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Abstract: High-frequency financial data are becoming increasingly available and need to be analyzed
under the current circumstances for the market prices of stocks, currencies, risk analysis, portfolio
management and other financial instruments. An emblematic challenge in econometrics is estimating
the integrated volatility for financial prices, i.e., the quadratic variation of log prices. Following this
point, in this paper, we study the estimation of integrated self-weighted volatility, i.e., the generalized
style of integrated volatility, by using intraday high-frequency data with noise. In order to reduce
the effect of noise, the “pre-averaging” technique is used. Both the law of large numbers and the
central limit theorem of the estimator of integrated self-weighted volatility are established in this paper.
Meanwhile, a studentized version is also given in order to make some statistical inferences. At the end
of this article, the simulation results obtained to evaluate the accuracy of approximating the sampling
distributions of the estimator are displayed.
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1. Introduction

1.1. Related studies

With the rapid development of economics, finance and electronic technology, high-frequency
financial data are becoming increasingly available and need to be analyzed. In the USA, one-second
records are available from the Trade and Quote (TAQ) database, whereas in China, the tick-by-tick
stock transactions can be obtained from the private databases of some fund management companies.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231590


31071

Such data are widely used and gamer much attention, particularly for applications related to the
market prices of stocks, currencies, risk analysis, portfolio management and other financial
instruments [1–4]. However, it is still a big challenge for data analysts to use such data in finance.
Most of the studies on using high-frequency data, by far, have focused on the estimation of volatility,
which is a key aspect of risk analysis, portfolio management and so on [5–8].

Theoretically, if the latent log price X = (Xt) follows an Itô process

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdWs, (1.1)

where b and σ are locally bounded optional processes and W is a standard Brownian motion. Then,
the integrated volatility is the quadratic variation of X, that is, < X, X >t=

∫ t

0
σ2

sds.
The most commonly used estimator of the integrated volatility is the realized volatility, which is

based on discrete-time observations [1, 9]. Realized volatility uses intraday high-frequency data to
directly measure the volatility in a general semi-martingale model setting. On the one hand, a few
works in the literature claim that the diffusion process is unwise. These scholars think that the release
of significant “news” in an efficient market will induce discontinuities or jumps in the price process.
In this case, the realized volatility will not work as the jumps will be included in the limit. To deal
with the jumps, two widely used methods are available, i.e., the bipower method [10] and the
threshold estimator [11, 12]. On the other hand, when it comes to the practical side, observed
high-frequency financial data are often contaminated by market microstructure noise. Microstructure
noise is induced by various frictions in the trading process, such as the asymmetric information of
traders, the discreteness of price change, bid-ask spreads and/or rounding errors. Empirical evidence
has shown a visible noise accumulation effect at high frequencies, and there has been a number of
studies on estimating quantities of interest with prices observed to have microstructure noise. These
include the following: the two-time scale method [13, 14]; the multi-scale method [15]; the kernel
method [16]; the pre-averaging method [17]; the quasi-maximum likelihood method [18, 19];
auto-covariance and auto-correlation cases including irregular observation times [20]; dependent
noise with irregular tick observation times [21]; multiple transaction cases with noise [22–24]. Based
on the likelihood of an MA (Moving Average) model, Da and Xiu [25] proposed a simple volatility
estimator that assumes that the observed transaction price follows a continuous-time contaminated Itô
semi-martingale.

Owing to the rapid development of computer science technology, estimating the integrated volatility
matrix of a large number of assets is a challenging problem. The ARVM estimator is proposed based
on the use of contaminated high-frequency data under the sparse integrated volatility matrix [26]. The
convergence rate of a large volatility matrix estimator using contaminated high-frequency data is given
separately in [27] and [28]. By applying principal component analysis to the spatial Kendall’s tau
matrix instead of the sample covariance matrix, a high-dimensional factor analysis without moment
constraints is considered [29]. Since the integrated volatility matrix often has entries with a wide range
of variability, an adaptive thresholding estimator and the convergence rate of the estimator are shown
under sparse conditions [30]. A non-parametric estimator for a single asset is proposed in [31], and a
threshold estimator for multiple assets is considered in [32] for integrated volatility in the presence of
both jumps and microstructure noise. Regarding the integrated volatility matrix of a large number of
assets, a thresholding estimator has been constructed in the presence of both jumps and microstructure
noise, as presented in [33].
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Here, based on the observed intraday high-frequency data with microstructure noise, we perform
statistical inference on the integrated self-weighted volatility, given as

IS V =
∫ 1

0
f (Xt)σ2

t dt, (1.2)

where Xt is an Itô process, f : R2 → R is some real Lipschitz function and σ2
t is the spot volatility of X.

The study of integrated self-weighted volatility IS V is important for both pricing and hedging purposes
in financial econometrics. In the current paper, we focus on the latent price asset as a continuous Itô
process; the estimation of the jump-diffusion process will be dealt with in future work.

1.2. Contributions and organization

The integrated self-weighted volatility IS V =
∫ 1

0
f (Xt)σ2

t dt is a generalization of the integrated

volatility IV =
∫ 1

0
σ2

t dt. The purpose of introducing a general function f is as follows. Theoretically
or practically, to make the processes of setting the interest rate or financial asset pricing more realistic
or extend the range of the price from (0,∞) to the whole real line, we transform the interest rate or
price process and then analyze the transformed process. Specifically, after taking the logarithm, the
price process can yield negative values [34,35]. For example, the convergence rates of a large volatility
matrix estimator in the presence of jumps, microstructure noise and asynchronization are given in [33].
Leveraging a variety of factor models, a pre-averaging-based large covariance matrix estimator using
high-frequency transaction prices has been constructed [36]. Suppose that one is interested in the
integrated volatility of the transformed price processes of Xt. On one hand, the microstructure noise
associated with the log price process becomes different when one uses the observed log price and the
latent log price, i.e., log

(
X(tn

i ) + ε(tn
i )
)
− log

(
X(tn

i )
)
. Unfortunately, the microstructure noise associated

with the log price process is not centered at zero conditional on X. But this is a necessary condition for
consistency of the estimator of integrated volatility for the log price process in many studies [37–39].
Note that the integrated volatility of log Xt is of the form

∫ 1

0
f (Xt)σ2

t dt. On the other hand, the self-
weighted estimator can potentially balance the correlation between trading price and volume. For
these reasons, we chose to estimate IS V with f (x) = 1/x2. So developing inference schemes for IS V
provides a more flexible tool.

The rest of the paper is structured as follows. In Section 2, some assumptions of models are given,
and the main results, i.e., the law of large numbers and central limit theory, are presented in Section 3.
All of the proofs of the theorems are shown in Section 4. Section 5 provides several experimental
evaluations and an application to demonstrate the effectiveness of the proposed method. Some
conclusions and future research are proposed in Section 6.

2. Assumptions of models

Let X = (Xt) be the true log price at time t, and let it satisfy (1.1). To state our main results, we use
the following assumptions.

Assumption 1. Processes b and σ are adapted to {Ft}, i.e., the natural filtration generated by X;
moreover, process b is locally bounded; processσ is a càdlàg; for any t > s > 0, Wt−Ws is independent
of Fs.
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Assumption 2. Assume that for some constant L,κ > 0 and α ∈ (0, 1], f (x) satisfies that

| f (x) − f (y)| ≤ L|x − y|α(1 + |x|2κ + |y|2κ) (2.1)

for any x, y ∈ R.

However, when it comes to the practical side, observed high-frequency financial data are often
contaminated by market microstructure noise. We cannot directly observe Xt; instead, we observe Yt,
where

Yt = Xt + εt. (2.2)

Let us make the following assumptions about ε.

Assumption 3. The microstructure noise ε is an i.i.d. process given X with

E(εtni |Y) = 0 (2.3)
sup
tni ≤1

E(|εtni |
p|Y) < Lp < ∞, (2.4)

for any p > 0.

To establish the central limit theorem, a standard structural assumption on the volatility process σ
is needed.

Assumption 4. The volatility functions {σt, t ≥ 0} satisfy the equation

σt = σ0 +

∫ t

0
b̃sds +

∫ t

0
σ̃sdW̃s, (2.5)

where b̃ and σ̃ are adapted càdlàg processes with b̃ being predictable and locally bounded, and W̃ is
a standard Brownian motion.

3. Results

Before displaying the main results, we briefly introduce the estimator of IS V . Let us divide the
interval [0, 1] into m equal sub-intervals, set K = ⌊ n

m⌋ and denote

τk
r =

r
m
+

k − 1
n
, r = 0, 1, · · · ,m − 1; k = 1, · · · ,K. (3.1)

In order to eliminate the effect of microstructure noise, we select l such that l → ∞ and l
n → 0 as

n→ ∞. For each i ≥ l, we denote

Y tni =
1
l

l∑
j=1

Ytni− j
and Xtni =

1
l

l∑
j=1

Xtni− j
, (3.2)

and then use the following ˆIS Vn to estimate IS V:

ˆIS Vn =
1
K

K∑
k=1

m−1∑
r=1

(Yτkr − Yτkr−1
)2 f (Yτkr−1

) −
2m
2n

m∑
r=1

K∑
k=1

(Yτkr − Yτk−1
r

)2 f (Yτk−1
r

), (3.3)
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where η̂2 = 1
2n

∑m
r=1
∑K

k=1(Yτkr − Yτk−1
r

)2 is the variance estimator of microstructure noise which will be
used to reduce the impact of microstructure noise on integrated self-weighted volatility and yield a
better estimator.

Theorem 1. Under Assumptions 1–3, and given

1
mα/2

+
1

lα/2
+

lmax( α2 ,
1−α

2 )

nα/2
→ 0, as n→ ∞, (3.4)

the sequence of random variables ( 1
mα/2 +

1
lα/2 +

lmax( α2 ,
1−α

2 )

nα/2 )−1( ˆIS Vn − IS V) is tight.

To deduce the central limit theorem, the concept of stable convergence is also needed. Let us state
it briefly. A sequence of random variables Xn converges stably in law to a random variable X defined

on the appropriate extension of the original probability space, written as Xn
S
→ X, if and only if for any

set A ∈ F1 and real number x, we have

lim
n→∞

P(Xn ≤ x, A) = P(X ≤ x, A). (3.5)

Hence, stable convergence is slightly stronger than convergence in law.

Theorem 2. Assume that Assumptions 1–4 hold, and
√

m
lα/2 → 0 and

√
mlmax{ α2 ,

1−α
2 }

nα/2 → 0. Then, we have

√
m( ˆIS Vn − IS V)

S
→

√
7
6

∫ 1

0
f (Xt)σ2

t dBt, (3.6)

where B is a standard Brownian motion defined on an extension of the original space, and it is
independent of F .

Remark 1. In Theorem 1, it is worthy of notice that the upper bound is no more than 1
mα/2 , where

α ∈ (0, 1]. However, in Theorem 2, the upper bound is no more than 1
m1/2 , which is faster convergence

rate than 1
mα/2 . The difference between Theorems 1 and 2 is derived from the perspectives of two aspects:

(1). The estimator we studied in Theorem 2 is derived from the “pre-averaging” technique which
essentially tries to “clean” the contaminated data by smoothing first and then applying the usual
statistical procedures, while the estimator of Theorem 1 is derived from the two-time-scale
technique which applies the usual statistical procedure to the raw contaminated data first, and
then corrects the bias caused by the microstructure noise.

(2). An extra bias appears due to the presence of f in the derivation of our asymptotic normality. This
is because we need to open an appropriate window with length l to the left of τk

r−1 in order to
smooth away the noise in the contaminated data.

To perform statistical inference for the suggested estimator, the asymptotic conditional variance∫ 1

0
f 2(Xt)σ4

t dt needs to be estimated. Using Theorem 1, we can give an estimator for the asymptotic
conditional variance:

Γ̂n =
m
K

K∑
k=1

m−1∑
r=1

(Yτkr − Yτkr−1
)4 f 2(Yτkr−1

)→ 3
∫ 1

0
f 2(Xs)σ4

sds +

+[2Eε4 + 6(Eε2)2]m2
∫ 1

0
f 2(Xs)ds + 12m(Eε2)

∫ 1

0
f 2(Xs)σ2

sds. (3.7)
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Remark 2. The authors of [13] have shown that

ˆEε2 =
1

2n

m∑
r=1

K∑
k=1

(Yτkr − Yτk−1
r

)2, (3.8)

ˆEε4 =
1

2n

m∑
r=1

K∑
k=1

(Yτkr − Yτk−1
r

)4 − 3( ˆEε2)2. (3.9)

Thus, we obtain the consistent estimators as follows:

Û1 =
1

mK

K∑
k=1

m−1∑
r=1

f 2(Yτkr−1
)

P
→

∫ 1

0
f 2(Xs)ds, (3.10)

Û2 =
1
K

K∑
k=1

m−1∑
r=1

(Yτkr − Yτkr−1
)2 f 2(Yτkr−1

) −
2m
2n

m∑
r=1

K∑
k=1

(Yτkr − Yτk−1
r

)2 f 2(Yτk−1
r

)

P
→

∫ 1

0
f 2(Xs)σ2

sds. (3.11)

From these equations, and by using a procedure similar to those for Theorems 1 and 2, we obtain a
consistent estimator of

∫ 1

0
f 2(Xs)σ4

sds:

Ĉn =:
1
3
Γ̂n −

m2

3
[2 ˆEε4 + 6( ˆEε2)2]Û1 − 4m ˆEε2Û2

P
→

∫ 1

0
f 2(Xs)σ4

sds. (3.12)

Consequently, a studentized version of the central limit theorem is as follows.

Theorem 3. Assume that the conditions in Theorem 2 are satisfied; then, we have
√

m( ˆIS Vn − IS V)√
7
6Ĉn

S
→ N(0, 1), (3.13)

where N(0, 1) is a standard normal variable independent of F .

4. Proofs of theorems

Because of the local boundedness of b and σ, we can replace the local boundedness assumptions
with boundedness through a standard localization course. As a consequence, process Y has uniformly
bounded moments up to any powers on the interval [0,1], i.e., for some constant C > 0,

max{|bs|, |σs|, |Xs|} ≤ C. (4.1)

Lemma 1. For any β > 0, we have

E(|Yτkr−1
− Xτkr−1

|2β) ≤ C
1
lβ
, (4.2)
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E(|Xτkr−1
− Xτkr−1

|2β) ≤ C
lmax(β,1−β)

nβ
, (4.3)

E(|Yτkr−1
|β + |Xτkr−1

|β + |Xτkr−1
|β) ≤ C, (4.4)

E(|Xτkr − Xτkr−1
|2β) ≤ C

1
mβ
. (4.5)

Proof. (1) By the definitions of Yτkr−1
and Xτkr−1

, we have, for some given r,

E|Yτkr−1
− Xτkr−1

|2β = E|
1
l

l∑
j=1

(Yτk+ j
r−1
− Xτk+ j

r−1
)|2β

= E|
1
l

l∑
j=1

ετk+ j
r−1
|2β ≤ C

1
l2β lβ−1

l∑
j=1

E|ετk+ j
r−1
|2β

≤ C
1
lβ
.

The last inequality follows from Assumption 3.
(2) We write

E(|Xτkr−1
− Xτkr−1

|2β) = E|
1
l

l∑
j=1

(Xτk+ j
r−1
− Xτkr−1

)|2β

≤ C
lmax(β,1−β)

nβ
.

(3) Following from Burkholder-David-Gundy’s inequality and the boundedness of b and σ, we can
get (4.4) and (4.5). □

Lemma 2. For any β > 0, we have

E| f (Yτkr−1
) − f (Xτkr−1

)|2β ≤ C
1

lαβ
, (4.6)

E| f (Xτkr−1
) − f (Xτkr−1

)|2β ≤ C
lmax(αβ,1−αβ)

nαβ
. (4.7)

Proof. Using the Lipschitz property of f , one has

E| f (Yτkr−1
) − f (Xτkr−1

)|2β

≤ E[|Yτkr−1
− Xτkr−1

|α(1 + |Yτkr−1
|2κ + |Xτkr−1

|2κ)]2β

≤ C
1

lαβ
.

Similar to Lemma 1, we can also get

E| f (Xτkr−1
) − f (Xτkr−1

)|2β ≤ C
lmax(αβ,1−αβ)

nαβ
.
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Denote that

S 1 =
1
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)2 f (Xτkr−1

) −
∫ 1

0
σ2

s f (Xs)ds,

S 2 =
1
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)2( f (Yτkr−1

) − f (Xτkr−1
)),

S 3 =
1
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)2( f (Xτkr−1

) − f (Xτkr−1
)),

S 4 =
1
K

K∑
k=1

m−1∑
r=1

(ετkr − ετkr−1
)2 f (Yτkr−1

) −
m
n

m−1∑
r=1

K∑
k=1

(Yτk+1
r
− Yτkr )

2 f (Yτkr ),

S 5 =
2
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)(ετkr − ετkr−1

) f (Yτkr−1
).

□

Lemma 3.

(1) E|S 1| ≤ C
1

mα/2
. (4.8)

(2) E|S 2| ≤ C
1

lα/2
. (4.9)

(3) E|S 3| ≤ C(
lmax (α,1−α)

nα
)1/2. (4.10)

(4) E|S 4| ≤ C
m
n
. (4.11)

(5) E|S 5| ≤ C
1
√

K
. (4.12)

Proof. (1) For each k = 1, · · · ,K, we obtain

|

m−1∑
r=1

(Xτkr − Xτkr−1
)2 f (Xτkr−1

) −
∫ 1

0
σ2

s f (Xs)ds|

= |

m−1∑
r=1

[(Xτkr − Xτkr−1
)2 f (Xτkr−1

) −
∫ τkr

τkr−1

σ2
s f (Xs)ds]|.

Thus, by Itô isometry, we have

E|S 1| ≤ E|
1
K

K∑
k=1

m−1∑
r=1

∫ τkr

τkr−1

(σ2
s f (Xτkr−1

) − σ2
s f (Xs))ds| +C

1
m
,

where C 1
m is derived from the drift term.

Using the Lipschitz property of f and Hölder’s inequality, we have

E|S 1| ≤
C

mα/2
.
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(2) By applying Hölder’s inequality, we have

E|S 2| ≤
1
K

K∑
k=1

m−1∑
r=1

(E|Xτkr − Xτkr−1
|4)1/2(E| f (Yτkr−1

) − f (Xτkr−1
)|2)1/2

≤ C
1
K

K∑
k=1

m−1∑
r=1

1
m

(
1
lα

)1/2

≤ C
1

lα/2
.

(3) By applying Hölder’s inequality, we have

E|S 3| ≤
1
K

K∑
k=1

m−1∑
r=1

(E|Xτkr − Xτkr−1
|4)1/2(E| f (Xτkr−1

) − f (Xτkr−1
)|2)1/2

≤ C
1
K

K∑
k=1

m−1∑
r=1

1
m

(
lmax (α,1−α)

nα
)1/2

≤ C(
lmax (α,1−α)

nα
)1/2.

(4) By [13], it has been proved that 1
n

∑m−1
r=1
∑K

k=1(Yτk+1
r
− Yτkr )

2 is the variance estimator of
microstructure noise. So we use m

n

∑m−1
r=1
∑K

k=1(Yτk+1
r
− Yτkr )

2 f (Yτkr ) to reduce the impact of
microstructure noise on integrated self-weighted volatility; this yields (4.11).

(5) Since ε(·) is mutually independent given σ(X), we have

E(S 5)2 =
4

K2

K∑
k=1

m−1∑
r=1

E[(Xτkr − Xτkr−1
)(ετkr − ετkr−1

) f (Yτkr−1
)]2.

It follows from Hölder’s inequality that

E(S 5)2 ≤
C
K2

K∑
k=1

m−1∑
r=1

[E(Xτkr − Xτkr−1
)8]1/4E[(ετkr − ετkr−1

)8]1/4[E f (Yτkr−1
)4]1/2.

Moreover, because f satisfies the α−Lipschitz Assumption 2, there exists a finite constant C such that
| f (x)| ≤ C(1 + |x|2κ+α) for all x ∈ R. This fact together with the uniform boundedness of any moments
of random variables X(t) on [0, 1] yields

sup
t∈[0,1]

E( f (X(t)))4 ≤ C < ∞.

Then, E(S 5)2 ≤ C 1
K . Hence,

E|S 5| ≤ C
1
√

K
.

□
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Proof of Theorem 1. We write

ˆIS Vn − IS V =
1
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)2 f (Xτkr−1

) −
∫ 1

0
σ2

s f (Xs)ds

+
1
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)2( f (Yτkr−1

) − f (Xτkr−1
))

+
1
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)2( f (Xτkr−1

) − f (Xτkr−1
))

+
1
K

K∑
k=1

m−1∑
r=1

(ετkr − ετkr−1
)2 f (Yτkr−1

) −
m
n

m−1∑
r=1

K∑
k=1

(Yτk+1
r
− Yτkr )

2 f (Yτkr )

+
2
K

K∑
k=1

m−1∑
r=1

(Xτkr − Xτkr−1
)(ετkr − ετkr−1

) f (Yτkr−1
)

= S 1 + S 2 + S 3 + S 4 + S 5. (4.13)

From Lemma 3, we can get

E| ˆIS Vn − IS V | ≤ C(
1

mα/2
+

1
lα/2
+

lmax(α/2,(1−α)/2)

nα/2
+

m
n
+

1
K1/2 ).

Because m
n = o( 1

√
K

) and 1
√

K
= o( 1

Kα/2 ), we always have that

E| ˆIS Vn − IS V | ≤ C(
1

mα/2
+

1
lα/2
+

lmax( α2 ,
1−α

2 )

nα/2
), (4.14)

which finishes the proof of Theorem 1. □
Next, let us denote that

L1 =

[m/2]∑
r=1

E[U2r|σ(Xτ12r−1
)] +

[m/2]∑
r=1

E[U2r+1|σ(Xτ12r
)],

L2 =

[m/2]∑
r=1

(U2r − E[U2r|σ(Xτ12r−1
)]) +

[m/2]∑
r=1

(U2r+1 − E[U2r+1|σ(Xτ12r
)]),

where U2r =
1
K

∑K
k=1(Xτk2r

− Xτk2r−1
)2 f (Xτ12r−1

) and U2r+1 =
1
K

∑K
k=1(Xτk2r+1

− Xτk2r
)2 f (Xτ12r

). □

Proposition 1.

|L1 −

∫ 1

0
f (Xs)σ)s2ds| ≤ C/mβ, β > 1/2. (4.15)

Proof. Let σ(Xτ12r+1
) and σ(Xτ12r+2

) denote the natural filtration respectively generated by Xτ12r+1
and Xτ12r+2

;
then, U2r is σ(Xτ12r+1

)-adapted and U2r+1 is σ(Xτ12r+2
)-adapted. By the product formula and the definition

of σ, for any given s < t, we have

|E(σ2
t − σ

2
s |σ(Xs))| ≤ C(t − s).
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Hence,

[m/2]∑
r=1

E[U2r|σ(Xτ12r−1
)] =

[m/2]∑
r=1

f (Xτ12r−1
)

1
K

K∑
k=1

E(
∫ τk2r

τk2r−1

σ2
sds|σ(Xτ12r−1

))

=

[m/2]∑
r=1

f (Xτ12r−1
)

1
K

K∑
k=1

(σ2
τ12r−1

1
m

) + R1m,

with |R1m| ≤
∑[m/2]

r=1 | f (Xτ12r−1
)|C( 1

m )2, i.e.,

lim sup |mR1m| ≤ C
∫ 1

0
| f (Xs)|ds.

Similarly, we have

[m/2]∑
r=1

E[U2r+1|σ(Xτ12r
)] =

[m/2]∑
r=1

f (Xτ12r
)

1
K

K∑
k=1

(σ2
τ12r

1
m

) + R2m,

with |R2m| ≤
∑[m/2]

r=1 | f (Xτ12r
)|C( 1

m )2, and

lim sup |mR2m| ≤ C
∫ 1

0
| f (Xs)|ds.

Therefore,

|L1 −

∫ 1

0
f (Xs)σ2

sds| ≤ C/mβ, β > 1/2.

□

Proposition 2.

E[(L2)2|σ(Xτ12r
)] =

7
3

1
m2 f 2(Xτ12r−1

)σ4
τ12r
+ oP(

1
m2 ). (4.16)

Proof. Now, let us study the focus of this paper, i.e., L2.

L2 =

[m/2]∑
r=1

{(U2r − E[U2r|σ(Xτ12r
)]) + (U2r+1 − E[U2r+1|σ(Xτ12r

)])

+(E[U2r|σ(Xτ12r
)] − E[U2r|σ(Xτ12r−1

)])}.

Up to a smaller order,

L̃2 =

[m/2]∑
r=1

{(U2r − E[U2r|σ(Xτ12r
)]) + (U2r+1 − E[U2r+1|σ(Xτ12r

)])

+(E[U2(r+1)|σ(Xτ12r+2
)] − E[U2(r+1)|σ(Xτ12r+1

)])}.
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Let L21 = (U2r − E[U2r|σ(Xτ12r
)]), L22 = (U2r+1 − E[U2r+1|σ(Xτ12r

)]) and L23 = (E[U2(r+1)|σ(Xτ12r+2
)] −

E[U2(r+1)|σ(Xτ12r+2
)]). Then,

L̃2 =

[m/2]∑
r=1

(L21 + L22 + L23).

Now the summands in the sums of L21, L22 and L23 are sequences of martingale differences with respect
to σ(Xτ12r+2

). To us, the remaining work is to find the limit of the conditional variance of L̃2, i.e., the
limit of

∑[m/2]
r=1 E[(L21 + L22 + L23)2|σ(Xτ12r

)].
(I) By the definition of conditional expectation, we have

L21 =
1
K

f (Xτ12r−1
)

K∑
k=1

((Xτk2r
− Xτk2r−1

)2 − E[(Xτk2r
− Xτk2r−1

)2|σ(Xτ12r
)])

=
1
K

f (Xτ12r−1
)

K∑
k=1

((Xτk2r
− Xτ12r

)2 − E[(Xτk2r
− Xτ12r

)2|σ(Xτ12r
)]).

So,

L2
21 =

1
K2 f 2(Xτ12r−1

)
K∑

k=1

(Lk
21)2 +

2
K2 f 2(Xτ12r−1

)
∑

1≤k< j≤K

Lk
21L j

21,

where,

Lk
21 = (Xτk2r

− Xτ12r
)2 − E[(Xτk2r

− Xτ12r
)2|σ(Xτ12r

)].

Using the Itô product formula, we get

K∑
k=1

E[(Lk
21)2|σ(Xτ12r

)] =
K∑

k=1

(E[(Xτk2r
− Xτ12r

)4|σ(Xτ12r
)] − E2[(Xτk2r

− Xτ12r
)2|σ(Xτ12r

)])

= 2σ4
τ12r

K(K − 1)(2K − 1)
6n2 + oP(

K3

n2 ).

Meanwhile, for k < j,

E[(Xτk2r
− Xτ12r

)2(Xτ j
2r
− Xτ12r

)2|σ(Xτ12r
)]

= E[(Xτk2r
− Xτ12r

)4|σ(Xτ12r
)] + E[(Xτk2r

− Xτ12r
)2(Xτ j

2r
− Xτk2r

)2|σ(Xτ12r
)]

= 3σ4
τ12r

(
k − 1

n
)2 + σ4

τ12r

(k − 1)( j − k)
n2 + oP((

k − 1
n

)2 +
(k − 1)( j − k)

n2 );

then, one gets ∑
1≤k< j≤K

E[Lk
21L j

21|σ(Xτ12r
)] =

1
6
σ4
τ12r

K4

n2 + oP(
K4

n2 ).
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Thus, we obtain that

E[L2
21|σ(Xτ12r

)] =
1
3

f 2(Xτ12r−1
)σ4
τ12r

1
m2 + oP(

1
m2 ). (4.17)

(II) Denote Lk
22 = (Xτk2r+1

− Xτk2r
)2 − E[(Xτk2r+1

− Xτk2r
)2|σ(Xτ12r

)]; then,

E[L2
22|σ(Xτ12r

)] =
1

K2 f 2(Xτ12r
)(

K∑
k=1

E[(Lk
22)2|σ(Xτ12r

)] + 2
∑

1≤k< j≤K

E[Lk
22L j

22|σ(Xτ12r
)]).

Now, for k < j, one obtains

E[Lk
22L j

22|σ(Xτ12r
)] = E[(Xτk2r+1

− Xτ j
2r

)2(Xτ j
2r+1
− Xτk2r+1

)2|σ(Xτ12r
)]

+ E[(Xτk2r+1
− Xτ j

2r
)4|σ(Xτ12r

)] + E[(Xτ j
2r
− Xτk2r

)2(Xτ j
2r+1
− Xτk2r+1

)2|σ(Xτ12r
)]

+ E[(Xτ j
2r
− Xτk2r

)2(Xτk2r+1
− Xτ j

2r
)2|σ(Xτ12r

)]

− E[(Xτk2r+1
− Xτk2r

)2|σ(Xτ12r
)]E[(Xτ j

2r+1
− Xτ j

2r
)2|σ(Xτ12r

)]

= σ4
τ12r

[(
1
m
+

k − j
n

)(
j − k

n
) + 3(

1
m
+

k − j
n

)2 + (
j − k

n
)2

+ (
j − k

n
)(

1
m
+

k − j
n

) −
1

m2 ] + oP(
1

m2 );

thus,

E[L2
22|σ(Xτ12r

)] = f 2(Xτ12r
)σ4
τ12r

1
m2 + oP(

1
m2 ). (4.18)

(III) Let

Lk
23 = E[(Xτk2r+2

− Xτk2r+1
)2|σ(Xτ12r+2

)] − E[(Xτk2r+2
− Xτk2r+1

)2|σ(Xτ12r+1
)];

then,

L23 =
1
K

f (Xτ12r−1
)

K∑
k=1

Lk
23 +

1
K

( f (Xτ12r+1
) − f (Xτ12r−1

))
K∑

k=1

Lk
23.

By the property of the function f , we have

|
1
K

( f (Xτ12r+2
) − f (Xτ12r−1

))
K∑

k=1

Lk
23| ≤

1
K
|Xτ12r+2

− Xτ12r−1
|α(

K∑
k=1

|σ2
τ12r+2
− σ2

τ12r
|)

1
m

≤
C

m1+α/2 = oP(
1

m2 ).

Now

Lk
23 = (Xτ12r+2

− Xτk2r+1
)2 − E[(Xτ12r+2

− Xτ2r+1)
2|σ(Xτ12r+1

)]

+ E[(Xτk2r+2
− Xτ12r+2

)2|σ(Xτ12r+2
)] − E[(Xτk2r+2

− Xτ12r+2
)2|σ(Xτ12r+1

)]
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= [(Xτ12r+2
− Xτk2r+1

)2 − σ2
τ12r

(
1
m
−

k − 1
n

)] + (σ2
τ12r+2
− σ2

τ12r+1
)
k − 1

n
+ oP(

k
mn

);

so, we have

E[L2
23|σ(Xτ12r

)] =
1
3

f 2(Xτ12r−1
)σ4
τ12r

1
m2 + oP(

1
m2 ). (4.19)

(IV) By Lk
21 and Lk

22, we have that

E[L21L22|σ(Xτ12r
)] =

1
K2 f (Xτ12r−1

) f (Xτ12r
)E[(

K∑
k=1

Lk
21)(

K∑
j=1

L j
22)|σ(Xτ12r

)].

Given

K∑
k=1

K∑
j=1

E[(Xτk2r
− Xτ12r

)2(Xτ j
2r+1
− Xτ j

2r
)2|σ(Xτ12r

)]

=
∑

1≤k≤ j≤K

E[(Xτk2r
− Xτ12r

)2(Xτ j
2r+1
− Xτ j

2r
)2|σ(Xτ12r

)]

+
∑

1≤ j<k≤K

E[(Xτk2r
− Xτ j

2r
)4|σ(Xτ12r

)]

+
∑

1≤ j<k≤K

E[(Xτ j
2r
− Xτ12r

)2(Xτk2r
− Xτ j

2r
)2|σ(Xτ12r

)]

+
∑

1≤ j<k≤K

E[(Xτ j
2r
− Xτ12r

)2(Xτ j
2r+1
− Xτk2r

)2|σ(Xτ12r
)]

+
∑

1≤ j<k≤K

E[(Xτk2r
− Xτ j

2r
)2(Xτ j

2r+1
− Xτk2r

)2|σ(Xτ12r
)]

=
2K4

3n2 σ
4
τ12r
+ oP(

K4

n2 )

and

| f (Xτ12r−1
) − f (Xτ12r

)| ≤ C|Xτ12r
− Xτ12r−1

|α ≤
C

mα/2
,

we can obtain

2E[L21L22|σ(Xτ12r
)] =

1
3

f 2(Xτ12r
)σ4
τ12r

1
m2 + oP(

1
m2 ). (4.20)

(V) By applying the following equation:

E[L21L23|σ(Xτ12r
)] =

1
K2 f 2(Xτ12r−1

)E[(
K∑

k=1

(Xτk2r
− Xτ12r

)2 − σ2
τ12r

K(K − 1)
2n

)

× (
K∑

j=1

(Xτ12r+2
− Xτ j

2r+1
)2 − σ2

τ12r

K(K − 1)
2n

)|σ(Xτ12r
)] + oP(

1
m2 ) = oP(

1
m2 ),
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we can get that

2E[L21L23|σ(Xτ12r
)] = oP(

1
m2 ). (4.21)

(VI) Similar to (4.21), we have

2E[L22L23|σ(Xτ12r
)] =

1
3

f 2(Xτ12r−1
)σ4
τ12r

1
m2 + oP(

1
m2 ). (4.22)

Combining (4.17)–(4.22), we have

E[(L̃2)2|σ(Xτ12r
)] =

7
3

1
m2 f 2(Xτ12r−1

)σ4
τ12r
+ oP(

1
m2 ).

□

Proof of Theorem 2. Let

În =
1
K

K∑
k=1

m∑
r=2

(Xτkr − Xτkr−1
)2 f (Xτkr−1

) =
m∑

r=2

[
1
K

K∑
k=1

(Xτkr − Xτkr−1
)2 f (Xτkr−1

)]

:=
m∑

r=2

Ur :=
[m/2]∑
r=1

(U2r + U2r+1).

By Theorem 1, we have

| ˆIS Vn − În| ≤ C(
1

lα/2
+

lmax( α2 ,
1−α

2 )

nα/2
).

So it is enough to prove the result for În. Now, we have

În =

[m/2]∑
r=1

E[U2r|σ(Xτ12r−1
)] +

[m/2]∑
r=1

E[U2r+1|σ(Xτ12r
)]

+

[m/2]∑
r=1

(U2r − E[U2r|σ(Xτ12r−1
)]) +

[m/2]∑
r=1

(U2r+1 − E[U2r+1|σ(Xτ12r
)])

= L1 + L2.

Thus, in view of Proposition 1, we have that

√
m| ˆIS Vn − IS V | ≤ C[

1
mβ−1/2 +

√
m

lα/2
+

√
mlmax( α2 ,

1−α
2 )

nα/2
].

Combining Propositions 1 and 2, we have

m
[m/2]∑
r=1

E[(L21 + L22 + L23)2|σ(Xτ12r
)] =

7
6

[m/2]∑
r=1

( f 2(Xτ12r−1
)σ4
τ12r

2
m
+ oP(

1
m

))
P
→

7
6

∫ 1

0
f 2(Xs)σ4

sds.

□

Proof of Theorem 3. It suffices to prove the consistency of Ĉn with
∫ 1

0
f 2(Xt)σ4

t dt, which is implied by
the proof of Theorem 2. □
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5. Simulations and applications

5.1. A simulation study

In order to evaluate the performance of the estimator, we consider three sample sizes: n = 4680,
7800 and 23400 (which correspond to sampling every 5 seconds, 3 seconds and 1 second) within one
trading day (T = 1), the latent value is drawn from the geometric Brownian process with drift, namely,

Xt = exp(
∫ t

0
µds +

∫ t

0
σdWs), (5.1)

where Ws is a standard Brownian motion. The microstructure noise εi’s are independent and identically
distributed, i.e., N(0, ω). The variance of microstructure noise was chosen to match the size of the
integrated self-weighted volatility. Let ti be equally spaced in [0,1] with ti − ti−1 =

1
n , m = cm⌊n

1
3 ⌋ and

l = ⌊n
1
3 ⌋ as suggested in Remark 2.

We constructed the observed data according to the definition of X(ti). The same procedure was
repeated 1000 times, and our results, in the form of relative biases, standard errors and mean square
errors, are displayed in Table 1. Through the different choices of grid point cm ∈ [2, 4] with a fixed
step length of 0.2, we calculated the sensitivity of the coverage probabilities(CPs) and confidence
intervals(CIs) in Tables 2 and 3. Additionally, the corresponding histogram and QQ-plot are displayed
in Figure 1, which verify our central limit theorem. We make the following observations from the
simulation results.

(1) In all cases of Table 1, as n increases, all of the biases, standard errors and mean square errors of
the estimator tend to decrease; moreover, the estimator is robust against different levels of applied
theoretical volatility and variance of microstructure noise. This is in line with our theoretical
results.

(2) Tables 2 and 3 show the CPs and CIs at 95% and 90% levels, respectively. Both cases reveal that
the CPs and CIs are not sensitive to the choice of cm.

(3) We demonstrate the central limit theorem in Figure 1 by displaying the histogram and QQ-plot
for n=23400, σ2 = 0.02, cm = 3.
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Figure 1. Histogram and QQ-plot results for 1000 values of the estimator, with σ2 = 0.02,
cm = 3 and n = 23400.
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Table 1. Estimations of relative bias, standard error(s.e.) and mean square error(MSE).

n σ2 = 0.02, ω = 0.00032 σ2 = 0.02, ω = 0.00052

(relative bias, s.e., MSE) (relative bias, s.e., MSE)
4680 (0.0011,0.0034,0.0374) (0.0012,0.0035,0.0262)

11700 (0.0008,0.0030,0.0272) (0.0007,0.0025,0.0174)
23400 (0.0003,0.0025,0.0136) (0.0003,0.0013,0.0097)

n σ2 = 0.02, ω = 0.00072 σ2 = 0.02, ω = 0.00092

(relative bias, s.e., MSE) (relative bias, s.e., MSE)
4680 (0.0012,0.0036,0.0263) (0.0011,0.0035,0.0411)

11700 (0.0008,0.0029,0.0202) (0.0010,0.0031,0.0311)
23400 (0.0003,0.0026,0.0099) (0.0003,0.0025,0.0163)

n σ2 = 0.01, ω = 0.00052 σ2 = 0.03, ω = 0.00052

(relative bias, s.e., MSE) (relative bias, s.e., MSE)
4680 (0.0009,0.0035,0.0382) (0.0011,0.0037,0.0367)

11700 (0.0007,0.0022,0.0281) (0.0010,0.0027,0.0296)
23400 (0.0004,0.0018,0.0086) (0.0003,0.0021,0.0063)

n σ2 = 0.05, ω = 0.00052 σ2 = 0.07, ω = 0.00052

(relative bias, s.e., MSE) (relative bias, s.e., MSE)
4680 (0.0016,0.0038,0.0383) (0.0019,0.0036,0.0376)

11700 (0.0010,0.0030,0.0166) (0.0007,0.0025,0.0157)
23400 (0.0002,0.0023,0.0102) (0.0005,0.0009,0.0089)

Table 2. CP and CI results for the asymptotic normal distribution.

n = 11700 n = 11700 n = 23400 n = 23400
cm (CP for 95%) (CI for 95%) (CP for 95%) (CI for 95%)

cm = 2 95.7% (0.0129,0.0259) 95.5% (0.0135,0.0255)
cm = 2.2 95.6% (0.0134,0.0271) 94.8% (0.0152,0.0268)
cm = 2.4 95.4% (0.0135,0.0254) 94.6% (0.0150,0.0265)
cm = 2.6 95.3% (0.0149,0.0271) 94.7% (0.0154,0.0264)
cm = 2.8 94.6% (0.0140,0.0252) 94.9% (0.0153,0.0259)
cm = 3 95.1% (0.0152,0.0263) 95.2% (0.0161,0.0241)

cm = 3.2 95.7% (0.0153,0.0259) 94.6% (0.0154,0.0248)
cm = 3.4 95.7% (0.0153,0.0259) 95.7% (0.0156,0.0250)
cm = 3.6 95.7% (0.0153,0.0259) 94.9% (0.0155,0.0245)
cm = 3.8 95.7% (0.0153,0.0259) 95.5% (0.0157,0.0239)
cm = 4 95.7% (0.0153,0.0259) 95.3% (0.0155,0.0242)
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Table 3. CP and CI results for the asymptotic normal distribution.

n = 11700 n = 11700 n = 23400 n = 23400
cm (CP for 90%) (CI for 95%) (CP for 90%) (CI for 95%)

cm = 2 90.5% (0.0140,0.0251) 90.3% (0.0148,0.0245)
cm = 2.2 91.1% (0.0148,0.0257) 91.0% (0.0159,0.0261)
cm = 2.4 90.1% (0.0145,0.0246) 90.8% (0.0158,0.0256)
cm = 2.6 89.8% (0.0157,0.0261) 91.1% (0.0161,0.0256)
cm = 2.8 90.7% (0.0150,0.0244) 90.1% (0.0165,0.0249)
cm = 3 89.6% (0.0161,0.0258) 89.9% (0.0161,0.0241)

cm = 3.2 90.8% (0.0152,0.0240) 90.3% (0.0163,0.0245)
cm = 3.4 90.7% (0.0165,0.0252) 90.7% (0.0164,0.0242)
cm = 3.6 90.4% (0.0157,0.0241) 90.3% (0.0161,0.0234)
cm = 3.8 90.8% (0.0165,0.0248) 89.9% (0.0162,0.0235)
cm = 4 89.9% (0.0157,0.0238) 90.4% (0.0164,0.0233)

5.2. An application

In order to investigate the influence of the estimation on the integrated self-weighted volatility in
high-frequency data, we collected the intraday transaction prices of 10 stocks from the TAQ database
from December 1, 2020 to December 30, 2020. The numbers of observations of the original tick-
by-tick data sets for GOOGLE, DELL, JBGS, AAPL, BDN, CACC, EBAY, FF, HMDT and ICE,
respectively, were 23,853, 24,478, 20,696, 52,644, 22,701, 23,895, 25,338, 20,265, 18,736 and 24,306.
The one-second data sets were constructed by setting the closing price of every one-second interval as
the price for the corresponding second. Hence, for each stock, we have approximately second-by-
second observations. We constructed an equally spaced data set, because regular spacing is assumed
in Theorems 1 and 2. We adopted cm = 2, m = 60 and l = 30 in the empirical data. Because there
is no real integrated volatility for comparison, we calculated the standard deviation of the integrated
self-weighted volatility estimators for different periods for 10 stocks in the empirical study. The results
are displayed in Table 4.

Table 4. Standard deviation(S. D.) and MSE results for 10 stocks.
S. D. MSE

GOOGLE 0.0016 0.0168
DELL 0.0012 0.0019
JBGS 0.0012 0.0008
AAPL 0.0009 0.0028
BDN 0.0004 0.0018

CACC 0.0011 0.0060
EBAY 0.0007 0.0012

FF 0.0005 0.0002
HMDT 0.0010 0.0008

ICE 0.0009 0.0026
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6. Conclusions

In this paper, we have proposed a consistent estimator of the integrated self-weighted volatility
and demonstrated the central limit theorem of the estimator based on the high-frequency data in the
presence of microstructure noise. A studentized version of the proposed estimator has been given. The
estimator can potentially be applied to a general semi-martingale and the results can be employed to
deal with the statistical inference of volatility.

In our future work, a jump-diffusion model will be considered, where we estimate the integrated
self-weighted volatility or integrated self-weighted cross-volatility. Furthermore, we will extend the
work to include estimation for multiple-transaction cases and time-endogenous cases under the
conditions of more generalized settings than described in this paper.
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