The approximate controllability of a class of fractional stochastic evolution equations (FSEEs) are discussed in this study utilizes the Hilbert space by using Hilfer derivative. For different approaches, we remove the Lipschitz or compactness conditions and merely have to assume a weak growth requirement. The fixed point theorem, the diagonal argument, and approximation methods serve as the foundation for the study. The abstract theory is demonstrated using an example. A conclusion is given at the end.
Citation: Abdelkader Moumen, Ramsha Shafqat, Ammar Alsinai, Hamid Boulares, Murat Cancan, Mdi Begum Jeelani. Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability[J]. AIMS Mathematics, 2023, 8(7): 16094-16114. doi: 10.3934/math.2023821
The approximate controllability of a class of fractional stochastic evolution equations (FSEEs) are discussed in this study utilizes the Hilbert space by using Hilfer derivative. For different approaches, we remove the Lipschitz or compactness conditions and merely have to assume a weak growth requirement. The fixed point theorem, the diagonal argument, and approximation methods serve as the foundation for the study. The abstract theory is demonstrated using an example. A conclusion is given at the end.
[1] | N. I. Mahmudov, S. Zorlu, On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comput. Appl. Math., 259 (2014), 194–204. https://doi.org/10.1016/j.cam.2013.06.015 doi: 10.1016/j.cam.2013.06.015 |
[2] | F. D. Ge, H. C. Zhou, C. H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput., 275 (2016), 107–120. https://doi.org/10.1016/j.amc.2015.11.056 doi: 10.1016/j.amc.2015.11.056 |
[3] | P. Chen, X. Zhang, Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Sys., 26 (2020), 1–16. https://doi.org/10.1007/s10883-018-9423-x doi: 10.1007/s10883-018-9423-x |
[4] | P. Rathinasamy, M. Rangasamy, N. Rajendran, Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions, Evol. Equ. Control The., 6 (2017), 599–613. https://doi.org/10.3934/eect.2017030 doi: 10.3934/eect.2017030 |
[5] | H. Yang, R. P. Agarwal, Y. Liang, Controllability for a class of integro-differential evolution equations involving non-local initial conditions, Int. J. Control, 90 (2017), 2567–2574. https://doi.org/10.1080/00207179.2016.1260161 doi: 10.1080/00207179.2016.1260161 |
[6] | R. A. El-Nabulsi, W. Anukool, Vlasov equation, waves and dispersion relations in fractal dimensions: Landau damping and the toroidal ion temperature gradient instability problem, Wave. Random Complex, 2022 (2022), 254623200. https://doi.org/10.1080/17455030.2022.2155321 doi: 10.1080/17455030.2022.2155321 |
[7] | S. Montangero, E. Rico, P. Silvi, Loop-free tensor networks for high-energy physics, Philos. T. R. Soc. A, 380 (2022), 20210065. https://doi.org/10.1098/rsta.2021.0065 doi: 10.1098/rsta.2021.0065 |
[8] | R. A. El-Nabulsi, W. Anukool, A mapping from Schrodinger equation to Navier–Stokes equations through the product-like fractal geometry, fractal time derivative operator and variable thermal conductivity, Acta Mech., 232 (2021), 5031–5039. https://doi.org/10.1007/s00707-021-03090-6 doi: 10.1007/s00707-021-03090-6 |
[9] | R. A. El-Nabulsi, W. Anukool, A family of nonlinear Schrodinger equations and their solitons solutions, Chaos Soliton. Fract., 166 (2023), 112907. https://doi.org/10.1016/j.chaos.2022.112907 doi: 10.1016/j.chaos.2022.112907 |
[10] | R. A. El-Nabulsi, W. Anukool, Analysis of quantum effects in metal oxide semiconductor field effect transistor in fractal dimensions, MRS Communications, 2023. https://doi.org/10.1557/s43579-023-00334-5 doi: 10.1557/s43579-023-00334-5 |
[11] | M. Alfaro, T. Giletti, Y. J. Kim, G. Peltier, H. Seo, On the modelling of spatially heterogeneous nonlocal diffusion: deciding factors and preferential position of individuals, J. Math. Biol., 84 (2022), 38. https://doi.org/10.1007/s00285-022-01738-y doi: 10.1007/s00285-022-01738-y |
[12] | A. El-Sayed, Fractional-order diffusion-wave equation, Int. J. Theor. Phys., 35 (1996), 311–322. https://doi.org/10.1007/BF02083817 doi: 10.1007/BF02083817 |
[13] | S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equ., 199 (2004), 211–255. https://doi.org/10.1016/j.jde.2003.12.002 doi: 10.1016/j.jde.2003.12.002 |
[14] | R. P. Agarwal, B. Ahmad, A. Alsaedi, N. Shahzad, Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, Adv. Differ. Equ., 2012 (2012), 74. https://doi.org/10.1186/1687-1847-2012-74 doi: 10.1186/1687-1847-2012-74 |
[15] | M. Belmekki, M. Benchohra, Existence results for fractional order semilinear functional differential equations with nondense domain, Nonlinear Anal. Theor., 72 (2010), 925–932. https://doi.org/10.1016/j.na.2009.07.034 doi: 10.1016/j.na.2009.07.034 |
[16] | X. B. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2$, Comput. Math. Appl., 64 (2012), 2100–2110. https://doi.org/10.1016/j.camwa.2012.04.006 doi: 10.1016/j.camwa.2012.04.006 |
[17] | Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real, 11 (2010), 4465–4475. https://doi.org/10.1016/j.nonrwa.2010.05.029 doi: 10.1016/j.nonrwa.2010.05.029 |
[18] | Y. Zhou, L. Zhang, X. H. Shen, Existence of mild solutions for fractional evolution equations, J. Integral Equ. Appl., 25 (2013), 557–586. https://doi.org/10.1216/JIE-2013-25-4-557 doi: 10.1216/JIE-2013-25-4-557 |
[19] | R. N. Wang, D. H. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equ., 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048 |
[20] | R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000. https://doi.org/10.1142/9789812817747 |
[21] | K. M. Furati, M. D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009 |
[22] | T. Sandev, R. Metzler, Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A Math. Theor., 44 (2011), 255203. https://doi.org/10.1088/1751-8113/44/25/255203 doi: 10.1088/1751-8113/44/25/255203 |
[23] | K. Abuasbeh, A. Kanwal, R. Shafqat, B. Taufeeq, M. A. Almulla, M. Awadalla, A method for solving time-fractional initial boundary value problems of variable order, Symmetry, 15 (2023), 519. https://doi.org/10.3390/sym15020519 doi: 10.3390/sym15020519 |
[24] | K. Abuasbeh, R. Shafqat, Fractional Brownian motion for a system of fuzzy fractional stochastic differential equation, J. Math., 2022 (2022), 3559035. https://doi.org/10.1155/2022/3559035 doi: 10.1155/2022/3559035 |
[25] | K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of the mathematical modelling of COVID-19 by using mild solution with delay caputo operator, Symmetry, 15 (2023), 286. https://doi.org/10.3390/sym15020286 doi: 10.3390/sym15020286 |
[26] | K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of controllability of fractional functional random integroevolution equations with delay, Symmetry, 15 (2023), 290. https://doi.org/10.3390/sym15020290 doi: 10.3390/sym15020290 |
[27] | K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Oscillatory behavior of solution for fractional order fuzzy neutral predator-prey system, AIMS Math., 7 (2022), 20383–20400. https://doi.org/10.3934/math.20221117 doi: 10.3934/math.20221117 |
[28] | A. Moumen, H. Boulares, B. Meftah, R. Shafqat, T. Alraqad, E. E. Ali, et al., Multiplicatively Simpson type inequalities via fractional integral, Symmetry, 15 (2023), 460. https://doi.org/10.3390/sym15020460 doi: 10.3390/sym15020460 |
[29] | A. Moumen, R. Shafqat, Z. Hammouch, A. U. K. Niazi, M. B. Jeelani, Stability results for fractional integral pantograph differential equations involving two Caputo operators, AIMS Math., 3 (2023), 6009–6025. https://doi.org/10.3934/math.2023303 doi: 10.3934/math.2023303 |
[30] | H. Boulares, A. Benchaabane, N. Pakkaranang, R. Shafqat, B. Panyanak, Qualitative properties of positive solutions of a kind for fractional pantograph problems using technique fixed point theory, Fractal Fract., 6 (2022), 593. https://doi.org/10.3390/fractalfract6100593 doi: 10.3390/fractalfract6100593 |
[31] | A. A. A. Ghafli, R. Shafqat, A. U. K. Niazi, K. Abuasbeh, M. Awadalla, Topological structure of solution sets of fractional control delay problem, Fractal Fract., 7 (2023), 59. https://doi.org/10.3390/fractalfract7010059 doi: 10.3390/fractalfract7010059 |
[32] | R. Shafqat, A. U. K. Niazi, M. Yavuz, M. B. Jeelani, K. Saleem, Mild solution for the time-fractional Navier–Stokes equation incorporating MHD effects, Fractal Fract., 6 (2022), 580. https://doi.org/10.3390/fractalfract6100580 doi: 10.3390/fractalfract6100580 |
[33] | J. Liang, J. Liu, T. J. Xiao, Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal. Theor., 57 (2004), 18189. https://doi.org/10.1016/j.na.2004.02.007 doi: 10.1016/j.na.2004.02.007 |
[34] | X. Zhang, P. Chen, A. Abdelmonem, Y. Li, Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90 (2018), 1005–1022. https://doi.org/10.1080/17442508.2018.1466885 doi: 10.1080/17442508.2018.1466885 |
[35] | X. Zhang, P. Chen, A. Abdelmonem, Y. Li, Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69 (2019), 111–124. https://doi.org/10.1515/ms-2017-0207 doi: 10.1515/ms-2017-0207 |
[36] | P. Chen, Y. Li, X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Cont. Dyn. B, 26 (2021), 1531–1547. https://doi.org/10.3934/dcdsb.2020171 doi: 10.3934/dcdsb.2020171 |
[37] | P. Balasubramaniam, P. Tamilalagan, The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators, J. Optim. Theory Appl, 174 (2017), 139–155. https://doi.org/10.1007/s10957-016-0865-6 doi: 10.1007/s10957-016-0865-6 |
[38] | T. Diagana, G. M. Mophou, G. M. N'Guérékata, On the existence of mild solutions to some semilinear fractional integro-differential equations, Electron. J. Qual. Theo., 58 (2010), 1–17. |
[39] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[40] | A. Debbouche, J. J. Nieto, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., 245 (2014), 74–85. https://doi.org/10.1016/j.amc.2014.07.073 doi: 10.1016/j.amc.2014.07.073 |
[41] | M. Yang, Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 20 (2017), 679–705. https://doi.org/10.1515/fca-2017-0036 doi: 10.1515/fca-2017-0036 |
[42] | P. Chen, X. Zhang, Y. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pur. Appl. Anal., 17 (2018), 1975–1992. https://doi.org/10.3934/cpaa.2018094 doi: 10.3934/cpaa.2018094 |
[43] | N. Sukavanam, S. Kumar, Approximate controllability of fractional order semilinear delay systems, J. Optim. Theory Appl., 151 (2011), 373–384. https://doi.org/10.1007/s10957-011-9905-4 doi: 10.1007/s10957-011-9905-4 |