, many mathematicians studied this problem and obtained abundant results. We refer
the readers to [1-10] and references therein for more details and the importance of this problem.

Similar to Problem A, another important and meaningful problem naturally arises, as follows:

Problem B What conditions can imply a nonlinear Jordan derivable mapping is an additive deriva-
tion.
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For example, [11, 12] studied nonlinear Jordan derivable mappings.

In this paper, we say A is an additive Jordan triple derivation (resp., nonlinear Jordan triple derivable
mapping) on A, if A is an additive mapping (resp., without assumption of additivity mapping) and
satisfies

AXoYoZ)y=AX)oYoZ+XoA(Y)oZ+XoYoA(Z)

forall X, Y,Z € A.

With the deepening of research, many research achievements have been obtained about additive
Jordan triple derivations and nonlinear Jordan triple derivable mappings, for example, [13—17]. Specif-
ically, in [10] Theorem 1.1 we proved that every additive Jordan triple derivation on a 2-torsion free
x-type trivial extension algebra is a sum of an additive derivation and an additive anti-derivation, and
in [18] Theorem 2.1 we proved that every nonlinear local Jordan triple derivable mapping on trian-
gular algebras is an additive derivation. In this article, our main purpose is to further generalize the
research conclusions of references [10] and [18]. We obtained that every nonlinear Jordan triple deriv-
able mapping on a 2-torsion free *-type trivial extension algebra is a sum of an additive derivation and
an additive antiderivation.

For the convenience of reading, we introduce the concepts and properties of trivial extension algebra
as follows:

Let R be a commutative ring with identity, A a unital algebra over R, and M an A-bimodule. The
direct product A (X) M together with the pairwise addition, scalar product, and the algebra multiplica-
tion defined by

(a,m)(b,n) = (ab,an + mb)Na,b € A,m,n € M)

is an R-algebra with a unity (1, 0), denoted by
T:.?I(X)M: {(a,m):ae€ A me M}

which is called a trivial extension algebra.

An important example of trivial extension algebra is the triangular algebra, which was introduced
by Cheung in [19]. Let A and B be unital algebras over a commutative ring R and M be a unital
(A, B)-bimodule, which is faithful as both a left A-module and a right 8-module, then the R-algebra

a m

U =Tri(A M, B) = {( 0 b

):aeﬂ,meM,beB}
under the usual matrix operations is called a triangular algebra. Basic examples of triangular algebras
are upper triangular matrix algebras and nest algebras.

It is well known that every triangular algebra can be viewed as a trivial extension algebra. Indeed,
denote by A (X) B direct product as an R-algebra, and M is viewed as an A (X) B-bimodule with the
module action given by (a,b)m = am and m(a,b) = mb for all (a,b) € A ® B and m € M. The
triangular algebra U is isomorphic to trivial extensions algebra 7~ = (A X) B) X) M. However, a triv-
ial extension algebra dose not necessarily have a triangular algebra. For more details about triangular
algebras and trivial extension algebras, we refer the readers to [20-23] and references therein.

The following notations will be used in our paper. Let R be a commutative ring with identity, A
a unital algebra over R, and M an A-bimodule. 7 = A ® M is a 2-torsion free trivial extension
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algebra (i.e., for any X € 7, if 2X = {0} implies X = 0); denoted by 1 and O, they are the unity and
zero of T = A X) M, respectivly.

We say 7 = A (X) M is a =-type trivial extension algebra, if A has a nontrivial idempotent element
eand f = 1 — e such that

(i) eMf = M,

(ii) exeM = {0} implies exe = 0, Vx € A;

(@ii) Mfxf = {0} implies fxf = 0,Vx € A;

(iv)exfye =0 = fxeyf =0,Vx,y € A.

In order to prove our main conclusion, denoted by P; = (e,0) and P, = (f,0),

It is clear that the trivial extension algebra 7 may be represented as
T:P1TP1 +P1TP2+P2TP1 +P2TP2 :Tll +T12+T21 +T22.

For any element A € 7, A may be represented as A = A} + Ajp + Ay + Ay, where A;; € 7,;(1 <i <
Jj<2).

In order to prove our main conclusion Theorem 2.1, we need to cite Lemma 0.1 from [10] as follows:

Lemma 1.1 Let 7 be a *-type trivial extension algebra and 1 <i # j < 2, then

(i) for any Ay €T11,if A1 T2 =0,thenA;; =0

(ll) for any Axy € T, if T 1242 =0, then Ay, =0;

(iii) A;jBji = 0,VA;; € T:;,VBj; € T j.

The main result of this paper is the following Theorem 2.1.

2. Main results

Theorem 2.1 Let 7 = A X) M be a 2-torsion free *-type trivial extension algebra and A be a non-
linear Jordan triple derivable mapping on 7, then there exist an additive derivation D and an additive
antiderivation ¢ on 7, respectively, such that

A(A) = D(A) + ¢(A)

forallA e 7.

In order to prove Theorem 2.1, we introduce Lemmas 2.2-2.5, and prove that Lemmas 2.2-2.5 hold.
We assume that 7 is a 2-torsion free *-type trivial extension algebra and A is a nonlinear Jordan triple
derivable mapping on 7.

Lemma 2.2 For any A; € 7;;,A;; € T;; (1 <i# j<2),

(1) A0) = 0;

(it) A(P;) = PiA(P)P; + P;A(P)P; and A(Py) = —A(P,);

(iii) A(P1) o A;j = 0 and A(P,) 0 A;; = 0;

(iv) A(A;j) = PAAA)P; + P;A(A;)P; ;

(v) P;A(A)P; = 0, PA(A)P; = A A(P;) and P;A(A;)P; = A(P)A;;.

proof (i) For any X, Y, Z € 7, it follows that A is a nonlinear Jordan triple derivable mapping on 7~
where

AXoYoZ)=AX)oYoZ+XoA(Y)oZ+XoYoA(Z). 2.1)
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Therefore, taking X = Y = Z = 0in Eq (2.1), we get A(0) = 0.
(it) Taking X =Y = P;,Z = P; (1 <i# j<2)inEq(2.1), by the property of 2-torsion freeness of
9, we have
O = A(Pl (¢] Pi (e] P])

= A(P,‘)OPI'OP]"FPI'OA(P,')OPJ"FP,‘OPI‘OA(PJ')

= (A(PZ)P, + P,A(Pl)) o P] + (P,A(Pl) + A(PZ)PI) o P] + 2PZA(P]) + 2A(P])Pl

= PIA(PZ)PJ + P]A(P,)Pl + PIA(P]) + A(P])Pl
Multiplying the above equation by P; from both sides, we obtain P;A(P;)P; = 0.

Next, we show that P;A(P;)P; =0 (1 < j <2). Forany Aj; € 715, taking X = P|,Y = A;p, Z = P,
in Eq (2.1), we get from Lemma 1.1 (iii) and P,A(P;)P, = 0 that

A(A12) A(PyoAppoPy)

A(P1)oAjpo Py + ProA(App) o Py + Py oA o A(Py)

(A(PDA + ARA(P)) o Pr + (P1A(A12) + A(A)Py) o Py

ApA(Py) + A(PA

ApA(P)P) + PIA(P1)A 2 + ApA(Py)

2P1A(A12)Py + A(Ap) Py + PiA(A1) + ARA(Py) + A(PA

P1A(P)A 1 + 2P1A(A1)P1 + A(A1)P1 + P1A(A1) + A(P1)A1,. (2.2)

+

+

Multiplying the above Eq (2.2) from the left by P, and from the right by P,, we have
2P1A(P)A; = 0.

This yields from the property of 2-torsion freeness of 7 that
P\A(P)P Ay, = 0.

Therefore, by the Lemma 1.1 (i), we get P{A(P;)P; = 0. Similarly, we show P,A(P,)P, = 0 holds.
Thus, we get A(P;) = P;/A(P)P; + P;,A(P)P; (1 <i# j<2).
Taking X = P;,Y = P;,Z=P; (1 <i# j<2)inEq(2.1), we have
0 = A(PiOPjOPi)

= A(Pl')OP]'OPi+PiOA(Pj)OPi+PiOPjOA(P,')

= P/A(P)P;+ P,A(P)P; + P,A(P;)P; + P;A(P;)P;

= A(P) + A(P)).
Therefore, A(P;) = —A(P»).

(iii) For any Ay, € T, and A, € 75, we get from A(P;) = P1A(P)P,+ P,A(P;)P; and Lemma 1.1
(ii7) that

A(P1)o A, = (PIA(P)Py + PoA(P)P1) o Ay
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(P1A(P)P; + PoA(P)P1)A12 + Ajp(P1A(P) Py + PyA(P)Py)
(P2 A(P)P1)A1r + Ap(P,A(P)Py)
=0

Similarly, we get that A(P;) o A>; = 0. Furthermore, since A(Py) = —A(P;), we get A(P;) o Aj; =0 =
A(P3) © Ay;.

(iv) For any A;; € 7;j, taking X = P;,Y = A;;,Z = P; (1 <i # j < 2)in Eq (2.1), then it follows
from Lemma 1.1 (iii) and Lemma 2.2 (ii) — (iii) that

A(Aij) A(P; o Aij © Pj)

= A(Pi)OA,‘jOPj+PiOA(Aij)OPj+PiOAijOA(Pj)
= PioA(Ajj)oP;
= Pi/A(A;j))P; + P;A(A;j)P;.

(v) For any Ay € 711, taking X = P,,Y = Ay;,Z = P, in Eq (2.1), we get from Lemma 2.2 (ii) that

0 = A(Py0A|10P)
= A(Py)oAj10oPy+ PyoA(Ar) o Py+ PyoAy o A(P)
= (A(P2)A1 + AnA(Py)) © Py + (P2A(A1) + A(A1)P2) o Py
= P A(P2)A1 + A A(Py) Py + PoA(AL) + A(A) P + 2P A(A )P,
= A(P2)A11 + A1A(Py) + P2A(A) + A(A1) P + 2P, A(A 1) Py
= —A(P)A1 — A1A(Py) + PyA(A1) + A(A11) Py + 2P A(A1) Ps.

This implies that

PyA(A11)Py = 0, PIA(A11) P2 = A;1A(Py) and PoA(A11)Py = A(P1)Aq.
Similarly, for any A,, € 755, we get that

P1A(An)P1 = 0, P1A(A2) Py = A(P2)A2 and PoA(An)Pr = ApA(Py).

The proof is completed.

Lemma 2.3 For all A119 Bll (S ‘7'11,A12, B]2 (S 7'12,A21, le € T21,A22, Bzz € Tzz,

(D) A(A +Ap) = A(An) + A(Ap);

(i) A(A1z + Axn) = A(Ap2) + A(A2);

(iii) A(Ay; +Agp) = A(An) + A(Agy);

(iv) A(Az + Ap) = A(Ay) + A(A2);

(v) A(Aj2 + Byp) = A(Ap) + A(B));

(vi) A(Aa1 + Byy) = A(Ay) + A(By);

(vii) A(Ap + Az) = A(Ayn) + A(Azy);

(viii) A(Ay1 + Byy) = A(Aq) + A(Byy);

(ix) A(Ax + By) = A(Ay) + A(By).

Proof (i) For any Ay € 711,A12 € T12, since Py o (A;; + App) o P, = Ayp, taking X = P, Y =
A1 +A,,Z = P,in Eq (2.1), then by Lemma 1.1 (iii) and Lemma 2.2, we get

A(Ap) = APyo(A +Ap)oPp)
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Therefore, we get

A(P1)o (A +Ap)o Py+ ProA(Ay + App) o Py + Pro (A + Ap) o A(P,)
A(P1) o Ajpo Py + ProA(Ay; + App) o Py + 2A1; o A(P)

(A(PDA + A1A(P)) o Py + PiIA(A + A1) Py + PoA(AL + Ap)Py
2A11A(P2) + 2A(Py)A

P1A(A11)Py + PoA(A11)Py + PIA(AL + Ap)Pa + PoA(AL + A)Py
2P1A(A1) Py = 2P, A(A) Py

PiA(A1 + Ap)Py + PoA(A1 + A) Py — P1A(A1)Py — PyA(A)P.

PiA(A1 + A)Py + PyA(A + AR)Py = A(Ar) + PiA(A) P, + PoA(AL)P. (2.3)

Next, we show PzA(All +A12)P2 =0and PIA(AII +A12)P1 = PIA(AII)PI-
Indeed, taking X = P,,Y = A;; + A12,Z = P, in Eq (2.1), then by Lemma 1.1 (iii) and Lemma 2.2,

we get

A(A12)

A(Py o (A1 +Ap) o Py)

A(Py)o (A1 +Ap)o P+ Pro A(Ay + App) o Py + Pro (Agy + App) o A(Py)
A(Py) o Ajpo Py+ Pyo A(A + App) o Py + Az 0 A(P»)

(A(P2)A11 + A11A(Py)) © Py + PoA(An + Apn)

A(A11 + Ap)Psy + 2P, A(Ay + A) P

—P1A(A11)Py — PoA(A) Py + PoA(A + Arp)

A(A1 + Ap)Pay + 2P A(A1 + Ap)Ps.

It follows from Lemma 2.2 (iv) and the property of 2-torsion freeness of 7 that, we get

PQA(A]] +A]2)P2 =0. (24)

On the one hand, for any By, € 75, taking X = Ay} + A;p, Y = By, Z = Py in Eq (2.1), then by
Lemma 1.1 (iii), Lemma 2.2, and P,A(A; + A;p)P, = 0, we get

A(A11B12)

A((A11 + Ap) o Bip o Py)

A(A11 +Ap)oBppoPr+ (A +Ap) o A(Bpp) o Py

(A11 +App) o Bz o A(Py)

(A(A11 + A2)Bia + BoA(Ay + Ap)) o Py

(A11A(B12) + A(B12)A11) © Py + A1 Bia o A(Py)

P1A(Ay + A)Bi + BpA(Aq + A) + AjA(Br2) + A(B12)A
PiA(A11 + A)Bi + AjtA(Bro) + A(B12)A1.

m 4+ o + 1 1

On the other hand, taking X = A;,Y = By;,Z = P, in Eq (2.1), then by Lemma 1.1 (iii) and
Lemma 2.2, we get

A(A1B1y) = A(Aj10BjpoPs)
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A(A11) o Bip o Py + Ay 0 A(B1p) 0 Py + Ay 0 By 0 A(P)

(A(A11)Bia + B12A(A11)) © Py + (A11A(B2) + A(B12)Aq) o Py

+ AnBpoA(P))

A(A11)B1z o Py + (A11A(Br2) + A(B12)A1) o Py

A(A11)B1a + A11A(B12) + A(B12)A. (2.5)

Comparing the above two equations, we get (P1A(Ay; + App)Py — P1A(A1)P1)By, = 0; thus, by

Lemma 1.1 (i), we get

PiA(A + Ap)Py = PIA(AL)P,. (2.6)

Therefore, by Eqgs (2.3) and (2.4), (2.6), and Lemma 2.2 (iv) — (v), we get

A(A +A)

P1A(A11 + A)P1 + P1A(A + Ap) P

+ PyA(An +A)Py + P2A(AL + Ap) P

= P1A(A1)P) + PIA(A11)Py + PoA(A1)P + A(Ay)
= A(An) + A(Ap).

Similarly, we show that (ii) — (iv) hold.
(V) For any A, By € 7o, since (Pl +A12) o (BIZ + Pz) oP, =A; + By, taking X=P +Ap, Y=
B, + P,,Z = P, in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, and Lemma 2.3 (i), we get

A(Ay, + Byp)

+

—+

A((P1+Apz) o (Bia + P2) o Py)

APy +Ap)o(Bia+ Py)oPr+(Pr+Ap)oABin+ Py)o Py

(Py +App) o (Bia + P2) o A(Pr)

(A(Py) + A(A12)) o (Bia + P2) o Py + (P + App) 0 (A(B12) + A(P)) o Py
(A2 + B12) o A(P»)

(A(P1) + A(A12)) © Py + (A(B12) + A(P2)) o P>

A(P1) + A(A1z) + A(B12) + A(P2)

A(A12) + A(B12).

Similarly, we can show that (vi) holds.

(vii) For any A € T12,A2 € Toy, by Lemma 1.1 (iii), we have (P1+An)o(Ay +Py)oPy = Ajp+As.
Taking X = Py + A5, Y = Ay + P,,Z = P, in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, and
Lemma 2.3 (i), (iv), we get

A(Ap + Ayy)

I+

—+

Electronic Research Archive

A((Py + Az) © (A1 + Py) o P)

A(Py+Ap) o (Ay1 + Py)o Py + (P +App) o A(Ay + Py)o Py

(Py + App) 0 (A1 + P2) 0 A(Pr)

(A(P1) + A(A12)) © (A1 + Py) o Py + (P1 + Az) © (A(A21) + A(Py)) o Py
(A2 + Az1) o A(P»)

(A(P1) + A(A12)) © Py + (A(A21) + A(Py)) o Py
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A(Py) + A(A1p) + A(Ay) + A(P,)
A(A12) + A(Ay).

(viii) For all Ay, By; € 711, B2 € 712, then by Lemma 2.2 (v), we get

A(Ay; + Byy)

P1A(Ay1 + B11)P1 + (A1 + Bi)A(Py) + A(Py)(Ay + Bry)

= PiA(A; + A1DPy + (A A(PY) + BuA(Py) + (A(P)A 1 + A(P)B1)

= PiA(An + APy + PIA(A1) Py + P2A(A) Py

+ PiA(B11)P; + P,A(B)P,. 2.7)

Next, we show PIA(AII + B“)Pl = PIA(A“)PI + PIA(B“)Pl.
Indeed, for any Y, € 715, it follows from Eq (2.5) that

A((A11 + B11)Y12) = A(A11 + Bi)Yio + (A + Bi)A(Y12) + A(Y12)(An + Bry).
On the other hand, by Eq (2.5) and Lemma 2.3 (v), we get

A((A11 + Bi1)Y12) A(A11 Y12 + B Y2)
= AAY1) +AB Y1)
= AA1DY12 + AL AY 1) + A(Y12)A 4

+ AB11)Y12 + Bi1A(Y12) + A(Y12) By

Comparing the above two equations, we get (A(A; + Bi1) — A(Ay1) — A(By1))Y1;, = 0, which yields
from Lemma 1.1 (i) that

PiA(Ay; + B11)P; = PIA(A1)P) + PIA(By1)P;. (2.8)

Therefore, by the Lemma 2.2 (v) and Eqs (2.7) and (2.8), we have A(A;; + By1) = A(Ayy) + A(Byy).
Similarly, we can show that (ix) holds. The proof is completed.

Lemma 2.4 For all A1, € 711,A12 € T12,A2 € T21,A» € Too,

() A(A + A + Ay = A(Aq) + A(A) + A(Az);

(i) A(Az + Ay + Ax) = A(A12) + A(Azr) + A(A2).

Proof (i) For any A € 711,A12 € T12,A21 € T3, since Py o (Aj; + Ajp + A1) o Py = Ay + Ay,
taking X = Py,Y = A;; + Aip + Ay, Z = P, in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, and
Lemma 2.3 (vii), we have

A(A12) + A(A2) A(App + Ay)

A(Pyo (A1 +Ap +Az)o Pr)

A(P1)o (A1 +An+A)oPr+ PioA(A + A+ Ay) o Py
Pyo(Ay + A+ Az) o A(P)

A(P1) o Ajp o Py + PIA(A1 + Ap + Ay P

PrA(A11 + Ay + Ao)Py + (2A11 + A + Agp) 0 A(P2)
A(P1)A11 + A1A(Py) + PiIA(A + A + Aa) P

+

—+
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Therefore, we get

AA; + A +Ay)

+

P,A(A1 + A + APy + 2A1A(P>) + 2A(P2)A
PiIA(A; + A + APy + PoA(A + Ajy + Ayp) Py
PiA(A1)P, — P,A(A )P,

PiA(A11 + Az + APy + PIA(ALL + A + APy
+ PyAAn + A+ AP+ PAA + A + Ax)P
= PiA(An + A + AP+ PYAA + A + Aa)Ps
+ PiA(A1)Py + P2A(A1) P + A(A12) + A(Ay). (2.9)

NCXt, we show PzA(All +A12 +A21)P2 =0and PIA(A“ +A12 +A21)P1 = PlA(AU)Pl.
Since PzO(All +A; +A21)OP2 =Ap+A, takingX =P, Y=A1+Ap+A,Z =P, in Eq (21),
then by Lemma 1.1 (iii), we get

A(A12) + A(Asr)

—+

+

+

A(A1x + Az)

A(Pyo (A1 + A +Az) o Pp)

A(Py) o (A1 +An+Az) o Py + Poo A(Aj1 + App + Agp) o Py

Pyo (A1 + A+ Azp) 0o A(Pr)

A(Py) 0 Ay o Py + 2PA(A1 + An + APy + PoA(A L + A + Agp)
A(A11 + A + Ay)Py + (A + Agp) o A(P2)

A(P2)A11 + A11A(Py) + 2P A(A1 + A + AP

PrA(A11 + Ap + Aap) + A(Ay1 + A + AP

Multiplying the above equation by P, from both sides and by Lemma 2.2 (iv), we obtain 4P,A(A; +
Ay + Ay)P, = 0. Therefore, by the property of 2-torsion freeness of 7, we get

P2A(A]1 + A +A2])P2 =0. (210)

Following, we show P{A(A|1+A2+A>1)Py = P1A(A)P;. Indeed, for any Y}, € 75, it follows from
Lemma 1.1 (lll) that (A]] +Ap +A21) oYppoPy =AY Taklng X=A1+An+A,Y=YHZ=P,
in Eq (2.1), then by Lemma 1.1 (iii) and P,A(A; + Ajx + Ay)P, = 0, we get

A(A11Y12)

A((Aj1 + A +Ay) o Yp 0 Py)

= AA +Ap+Ay)oYpoPr+ (A +Ap+Ay)oA(Y ) o Py

+

+

+

(A1 + A+ Ay) o Yip 0 A(P)

(AA1 + A+ A)Y i + YoA(An + Ap + Ay)) o Py
(A11A(Y12) + A(Y12)A11) 0 Py + A1 Y12 0 A(P2)
PyA(A + A+ Ay)Y o + A(A + A + Ay Yo
YAA + A + As)Pa + (A A(Y12) + A(Y12)A 1)

= AA; +Ap+A0)Y 12+ YRAAL + A + APy + AjA(Y 1) + A(Y12)A
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On the other hand, by Eq (2.5), we get
A(ANY12) = A(A1D)Y 12 + AnA(Y 1) + A(Y12)Aq.

Comparing the above two equations, we get (A(A;; + A2 + A1) —A(A11))Y12 = 0. Thus, by Lemma 1.1
(i), we get

PiA(A + A+ Ay)Py = PIA(A)P;. (2.11)

Therefore, we obtain from Eqs (2.9)—(2.11) and Lemma 2.2 (v) that A(A;; + A2 + Az1) = A(Aqy) +
A(A1) + A(A;p). Similarly, we get (if). The proof is completed.

Lemma 2.5 Forall A;; € T11,A12 € T12,421 € T21,A2 € T2, We get AA + A +Axy +Ap) =
A(A11) + A(A1p) + A(Azr) + A(A2).

Proof For any A1l € T11,A12 € T12,A21 € T21,A2 € T2, since P; o A1 +Ap+Ay +Ap)o P =
4A11 + A;p + Ay, taking X = P, Y = Ay + App + Axy + A, Z = Py in Eq (2.1), then by Lemma 1.1
(i7i) and Lemma 2.2, we have

A(4A11+Ap+Ax) = APro(An+Ap+ Ay +Axn)o Py)

= APDo(An+Apn+Ay+An)o P
PioA(A;1 +Ap+ Ay +Ax»n)o Py
Pio (A +Ap + Ay +Axn) o A(P)
A(P1) o (A11 +Ap) o Py + 2P1A(A + A + Ay + A Py
PiA(A11 + App + Ay + Ap) + A(A1 + Ap + Ag + An) Py
(2A11 + Apx + Azp) 0 A(Py)
A(PDAL + AnA(Py) + A(P1)Ax + AnA(Py)
AP\ A(A11 + App + Agp + Ap)Py + PIA(A1 + Ap + Ag) + Ap)P)
PrA(A1 + App + Ay + Ap) Py + 2A11A(P1) + 2A(P1)A
3P1A(A11)Ps + 3P, A(A )Py — P1A(A») Py — P2A(Ax) P
4P\A(A11 + App + Asp + Ap)Pr + PIA(A1L + Ap + Axp + An)P)
PrA(A11 + App + Ay + AP

m+ + 10 + + I + +

+ o+

On the other hand, by Lemma 2.3 (viii) and Lemma 2.4 (i), we have

A(4A; + A +Ay) A(4A 1) + A(Ar) + A(Ay)

= 4A(A1) + A(A1n) + A(Ay)
= 4P|A(A1))P) + 4P A(A )P, + 4P,A(A)P,
+ P1A(A12)Py + PoA(A1)P) + PiA(A21) Py + PoA(A)P.

Comparing the above two equations, we get
P1A(A1 + App + Agg + Ap)Py = PIA(A1) Py, (2.12)
and

PiA(A + A +Ag + Ap)Psy + PoA(A + Ay + Ay + Ap) Py

Electronic Research Archive Volume 32, Issue 3, 1425-1438.
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= P1A(A1) Py + PyA(A11)P,
+P1A(A12) Py + PoA(AR) Py
+P1A(A21) Py + P2A(Az1) Py
+P1A(Ax)P> + P,A(A)P;. (2.13)
Following, we show P,A(A, + Az + Az + Axn)Py = P2A(Ap)Ps.
Similarly, forany A;; € 711,A12 € T12,A21 € T21,A2 € Ty, since Pyo(Aj1 +Ap+Ay +Ap)o P, =

A + Ay +4A,,, taking X=P,Y=A1+Ap+A +A»,Z=P,in Eq (21), then by Lemma 1.1
(it7), Lemma 2.2, Lemma 2.3 (ix), and Lemma 2.4 (ii), we have

P,A(A1 + Ay + Apy + Ax)Py = PyA(An)Ps. (2.14)
Therefore, by Eqs (2.12)—(2.14) and Lemma 2.2, we have

A(Aj1 + A+ Ay +An) = PIAAG + A+ Ay + Ap)Pr + PIA(A + A + Ay + Ap) P
= P A(An + A + Ay + An)Pr + P2AAL + A + Ay + An)Ps
= PiAA1)P; + PIA(A11)P, + PoA(A)P,

P1A(A12)Ps + P2A(A) P

P1A(A21) Py + P2 A(A21) P

P1A(An)P; + P2A(A2)Py + P2A(AR) P,

A(A1r) + A(App) + A(Az) + A(A2).

+ + +

The proof is completed.

Next, we show that Theorem 2.1 holds.

Proof of Theorem 2.1 For any A, BeT letA=A+A,+A, +A» and B = By + Bj, + B,; + By,
where A;;, Bij € 7;; (1 <1, j < 2), by Lemma 2.3 (i) — (ii), (viii) — (ix), and Lemma 2.5, we obtain that

A(A + B) A((A11 + App + Agp + Ap) + (B + Bia + By + By))

= A((A;1 + Bi1) + (A2 + Bi2) + (A2 + Bap) + (A2 + Bn))

= A(Ay + Bi) + A(Ap + Biz) + A(Agy + Byy) + A(Ax + Bx)

= A(A1) + A(Bi1) + A(A12) + A(B12) + A(Az)) + A(Br) + A(A2) + A(B2)
= A(A11 +Apn+ Ay +An) + A(Bi1 + Bia + Bay + By)

= A(A) + A(B).

Therefore, A is an additive mapping on 7, and A is an additive Jordan triple derivation on 7. By refer-
ence [10] Theorem 1.1, we get that there exist an additive derivation D and an additive antiderivation
¢ on 7, respectively, such that

A(A) = D(A) + p(A)

for all A € 7. The proof is completed.

In the following, we will provide applications of Theorem 2.1.

Because triangular algebra is a special type of *-type trivial extension algebra, and if triangular
algebra U is a 2-torsion free algebra, then by reference [10] Corollary 1.1, we get the following Corol-
lary 2.6.
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Corollary 2.6 Let A and B be unital algebras over a commutative ring R and M be a unital (A, B)-
bimodule, which is faithful as both a left A-module and a right 8-module. Let U = Tri(A, M, B) be
the 2-torsion free triangular algebra, and A be a nonlinear Jordan triple derivable mapping on U, then
A is an additive derivation.

Next, we give an application of Corollary 2.6 to certain special classes of triangular algebras, such
as block upper triangular matrix algebras and nest algebras.

Let R be a commutative ring with identity and let M, (R) be the set of all n X k matrices over R.
For n > 2 and m < n, the block upper triangular matrix algebra T,’;‘ (R) is a subalgebra of M, (R) with
the form

M, (R) My x,(R) -+ My, (R)
0 M,(R) -+ My, (R)
0 0 e M, (R)
where k = (k, ks, - - - , k) is an ordered m-vector of positive integers such that ky + k, +--- + k,, = n.

A nest of a complex Hilbert space H is a chain N of closed subspaces of H containing {0}, which is
closed under arbitrary intersections and closed linear span. Denote by B(7H) the algebra of all bounded
linear operators on H. The nest algebra associated to N is the algebra

AlgN ={T € B(H) : TN C N forall N € N}.

A nest N is called trivial if N' = {0, H}. It is clear that every nontrivial nest algebra is a triangular
algebra and every finite dimensional nest algebra is isomorphic to a complex block upper triangular
matrix algebra.

Corollary 2.7 Let T,’;‘(R) be a 2-torsion free block upper triangular matrix algebra, and A be a
nonlinear Jordan triple derivable mapping on T,’E(R), then A is an additive derivation.

Corollary 2.8 Let N be a nontrivial nest of a complex Hilbert space H, AlgN be a nest algebra,
and A be a nonlinear Jordan triple derivable mapping on AIgN, then A is an additive derivation.
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