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Abstract:  This article introduces a new iterative transform method and homotopy perturbation
transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes
equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative
was employed. Four examples were considered to examine the efficacy and accuracy of the proposed
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The proposed methods’ convergence and uniqueness are also discussed. The methods mentioned above
are straightforward and support a high rate of convergence.
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1. Introduction

Fractional calculus (FC) is a discipline of mathematics concerned with the study of derivatives
and integrals of non-integer orders. It was invented in September 1695 by L'Hospital. In a letter

to L’-Hospital [1], who discussed the differentiation of product functions of order —, which laid the

groundwork for FC [2—4]. It provides a great tool for characterizing memory and inherited qualities
of different materials and procedures [4—6]. FC has grown in interest in recent decades as a result
of the intensive development of fractional calculus theory and its applications in diverse sectors of
science and engineering due to its high precision and applicability, for example, fractional control
theory, image processing, signal processing, bio-engineering, groundwater problems, heat conduction,
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and behavior of viscoelastic and visco-plastic materials, see [7-9]. In addition, the electrical RLC
circuit’s performance has been determined using the fractional model [10].

In the last few decades, numerical and analytical solutions of fractional partial differential
equations (FPDEs) have drawn a lot of attention among researchers [11-15]. The qualitative behavior
of these mathematical models is significantly influenced by the fractional derivatives that are
employed in FPDEs. This has numerous applications in the fields of solid-state physics, plasma
physics, mathematical biology, electrochemistry, diffusion processes, turbulent flow, and materials
science [16-18].

However, solving PDEs is not an easy task. A lot of mathematicians have put their effort into
formulating analytical and numerical methods to solve fractional partial differential equations. The
widely recognized methods for the solution of (FPDEs) are the Adomian decomposition method [19],
homotopy analysis method [20, 21], g-homotopy analysis transform method [22], homotopy
perturbation method [23], variation iteration method [24], differential transform method [25],
projected differential transform method [26], meshless method [27], backlund transformation
method [28], Haar wavelet method [29], G’/G expansion method [30], residual power series
method [31], Adam Bashforth’s moulton technique [32], operational matrix method [33].

The nonlinear partial differential Navier-Stokes (N-S) equation, which expresses viscous fluid
motion, was first developed by Claude Louis and Gabriel Stokes in 1822 [34]. This equation describes
the conservation of mass and conservation of momentum for Newtonian and is referred to as the
Newton’s second law for fluids. The N-S equation has wide applications in engineering science, for
example, examining liquid flow, studying wind current around wings, climate estimation, and blood
flow [35, 36]. Furthermore, along with Maxwell’s equations the (N-S) equation can be applied to
study and model magnetohydrodynamics, plasma physics, geophysics, etc. Also, fluid-solid
interaction problems have been modeled and investigated by the N-S equation [37].

The multi-dimensional Navier-Stokes equation (MDNSE) stands as a fundamental cornerstone in
fluid dynamics, providing a comprehensive mathematical framework to describe the motion of fluid
substances in multiple dimensions. Derived from the Navier-Stokes equation, which govern the
conservation of momentum for incompressible fluids, the MDNSE extends these principles to
encompass the complexities of fluid flow in more than one spatial dimension. The equation accounts
for the conservation of mass and the interplay of viscous and inertial forces, offering a powerful tool
to model and analyze fluid behavior in diverse physical scenarios. The application of the
multi-dimensional Navier-Stokes equation spans a wide range of scientific and engineering
disciplines, playing a crucial role in understanding fluid dynamics across various contexts. In the field
of aerospace engineering, MDNSE is employed to simulate the airflow around aircraft, aiding in the
design and optimization of aerodynamic profiles. In marine engineering, it finds application in
predicting the behavior of water currents around ships and offshore structures. Additionally, MDNSE
is instrumental in weather modeling, allowing meteorologists to simulate and analyze atmospheric
conditions in multiple dimensions for more accurate weather predictions. In the realm of biomedical
engineering, it contributes to the study of blood flow in arteries and the behavior of biological fluids.
Overall, the multi-dimensional Navier-Stokes equation serves as a versatile and indispensable tool for
gaining insights into the intricate dynamics of fluid motion in diverse scientific and engineering.

In literature, many researchers have used numerous techniques to analyze the N-S equation. First
of all, the authors of [38] solved the fractional-order N-S equation by using the Laplace transform,
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Fourier sine transform, and Hankel transform. The authors of [39—41] investigated the time-fractional
N-S equation by using the homotopy perturbation method. Biraider [42] used the Adomian
decomposition method to find a numerical solution. Recently, many researchers have focused on
examining the multi-dimensional time-fractional N-S equation, by combining a variety of techniques
with different transforms, see [43—46].

Motivated by the mentioned work, in the present article the new iterative transform method
(NITM) and homotopy perturbation transform method (HPTM) combined with natural transform are
implemented to analyze the solution of the time-fractional multi-dimensional Navier-Stokes equation
in the sense of Caputo-Fabrizio operator. The article is structured in the following way: In Section 2,
some basic definitions and properties are explained. In Section 3, the interpretation of the NITM is
explained for the solution of fractional PDEs. In Section 4, the above-mentioned method’s
convergence analysis is also presented. In Section 5, the outcome of the suggested method is
illustrated by examples, and validated graphically. In Section 6, the HPTM is explicated. In Section 7,
similar examples are presented to elucidate the HPTM.

2. Basic concepts

Definition 1 ( [47]). The Caputo fractional derivative of f(¢) is defined as

1 ¢
—— [[(C=" " fMOds, m—-1<6<m,
I'(m-0)%
o= T @
M), 0 =m.
where, m € Z*, § e R".
Definition 2 ( [48]). The Caputo-Fabrizio fractional derivative of f(£) is defined as
_ ¢
et pp ey = 08O mp(“ éUDU@mM€>O 22
2(1-60) J 1

where 6 € [0, 1], and $B(0) is a normalization function and satisfies the condition B(0) = B(1) = 1.
Definition 3 ( [49]). The fractional integral of function f(£) of order 6, is defined as

cr e 200—0) f
olefO = 5586 O —(2 a8@ ) D% =0 (2.3)

From Eq (2.3), the following results hold:

2(1 - ) .\ 20 .
2-0)B0H) Q-0)B0H)

which gives,
2
BO)=—— 0<6<1.
@) o

Thus, Losada and Nieto [49] redefined the Caputo-Fabrizio fractional derivative as

cF py 1 S (4 o
DifO) = 7= | exp|——5— | PUf@)dL £20. (2.4)
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Definition 4 ( [50]). The natural transform of 3(£) is given by

00

NO©@)) = U(s,v) = f eSO de, s,v € (=00, ). (2.5)

—00

For ¢ € (0, o), the natural transform of (£) is given by
NOOH ) =N = U (s,v) = f e StB)de s, v € (0, ), (2.6)
0

where H is the Heaviside function.
The inverse of natural transform of U(s, v) is defined as

N [U(s,v)] = U(), V> 0.

Definition 5 ( [51]). The natural transform of the fractional Caputo differential operator OCDﬁU(f) is
defined as

1\ 1
N|§DIB(0)] :(E) (N[U(f)]—( )U(O)). 2.7)

s
Definition 6 ( [52]). The natural transform of the fractional Caputo-Fabrizio differential operator
T DID(¢) is defined as

1
N[ § D) = . (N[G(f)] -~ (;) U(O)) : (2.8)

1_9+9(3)

3. The procedure of NITM

This section considers, NITM with the CF fractional derivative operator in order to evaluate the
multi-dimensional (N-S) problem. This iterative method is a combination of the new iterative method
introduced in [53] and the natural transform [50].

Consider the fractional PDE of the form

LDI0 (9,0, 0 + R([U(g,0,0) + N (U(g, 0, 0) = P (¢.0,0) = 0, (3.1)
with respect to the initial condition
U (g, 0,0) = hig,0). (3.2)

cr oD is the Caputo-Fabrizio fractional differential operator of order 6, R and N are linear and
non-linear terms, and % is the source term.
By employing the natural transform on both sides of Eq (3.1), we get

N[ DI (. 0.£) + R(B(g.0. 0) + N B(g.0.0) — P (p.0.0 = 0]. (33)
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N[0 (g,0,0)] = ' U(g,0,0) + (1 —0+ 9(§>)N (P (6.0.0) — [R(O(@.0.0) + N (O(g.0. )]}
(3.4)

By using the inverse natural transform, Eq (3.4) can reduced to the form

U(g.0.0) =N {s“U(cp, 0.0) + (1 —6+ e<§))N{¢> (©.0.0) — [R(B(g.0,0) + N (B¢, 0, f))]}} .
3.5

The nonlinear operator N as in [53], can be decomposed as

N (U(g,0.0) = N(Z U(ps0, f))
r=0

00 r r—1
= N (g, 0.0)+ ), {N [Z Uile, 0, f)) -N [Z Ui, 0, f)]} ENEE
r=1 i=0 i=0

Now, define an mth-order approximate series

D"(p,0,0) = ) By(g.0,0)
r=0
= UO(‘%Q,&+Ul(‘P,Qa€)+UZ(¢,Q,€)+___+6m(90a9,5), m € N. (37)

Consider the solution of Eq (3.1) in a series form as

G(p.0.0 = lim D™ (p,0.0 = ) U, (¢.0.0). (3.8)

r=0

By substituting Egs (3.6) and (3.7) into Eq (3.5), we get

26, (@.0.0
r=0

=17 {5715(6.0,0 + (1 - 0+ AN [P (60, 0) = [R Bo(w.0.0) + N Gol.0. )]}

*® r r—1
_ N {( -6+ 9(2))N [Z {R Ulg,0.0) + [N (ZO“ Ui(g. 0, f)) - N{ZO: Ui, 0, 5)]]}]} . (3.9)

r=1

From Eq (3.9), the following iterations are obtained.

Bo 00,0 =1 |s710(0,0,0) + (1 - 0.4 0C) [P .0, 0], (3.10)

U1 (90,0 = —N"! [(1 6+ e<§>)N [R (Bo(e.0.0) + N Boe. 0. f))]] , (3.11)
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ur+1 (509 Q’ 5)

_ N {(1 —6+ 9(‘—;))N [i {R (O, (g, 0,0) +

r=1

N [; Ui(p, 0, 5)) -N [Z; Ui(p, 0, f))]}]} :

(3.12)

4. Convergence analysis

In this section, we demonstrate the uniqueness and convergence of the NIT M.
Theorem 1. The solution derived with the aid of the NIT M¢r of Eq (3.1) is unique whenever 0 <
(91, 91 -0+ 6] < 1.
Proof. Let X = (C[J],]| . ||) be the Banach space for all continuous functions over the interval J =
[0, T'], with the norm || ¢(£) = maxe;|p(£)|.

Define the mapping ¥ : X — X, where

65, =05 -1 |(1- 0+ 02 )N IR B0, 00 + N 0,0 - P00, r20.

Now, assume that R(U) and N (OU) satisfy the Lipschitz conditions with Lipschitz constants ¢y, ¢,
and [R(D) — R(O)| < 91|60 - 0|, IN(U) = N(O)| < 9|0 — 0|, where U = U(g, 0, £) and U = U(g, 0, £)
are the values of two distinct functions.

| F(0) = F(O) || < maxees

N [(1 ~ 0+ 0% )N {R©(.0.0) - R (B(.0.0))

+ (1 0+ GE)N (N @(g.0.0) - N (Bg.c, f))}”

< maxge, [@N-l {(1 —6+ HE)NlU((p, 0.0 - B(g. 0. €)|}

+ paN-! {(1 —6+ QE)NKS(QD, 0.0 - B(g. o, €)|}]

< maxees(p1 + 92) [ {(1 - 0.+ 0% M., 0 - Do, 01|

< (o1 + ) [ {(1- 04 02160, 0) - T, |
<+l —6+60T-T.

¥ is contraction as 0 < (p; + ¢2)[1 — 6 + 6] < 1. Thus, the result of (3.1) is unique with the aid of
the Banach fixed-point theorem.
Theorem 2. The solution derived from Eq (3.1) using the NIT Mcr converges if 0 < U < 1 and
|| O; ||< o0, where U = (p + @,)[1 — 6 + 6£].
Proof. LetU, = 3,'_, U,(p,0,¢) be a partial sum of series. To prove that {U,} is a Cauchy sequence in
the Banach space X, we consider

zml Orlg.0,0)

r=n+1

” (Um - zjn || = MmaXeey , n=1,2,3,..
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< maxeey

I\ [(1 -0+ GE)N{ Z [R(G,-1(p, 0,0)) + N(G,_1 (e, 0, 5))]}”

r=n+1

(1204 0% )N RGy) = RO,-1) + N Do) - N(Un_o}]'

< maxeey

N [(1 _0+ HE)N (ROG_y) — R(Gn_l)}”

< 91 maxeey

N [(1 —o+ HE)N INDpr) - NU"“)}”

+ 2 MaXeey
=@+ )1 =0+000 || Gpoy = Oy |l
If m =n+1, then
| Gt =G IS @ 100 = Bt IS 92 11 Byt = B IS . < 9" 1 51 = Uy I,

where p = (¢ + 92)[1 — 0 + 6£]. In a similar way

| Om = O ll <l Ops1 = Oy Il Opgz = Ot IS 1] Oy = Gy |l
<@+ + L+ " HNT =B ll,

1_ ‘m—n
sw"(%) 15,1

We see that, 1 — 9" < 1,as0 < p < 1. Thus,

n

1 T = U, ||s( i )maxfej 1o,

l-9p

Since || Oy ||< o0, || G, — G, || 0 as n — oo. Hence, ,, is a Cauchy sequence in X. So, the series

O, 1s convergent.

5. Numerical examples

In this section, we demonstrate the effectiveness of the NITM with the natural transformation for
the Caputo-Fabrizio fractional derivative to solve the two-dimensional fractional N-S equation.

5.1. Example 1
Consider the two-dimensional fractional N-S equation
CFZ)B(/J)-F/J(?—#'FV@_# =p 82_/14_@ +q
o R TR e
ov v v
—_ q’

ov
CF g0 _
DG, 0 = gt * aep

(5.1)
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with initial conditions

{ u(p,0,0) = —sin(e + o), 52)
v(,0,0) = sin(p + o). '
From Egs (5.1) and (5.2), we set the following
o*u 62,u ou  ou
PI(QD’Qa{)_qa R(ﬂ(‘PaQ’f))—_p[a 2 0 2:|a N(/J(QD,Q,Z)) l’la_+v%
Pv 0Py v Ov
) = — )= —-—pn|—+ — ) = u— -
Par(p,0,0) = —q, R(p,0,0) = —p [ 90 + 6@2] » N(v(g,0,0) = T +v %0
Ho(p,0,0) = —sin(p + 0), vo(p,0,0) = sin(y + o).
Using the iteration process outlined in Section 3, we have
1%
Ho (()07Q’ 5) = ! S_ll'l(‘p’ga 0) + (1 -0+ 9(;))N [Pl (QD,Q, g)]:l ) 0 <46 < 1
= —sin(¢+0)+q.[(1 —0) + 6],
\%
06,00 =1 |571vg,0,0) + (1 - 0+ 6C) N [P2 (0,0, 0|
=sin(p +0) —q.[(1 — 0) + 6], (5.3)
i v
1 (6.0,0 = =" |(1= 0+ 6C) | NIR ol 0, 0) + Nuo(.0. O
[ Puy 0o Opo Opo
= —N~! (1—0 HK)N— s —_— —_—
_ + (S) P 8(102 + a@z +/’t0 6(10 +V0 8@
= 2psin(p + o) [(1 — 6) + 6],
[ v
M .00 = <17 |(1-0+ 0| R0, 0.0) + NG, 0, 0)|
[ Pvy P v oy
= —-N~! (1—0 HK)N— I — —
» + (S) P Fye + 0 +#oa¢ +V08Q
= =2psin(p + o) [(1 — ) + 6(], 5.4)

112 (.0, 0) = —=N"! [(1 = 0+0C)) N [(Ru1(0.0.0) + IN(uo(@.0.0) + 11(9.0.0) — N(uo(@. f))}]]

2 2
= -N"'! (1—9+9(K))N - %+8“1 + (o + ‘9(ﬂo+,u1)
S a 2 (990
O(uo + 0 )
+ (vo + V1)—('uoag H) —llo—a'[:; (;;0)]
62
= —(2p)"sin(p +0) | (1 — 07 + 20(1 - O)¢ + 925] ,

v (g.0.0) = -N! [(1 —0+ e<§>)N (RO (¢, 0, 0) + INODO(@, 0, 8) + 1.0, 0) = Nvo(. 0, O)}]
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e [P S N L it Ao +v1)
=-N (1 9+9(S))N( p[a¢2+agz + (o + (1) 9
vy + 0 d
+ (vo +V1)% —,anl; —Voalgo)]
52
= (2p)*sin(p + 0) | (1 — 6)* + 26(1 —9)5+925], (5.5)
3 (6.0,0 = = |(1- 6+ 6C) )N [(Rga(.0,0)

+ {N(/JO(QO’ o, 5) + (‘10’ o, f) + IUZ(QO’ o, f)) - N(:UO(SO’ o, f) + /11(90, o, 5))}]]

i 82 82 P
=-N"! (1—9+9(K))N —p ﬁ.pﬂ + (o + H1 + 1) (o + (1 + (o)
i s o> 90? 9

0 0 0
+ (vo+Vvi+w) (ko +(9#1 i) ((o "‘,Lll)M — (v + Vl)M)]
0 Op do

3
= (2p)* sin(p + o)

b

2 4
(1 =6)° +36(1 — 6)*¢ + 36*(1 — 9)5 + 935

(5.6)
V(6,00 = -1 |(1= 0+ 0 )N (R (0,0.0)
+ {N(VO(QO’ O, f) + Vl((,ﬁ, O, f) + VZ(SD’ O, 5)) - N(VO(QD’ O, f) + Vl((,D, O, f))}]]
_ -l [ _ X _ & @ (')(vo + v+ V)
= -N »(1 9+9(S))N( '0[6502 + 90 +(,uo+,ul+,uz)—a¢

6(1/0 + v + Vz) (9(1/0 + V]) (9(1/0 + V])
ShrInTrn CHTVD vy + vy 2ot M)
do d¢ do

+ (Vo +Vvi +W)

(po + 1)

= —(2p)’ sin(p + 0)

2 3
(1 - 6)® +30(1 — 0)*¢ + 36°(1 — 9)% + 93%] , (5.7)

In a general way,

up,0,6) = Zﬂr(so, 0, 0) = po(p, 0, 0) + (@, 0, ) + pa(p, 0, 0) + - -+
r=0

(o)

V.0, 0) = Y vilp,0,0) = vo(p, 0,0) + vi(p,0,0) + valp, 0, 0) + -+
r=0

With the addition of all 4 and v,
u(p,0,6) = —sin(p +0) + q. [(1 - ) + 6] + 2p sin(p + ) [(1 — ) + 6]
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52
(1 -06)*+26(1 - 0)¢ + 925

+(2p)’ sin(p + 0)

— (2p)* sin(p + 0)

[2 3
x [(1 = 6)® +36(1 — 6)*¢ + 36*(1 —9)5 + 93—] —,

v(p,0,€) =sin(¢ + o) — q.[(1 — 0) + 6] — 2p sin(¢ + o) [(1 — O) + 6¢]

2
+(2p)*sin(p + 0) |(1 — 6)* +26(1 — )¢ + 92%] — (2p)° sin(g + o)

52 3
x (1 = 0)* +36(1 — 0)*¢ + 36*(1 — 9)5 + 93§ TP
The exact solution of Eq (5.1) at 8 = 1 and ¢ = 0 is given by
up,0,€) = —e ' sin(p + o),
v(p,0,€) = e sin(yp + ). (5.8)

5.2. Example 2

Consider the two-dimensional fractional N-S equation

2 2
r ) + 2 4 =p[a—g + a_,;] +q,
dp 0o d¢* 0o
5 ) (5.9
CFDB(V)'f' Q‘FV@_ Q.}.Q —
0="¢ /’16 0@ =p 6()02 692 q,
with the initial conditions
(e, 0,0) = _e(s0+9),
{ V(p,0,0) = ¥ (>-10)
From Egs (5.9) and (5.10), we set the following:
0? 0? 0 0
PI(SD’Q’ 5) =q, R(,U((,D, o, 5)) =—p _l; + _/'2l P N(/J(QO’ o, 5)) = :u_ﬂ + V_/l’
dg* Do dp o
v v ov ov
9’€:_a 595 = - A P K 9’52_ PR
Pa(p,0,0) = —q, Rv(e,0,0)) p[@ﬂ + 902 N (v(g,0,0) . +an
o, 0,0) = =¥+, vy(p,0,0) = €.
Using the iteration process outlined in Section 3, we have
fo (@, 0,6) =N [S‘l,u(w, 0,0) + (1 -0+ 9(5))N [P1 (¢, 0. é’)]] , 0<6<1
=¥ 1+ q.[(1 - 0) + 6¢],
v
06,00 =1 [ v(.0,0) + (1 -0+ 6C) N [P (0.0, 0|
=¥ _g.[(1-6) +6¢], (5.11)
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1 (9.0, 0) = -N"! '(1 =0+ 0C)) MR o(. 0, 0) + Niso(g. 0, f))}]

2 2
1 _e+e<f))N(_p[M . @_ﬂ] + 0 @L)]
S

= -N™!
o> do o 0o

= =20 [(1 - 6) + 6/],

M (g.0,0 = -1 (1= 0+ 0C) | NROu(@.0.0) + NG, 0. 0)|
_ el aw e ([ 80, P, Ve %
=-N »(1 9+9(s))N( p[a(pz + 6@2]+’u06¢p +V08@)]
=20 [(1 - 0) + 6(], (5.12)

12 (9,0, 6) = =N [(1 0+ e<§>)N [(R(1(@. 0. 0) + IN ol 0, 0) + (.0, ) = No(p. 0. f))}]]

gl 4 Puy P Ao + 1)
- N (1 —0+0(;))N(—p[8—902 + et |+ =
o(ug + 0 0
+ (Vo +v1) (,ang #) —ﬂoai(po - Voaigo)]

21

52
= —(2p)*e¥t? [(1 — 6)* +26(1 — 6)¢ + 92—] ,

v (.0, 0) = —N! [(1 6+ e<§>)N (RO (9,0, 0) + INOO(@, 0, £) + (.0, 0) = No(. 0, O)}]

(921/1 621/1 a(VO + Vl)
- N (1—9 QY)N— In 2
+ (S) P 8902 + an + (#0 +,Ll]) a(p
ovg +v ov ov
+ (vo+71) ( (199 L —,an—‘;: —Voa—;)]
2
= (2p)%e¥*? [(1 —0)* +20(1 — 6)¢ + 92%] , (5.13)

3 6.0,0 = =17 |(1 -0+ 6| N [(Ra(.0. 0)
+ {N(/JO(QO’ O, 5) + /ll(‘Pa o, f) + IUZ(QO’ O, f)) - N(#O(SO’ O, f) + /Jl(‘P, o, 5))}]]
_ | _ v _ % @ O(uo + H1 + 1)
=N »(1 0+0(s))N( p[wz * o0 5

oo + py + O(uo + O(uo +
+ (vo+vi+n) (o (9#91 #2)—(,110 + 1) (#Oagpﬂl)—(VO‘FVl) (,U()agl-ll))]

+ (uo + py + p2)

52 53
= —(2p)’e¥*? [(1 —0)’ +30(1 - 6)*C + 36°(1 — 0)5; + 935] ,

V16,00 = (104 6C) N [ROAg.0, 00
+ {N(VO(QD’ o, f) + VI(SD’ o, f) + VZ(QD’ O, f)) - N(VO(QD’ O, f) + Vl(SD’ O, f))}]]
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6(1/0 + v+ Vz)

_ % Pvy, v,
= N (1—9+9(;))N(—p[6—¢2+0—92 o+ )
+ (VO Fy 4 V2)8(VQ + v + V2) _ (/JO +Iu1)(9(Vo + V]) _ (VO + Vl)@(vo + Vl)
do dg do
£ e
= (2p)’e¥*® [(1 —0)° +30(1 — 6)*€ + 36*(1 — 9)5 + 935] , (5.14)

In a general way,

u(p,0,0) = Z,ur(so, 0,0) = uo(p,0,€) + (e, 0,6) + pa(p,0,6) +-- -,
r=0

(o)

V0.0 = Y vi($,0.0) = vo(,0, 0+ V1(9,0,0) +v2(,0,0) + -+
r=0

With the addition of all i and v,

1, 0,0) = — €1 + q. [(1 = 0) + 0] = 2pe“* [(1 — 6) + 6¢]

52
- (2p)*e¥t? [(1 —60)* +20(1 — )¢ + 925]

2 3
~ (2p)°e*™ [(1 = 6)° +360(1 — )°¢ + 36°(1 — 9)% + 93;] —

W@, 0,0) =¥ — . [(1 = 0) + 66] + 2pe*™ [(1 — 0) + 6f]
2

¢
+ (2p)*et [(1 —0)> +26(1 - 6)¢ + 925

* £
+ (2p) e [(1 —6)° +36(1 — 0)°C + 36°(1 - 03 + 935 +eee

The exact solution of Eq (5.9) at 6 = 1 and g = 0 is given by

,U(% 0, f) — _e<p+g+2pt’,

(g, 0,€) = e ¥L, (5.15)

6. The procedure of HPTM
Consider the following non-linear fractional PDEs
DDIB(p.0,0 + R(B(p,0,0) + N (Blp,0,0) = Plp,0,0) =0, 0<6<1, (6.1)
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subject to the initial condition

O (¢,0,0) = Uo(g, 0). (6.2)

“t Dl is the Caputo-Fabrizio fractional differential operator of order 6, R and N are linear and non-
linear terms, and % is the source term.
By using the natural transform on both sides of Eq (6.1), we get

N[ D5 (0,0 + R(G(p, 0,0) + N (Blp,0,)) = P (p,0,0) = 0], (6.3)

N[5 (.0.0] = @@ 0.9) - (1 -0+ 0O NIRC(@.0.0) + N T 0. 0N, (64
where
T(O(g.0.9) = 5 Blg.0,0) + (1 -0+ e<§>) P(g.0.9).

By applying the inverse natural transform, Eq (6.4) is reduced to the form

B(g.0.0) = @(B(p, 0, 6)) — N! [(1 — 0+ 60| NIRG(.0.0) + N T@.0.01|. 65

where @ (U(y, 0, {)) represents the term arising from the source term. Now, applying the HPTM to find
the solution of Eq (6.5), we get

B(g.0,0) = Y ZT(p,0,0), (6.6)

r=0
and the non-linear tern can be decomposed as

N (©(p.0,0) = ) ZH(¢.0,0). (6.7)

r=0
Cnsider some He’s polynomials [54], given as

10 O
7‘(,(60, Ula ceey 6!’) == |:N [Z ZjUj]
j=0

=0,1,2,---. .
r!azr , I O’ 5~ (6 8)

By substituting Egs (6.6) and (6.7) into Eq (6.5), we get

S 6,(¢.0.07
r=0

= o(U(¢,0.0) - 2N [(1 —6+ O(E))N {R D 7Up.0.0+ N Y T Hpo, f)}] . (69
r=0 r=0

Comparing the coefficients of like powers of z, the following approximations are obtained:

21 Bolg, 0,0) = w(U(g, 0, ) (6.10)
' Bilp.0,6) = —N! [(1 0+ 9<§>)N{R[UO(¢, .01+ %(U)}] 6.11)
7 Ui(p.0,0) = -N! [(1 0+ e(f))Nm[Ur(w,f)] + %(6)}] . 6.12)
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6.1. Example 3

Consider the two-dimensional fractional N-S equation

ou ou ou  u
Cg@?(].l) +,U% + Va— [890 + — (9@ +q,
ov ov Pv Py
CF a0 _ _
A PR [5902 " 392] *

with initial conditions

{ (e, 0,0) = —sin(p + ),
v(p,0,0) = sin(p + o).

Applying the natural transform and inversion in Eq (6.13), we obtain

0,0 = l.0,0) + (1= 0+ 0 )il | + 17 |(1 - 0.+ 65))

2 2
oz ) b )
W@, 0,€) = v(, 0,0) = N! [(1 _9+ H(E))N[q]] AN [(1 —9+ 9(2))
ol i) -l sl
d¢*  90? dp 0o
By implementing HPTM in Eq (6.15), we get

Zz,u(go 0,0) = —sin(g + o) + N"! [(1—9+e( )) []]+ZN—‘ [(1—9+9(§))

=0
xN{pZz (g—# + a—’u) ZZ”H (90,9)}

r=0

i v(g,0,0) = sin(p + 0) — N! [(1 —0+ H(E))N[q]] N [(1 —0+ e(g))

r=0

SR S
XN {p Z 4 (a—();; ) Z 71 (e, Q)} :

r=0

0 0
where H,. (¢, 0) = ,u—'u + v—'u and 7 ,(p,0) = ,u—v + v—v, represent the nonlinear term.
dp o dp o

From Eq (6.16), comparing the powers of z, we get

22 po(p,0,0) = —sin(p +0) + q.[(1 — 0) + 6¢],
2 2 volg, 0,0) = sin(p + 0) — q. [(1 - 6) + 6(],

AIMS Mathematics Volume 9, Issue 4,

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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[ Puy 0
2 (g0, 60) =N (1 -0+ 49(2))1\]1{;0(#120 + aﬂzo) Hole, Q)}]
= 2psin(p +0) [(1 - 6) + 611,

[ % Pvy v (6.18)
0.0 =1 |(1-04 05 )2 + S0 - Toe0)
| s 0p* 0o 802
= =2psin(p +0) [(1 - 0) + 6(],
where Hy(y, 0) = ,uo% + Vo% and Zo(p,0) = MO% + Vo%-
Oy do Op do
2 -1 v P
2 (0.0 =N (1—9+9<—>)N o 24+ ZEL) g0, 0)
s 0p*  0o?
2
= —(2p)*sin(p + 0) [(1 — )* + 26(1 — )¢ + 92;]
v v, 0%y (6.19)
2 im0 0 =1 |(1-04 05 )p (S0 + S0 - Tiwo)
s 0p*  00?
= (2p)*sin(p + 0) | (1 — 0)> + 26(1 — H)¢ + 92;]
d d d )
where H, (¢, 0) = (,Uoé% +ula%°) + (vOain + vla%o),
ov ov ov ov
and 7(p,0) = (”Oa_‘,; +,u16—£) + (Voa—g1 + Vla_go)-
V 0* 0*
2 pa(p,0.0) =N [(1 -0+ 9(;))N{/O(Wl;2 + aﬂf) Ho(ep, Q)}]
3 3 2 2 52 3€3
= (2p)’sin(g +0) | (1= 6)’ +36(1 = 67C + 36°(1 = ) + 6 |.
' ' (6.20)

0> o>
z3:V3(90,Q,5)=N_1[(1—9+9(E))N{p(ﬁ 39“) Iz(%@)}]

£ &
(1 -6)° +36(1 — 0> +36*(1 — 9)5 + 935] i

= —(2p)’ sin(g + 0)

) ) ) ) ) )
Whereﬂz(%@):(ﬂoﬂ"‘#ﬂ‘i‘ﬂz #°)+(v A L ”O),
Oy Op Op
ov, ov; oy ov, ov; )70
and 75(p,0) = Ho>— +“10_ + o —— Vo—— -—
fo fo Oy

In a general way,

10,0 = ) 11:(8,0,0) = p1o(p,0,0) + (6,0, 0) + io(p, 0, ) +
r=0
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(e8]

V(0,0 = D V.0, 0) = (0,0 + V1(£,0,0) + V2,0, 0) + -+
r=0

With the addition of all i and v,

u(p,0,€) =—sin(p + ) + q.[(1 — 0) + 6] + 2p sin(¢ + o) [(1 — ) + 6¢]
2
(1-6)> +26(1 —9)5+92%

— (2p)* sin(p + 0) +(2p)’ sin(p + 0)

2 £
X (1-@)3+39(1—0)2f+392(1—9)5+93 ]—

3!

v(p,0,€) =sin(p + 0) —q.[(1 — 0) + 6] — 2p sin(p + o) [(1 — ) + 6¢]
2

(1 -06)*+26(1 —6)¢ + 92{;] — (2p)° sin(g + o)

+(20)’ sin(y + 0) 5

3

2 ¢
><(1—9)3+39(1—9)2£+392(1—9)5+93 Hoeee

3!

The exact solution of Eq (6.13) at 6 = 1 and ¢ = 0 is given by

w(p, 0,€) = —e " sin(yp + 0),
V(p,0,€) = e ! sin(p + o).

6.2. Example 4

Consider the two-dimensional fractional order N-S equation

i i

v v

o o | "

5,
Cg@g(/l) +/,l—g0 +V—Q :p[
0@?(V)+y% +v—Q :p[

with initial conditions

#(909 O, 0) = _e(</3+9)’
V((p,g, 0) = ePto)

Applying the natural transform and inversion in Eq (6.22), we obtain

(9.0,0 = 1(9,0,0) + T |(1 =0+ )il | + 177 (1 = 0+ %))

Py u ou ou
N StttV
* {p(asoz " 692) (ﬂé‘so " Vﬁ@)}]

W6, 0,0) = v, 0,0) = N! [(1 —0+ H(E))N[q]] AN [(1 — 0+ 9(2))

XN &_*_&_ Q+v@
P\ag " ag2) " \Hap " Ve[|

(6.21)

(6.22)

(6.23)

(6.24)
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By implementing HPTM in Eq (6.24), we get

gzru(go, 0,0) = —e¥*0 L N [(1 —0+ 9(‘—;))N[q]] +ZN"! [(1 —6+ 9(2))

xN{pZZ(a'Z ) D I HLp, Q)}
r=0 r=0

w0 (6.25)
> vlp.0.0) = &0 N [(1 — 0+ 9(‘—;))N[q]] +ZN"! [(1 — 0+ e(g))
r=0
xN{pZz ( ) erI(go Q)}
r=0 r=0
where H,(¢,0) = ,ua—'u + V@_,u and 7 ,(p,0) = ,u@ + v@ represent the nonlinear terms.
dp  do dp Do
From Eq (6.25), comparing the powers of z, we get
2 po(p,0,60) = =€ + q.[(1 - 6) + 641, 6.26)
2 1 vo(p,0,0) = e — q.[(1 - 0) + 6], '
1 -1 — v Puy 0o
& 0.0 =1 (1= 046|180 S5+ ZE) - 300
[ s d¢*> o
= —2pe¥" 9 [(1 - ) + 6],
pe” 11 =0) +6(] 2 2 627)
1 -1 1% 3 Yo 6 Yo
2 (@0, 0) = N (1—0+0(—))N P[22+ 220) - 14(p,0)
] s o¢?  0p?
= 20" [(1 - 0) + 6¢].
where Ho(y, 0) = Mo% + Vo% and Zo(p,0) = MO% + VO%-
0y 0o Op do
_ v 0? 0?
& pog.0.0 =1 (1= 0+ 0 dp(SE + B - 9.0
s 0y 0o
€2
= —(2p)*e“" (1 - 6)* + 26(1 — O)¢ + & 5 ']
(6.28)

o> 0*
2 va(g.0.0) = N7 [(1 —6+ 9(§>)N {p(wﬁj ¥ ﬁ) I, @}]

2
= (2p)%e¥? [(1 0)> +20(1 — 6)¢ + 92;]

0 0 s) 0
where H (¢, 0) = (,UOL + H ,uo) + (Voﬂ + Vi ﬂ) ;
d¢ d¢ o

ov ov ov ov
and 71(¢,0) = (o + i | + [vor + i),
Oy Oy
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0 0
2 pa(g0,0 =N [(1 . 0+6<§))N{p( 6“2 ¥ a“j) Halg, m}]

_ —(2/))3 e(ww)

£ &
(1-6)°+36(1 — 0)*C + 36°(1 — 9)5 + 9%] ,

821/2 62V2

z3:V3(90,Q,5)=N_1[(1—9+9(§))N{p(6— 62) 12«0,@)}

53
= (2p)’e¥*? [(1 —6)° +36(1 — 6)*€ + 36°(1 — 9) A 3,]

Oz 8/11 Io Oy~ O Ao

h = up—= o= o

where Ha (¢, 0) (,Uo B (9g0 + po—— 9 + v 90 + VI — 90 + v 90
ov ov oV, ov av v
and 7,(¢,0) = (Mo + 1=~ + o | + (Voo + Vi +v2om
oy 0o 0o do |

op oy
In a general way,

p(p, 0.0 = D 1,0, 0) = po(p 0, €) + p11(p, 0, €) + tialp, 0, 0) +
r=0

(9]

v(p,0,¢) = Z vi(@,0,0) = vo(p,0,0) + vi(p,0,0) + valp,0,€) + -+ .
r=0

With the addition of all i and v,
w(p,0,€) = — ¥ + g [(1 - 6) + 6] — 20 [(1 - 6) + 6(]

£
— (2p)*e¥to [(1 — 0 +20(1 — 0) + 6> — | — (2p)’e¥™®

21

f3
x |(1 —6)* +36(1 — 0)*¢ + 36°(1 — e))5 + 935] -

W, 0,€) =¥ — . [(1 — 6) + 6] + 2p“*9 [(1 — ) + 6(]

Iz
+ (2p)*et? [(1 - 0% +26(1 — )¢ + 922 ] + (2p)le#O

3

x [(1 =8) +36(1 — 0)*¢ + 36°(1 - 9)% +6—

30 + ...

The exact solution of Eq (6.22) at 6 = 1 and g = 0 is given by

g, 0,€) = —e#* %",
V(()D, o, ) — ego+g+2p£’.

(6.29)

(6.30)
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v(p,0,4)

o 10 10

Figure 6. The solution of v(¢, 0, £) at various fractional-orders 6 = 0.6, 0.8 of Example 1 up
to the four terms of the series.

Figures 7 and 8 represent the analytical and exact solutions of Examples 2 and 4 for u(¢, 0, £) and
v(p,0,f)atd = 1.

60 c 60
S
c =
[e] o
= w
= o°
3 o
5 o
(6]
(o] =
d S
Q.
Q.
< 0
0
0
05 4 05
4 ¥

Figure 7. Comparison of exact and NITM solution of u(p,0,¢) at 6 = 1 and £ = 1 of

Example 2.
C
k)
c 5
o o
= (]
=) °©
[e) (0]
e T
8 -40 e g N S
= 4 2 <
Q.
- 2 -60
0.5 0.5
T 0.5 T 0.5
0 © 0 @
Figure 8. Comparison of exact and NITM solution of v(p,0,¢) at & = 1 and £ = 1 of
Example 2.

It can be seen that the NITM solution figures are identical and in close contact with the exact
solution of the example. Furthermore, in Figures 9 and 10, Examples 2 and 4 are calculated by the

AIMS Mathematics Volume 9, Issue 4, 8776-8802.
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NITM method, and the value of u(yp, 0, ) is examined corresponding to the various fractional orders
0 =0.2, 0.4, 0.6, 0.8 by graphical interpretation.

150 150
Q —~
5100 100
3 50 e S e,
3 . T S0 —
0 0
0 0 0 0
0.5 0.5 0.5 0.5
1 1 1 1
0 ¥ 0 ®

Figure 9. The solution of u(y, 0, £) at various fractional orders § = 0.2, 0.4 of Example 2 up
to the four terms of the series.

150
= A1oo
< 100 <
-~ (7]
S 50 50
= e ——— G S
8 3 0 I
0.5 o 0
0.5 0
1 1 0.5 0.5
0 © 11 -
e ®

Figure 10. The solution of u(yp, o, {) at various fractional orders # = 0.6, 0.8 of Example 2
up to the four terms of the series.

Similarly, the graphical solution of v(¢, 0, €) for various fractional orders 6 = 0.2, 0.4, 0.6, 0.8 of
Example 2 is analyzed in Figures 11 and 12.

-50

-100

-150
0

1 0.5 05 0.5

0 © 1% 2

Figure 11. The solution of v(p, 0, {) at various fractional orders § = 0.2, 0.4 of Example 2
up to the four terms of the series.
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0 0
< 50 <

S g -50
2100 Y
< A

_158 108

0.5 0 0.5 0
1 0.5 1 0.5

Y ® 0 12
Figure 12. The solution of v(¢, 0, £) at various fractional orders 8 = 0.6, 0.8 of Example 2
up to the four terms of the series.

It is observed that the outcome of the NITM method and its graphical interpretation demonstrate the
accuracy and applicability of the suggested techniques, and it is noted that the fractional-order solution
exhibits the same convergence trends as that of integer-order solutions.

8. Conclusions

This article presents the successful implementation of NI'TM and HPTM to evaluate the solution of
the time-fractional multi-dimensional N-S equation analytically. The efficacy and accuracy of the
proposed methods are examined with the support of four examples, and the outcomes show how
effective, precise, and easy the methods are to use. The graphical interpretation of different values of
the fractional-order € on the solution profile is displayed in Figures 2—6 and in Figures 9-12, which
demonstrate some interesting dynamics of the model. The results obtained by these methods are in a
series form, and close agreement with those solutions is given by [44,45]. It is noted that there is a
high rate of convergence between the series solutions obtained towards the solutions of integer order.
Furthermore, the suggested methods are simple to use, and they may be used to solve additional
fractional PDE:s that arise in applied research.
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