Research article Special Issues

Global solutions to a nonlinear Fokker-Planck equation

  • Received: 22 October 2022 Revised: 21 January 2023 Accepted: 17 March 2023 Published: 05 May 2023
  • MSC : 35A01, 35Q84

  • In this paper, we construct global solutions to the Cauchy problem on a nonlinear Fokker-Planck equation near Maxwellian with small-amplitude initial data in Sobolev space $ H^2_{x}L^2_v $ by a refined nonlinear energy method. Compared with the results of Liao et al. (Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations, J. Stat. Phys., 173 (2018), 222–241.), the regularity assumption on the initial data is much weaker.

    Citation: Xingang Zhang, Zhe Liu, Ling Ding, Bo Tang. Global solutions to a nonlinear Fokker-Planck equation[J]. AIMS Mathematics, 2023, 8(7): 16115-16126. doi: 10.3934/math.2023822

    Related Papers:

  • In this paper, we construct global solutions to the Cauchy problem on a nonlinear Fokker-Planck equation near Maxwellian with small-amplitude initial data in Sobolev space $ H^2_{x}L^2_v $ by a refined nonlinear energy method. Compared with the results of Liao et al. (Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations, J. Stat. Phys., 173 (2018), 222–241.), the regularity assumption on the initial data is much weaker.



    加载中


    [1] R. A. Adams, J. J. Fournier, Sobolev spaces, Elsevier, 2003.
    [2] C. Cercignani, The Boltzmann equation, In: The Boltzmann equation and its applications, New York: Springer, 1988. https://doi.org/10.1007/978-1-4612-1039-9_2
    [3] J. A. Carrillo, R. J. Duan, A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Mod., 4 (2010), 227–258. http://dx.doi.org/10.3934/krm.2011.4.227 doi: 10.3934/krm.2011.4.227
    [4] R. J. DiPerna, P. L. Lions, On the Fokker-Planck-Boltzmann equation, Commun. Math. Phys., 120 (1988), 1–23. http://dx.doi.org/10.1007/BF01223204 doi: 10.1007/BF01223204
    [5] R. J. Duan, On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in $L^2_\xi H^N_x$. J. Differ. Equ., 244 (2008), 3204–3234. http://dx.doi.org/10.1016/j.jde.2007.11.006 doi: 10.1016/j.jde.2007.11.006
    [6] R. J. Duan, S. Q. Liu, Time-periodic solutions of the Vlasov-Poisson-Fokker-Planck system, Acta Math. Sci., 35 (2015), 876–886. http://dx.doi.org/10.1016/S0252-9602(15)30026-6 doi: 10.1016/S0252-9602(15)30026-6
    [7] R. J. Duan, M. Fornasier, G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95–145. http://dx.doi.org/10.1007/s00220-010-1110-z doi: 10.1007/s00220-010-1110-z
    [8] F. Golse, A. F. Vasseur, Hölder regularity for hypoelliptic kinetic equations with rough diffusion coefficients, 2015, arXiv: 1506.01908.
    [9] Y. Guo, The Boltzmann equation in the whole space, Indiana U. Math. J., 53 (2004), 1081–1094.
    [10] H. J. Hwang, J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Cont. Dyn. B, 18 (2013), 681–691. http://dx.doi.org/10.3934/dcdsb.2013.18.681 doi: 10.3934/dcdsb.2013.18.681
    [11] C. Imbert, C. Mouhot, Hölder continuity of solutions to hypoelliptic equations with bounded measurable coefficients, 2015, arXiv: 1505.04608.
    [12] H. L. Li, A. Matsumura, Behaviour of the Fokker-Planck-Boltzmann equation near a Maxwellian, Arch. Rational. Mech. Anal., 189 (2008), 1–44. http://dx.doi.org/10.1007/s00205-007-0057-5 doi: 10.1007/s00205-007-0057-5
    [13] J. Liao, Q. R. Wang, X. F. Yang, Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations, J. Stat. Phys., 173 (2018), 222–241. http://dx.doi.org/10.1007/s10955-018-2129-3 doi: 10.1007/s10955-018-2129-3
    [14] C. Villani, A review of mathematical topics in collisional kinetic theory, In: Handbook of mathematical fluid dynamics, 2002.
    [15] C. Villani, Hypocoercivity, Mem. Am. Math. Soc., 202 (2009), 950. http://dx.doi.org/10.1090/S0065-9266-09-00567-5 doi: 10.1090/S0065-9266-09-00567-5
    [16] H. Wang, Global existence and decay of solutions for soft potentials to the Fokker-Planck-Boltzmann equation without cut-off, J. Math. Anal. Appl., 486 (2020), 123947. http://dx.doi.org/10.1016/j.jmaa.2020.123947 doi: 10.1016/j.jmaa.2020.123947
    [17] X. L. Wang, H. P. Shi, Decay and stability of solutions to the Fokker-Planck-Boltzmann equation in $R^3$, Appl. Anal., 97 (2018), 1933–1959. http://dx.doi.org/10.1080/00036811.2017.1344225 doi: 10.1080/00036811.2017.1344225
    [18] X. L. Wang, Global existence and long-time behavior of solutions to the Vlasov-Poisson-Fokker-Planck system, Acta Appl. Math., 170 (2020), 853–881. http://dx.doi.org/10.1007/s10440-020-00361-7 doi: 10.1007/s10440-020-00361-7
    [19] T. Yang, H. J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system, SIAM J. Math. Anal., 42 (2010), 459–488. https://doi.org/10.1137/090755796 doi: 10.1137/090755796
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1160) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog