Research article Special Issues

A cascade dead-zone extended state observer for a class of systems with measurement noise

  • Received: 02 February 2023 Revised: 25 March 2023 Accepted: 03 April 2023 Published: 18 April 2023
  • MSC : 93B53, 93C10, 93D05

  • For high frequency noise, a new $ 2n $-th order cascade extended state observer with dynamic dead-zone structure is proposed in this paper. Dead zone dynamic consists of two parts. One is to "trim" the effect of noise by cutting off the part that falls in the dead zone. The other part pushes the dead zone amplitude to converge to 0 as soon as possible to ensure the convergence of the estimation error. Moreover, in the cascade structure, the high-gain parameter grows only to a second power, thus avoiding excessive amplification of the measurement noise and solving numerical implementation problems. The design procedure ensures that the extended state observer is input-to-state stable. Numerical simulations show the improvement in terms of total disturbance estimation and noise attenuation. The frequency-domain analysis of the proposed ESO using the describing function method investigates the effect of the dead zone nonlinear parameter on the performance of a closed-loop system.

    Citation: Shihua Zhang, Xiaohui Qi, Sen Yang. A cascade dead-zone extended state observer for a class of systems with measurement noise[J]. AIMS Mathematics, 2023, 8(6): 14300-14320. doi: 10.3934/math.2023732

    Related Papers:

  • For high frequency noise, a new $ 2n $-th order cascade extended state observer with dynamic dead-zone structure is proposed in this paper. Dead zone dynamic consists of two parts. One is to "trim" the effect of noise by cutting off the part that falls in the dead zone. The other part pushes the dead zone amplitude to converge to 0 as soon as possible to ensure the convergence of the estimation error. Moreover, in the cascade structure, the high-gain parameter grows only to a second power, thus avoiding excessive amplification of the measurement noise and solving numerical implementation problems. The design procedure ensures that the extended state observer is input-to-state stable. Numerical simulations show the improvement in terms of total disturbance estimation and noise attenuation. The frequency-domain analysis of the proposed ESO using the describing function method investigates the effect of the dead zone nonlinear parameter on the performance of a closed-loop system.



    加载中


    [1] A. Q. Liu, T. Li, Y. Gu, H. H. Dai, Cooperative extended state observer based control of vehicle platoons with arbitrarily small time headway, Automatica, 129 (2021), 109678. https://doi.org/10.1016/j.automatica.2021.109678 doi: 10.1016/j.automatica.2021.109678
    [2] K. Rsetam, Z. W. Cao, Z. H. Man, Cascaded-extended-state-observer-based sliding-mode control for underactuated flexible joint robot, IEEE Trans. Ind. Electron., 67 (2020), 10822–10832. https://doi.org/10.1109/TIE.2019.2958283 doi: 10.1109/TIE.2019.2958283
    [3] Y. Cheng, X. M. Ren, D. D. Zheng, L. W. Li, Non-linear bandwidth extended-state-observer based non-smooth funnel control for motor-drive servo systems, IEEE Trans. Ind. Electron., 69 (2022), 6215–6224. https://doi.org/10.1109/TIE.2021.3095811 doi: 10.1109/TIE.2021.3095811
    [4] S. Shao, Z. Gao, On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis, Int. J. Control, 90 (2017), 2085–2097. https://doi.org/10.1080/00207179.2016.1236217 doi: 10.1080/00207179.2016.1236217
    [5] Z. L. Zhao, B. Z. Guo, A nonlinear extended state observer based on fractional power functions, Automatica, 81 (2017), 286–296. https://doi.org/10.1016/j.automatica.2017.03.002 doi: 10.1016/j.automatica.2017.03.002
    [6] J. X. Wang, S. H. Li, J. Yang, B. Wu, Q. Li, Extended state observer-based sliding mode control for PWM-based DC–DC buck powerCc onverter systems with mismatched disturbances, IET Control Theory Appl., 9 (2015), 579–586. https://doi.org/10.1049/iet-cta.2014.0220 doi: 10.1049/iet-cta.2014.0220
    [7] S. Chen, W. C. Xue, S. Zhong, Y. Huang, On comparison of modified ADRCs for nonlinear uncertain systems with time delay, Sci. China Inf. Sci., 61 (2018), 1–15. https://doi.org/10.1007/s11432-017-9403-x doi: 10.1007/s11432-017-9403-x
    [8] X. Y. Zhang, H. Pan, W. Y. Bai, S. Zhong, Y. Huang, W. C. Xue, On observability analysis for a class of uncertain systems with coupling dynamics of rigid body and elastic vibration, 2020 39th Chinese Control Conference (CCC), 2020,730–735. https://doi.org/10.23919/CCC50068.2020.9189008 doi: 10.23919/CCC50068.2020.9189008
    [9] W. C. Xue, Y. Huang, Z. Q. Gao, On ADRC for non-minimum phase systems: canonical form selection and stability conditions, Control Theory Technol., 14 (2016), 199–208. https://doi.org/10.1007/s11768-016-6041-6 doi: 10.1007/s11768-016-6041-6
    [10] H. Razmjooei, G. Palli, E. Abdi, Continuous finite-time extended state observer design for electro-hydraulic systems, J. Franklin Inst., 359 (2022), 5036–5055. https://doi.org/10.1016/j.jfranklin.2022.04.030 doi: 10.1016/j.jfranklin.2022.04.030
    [11] H. Razmjooei, G. Palli, E. Abdi, M. Terzo, S. Strano, Design and experimental validation of an adaptive fast-finite-time observer on uncertain electro-hydraulic systems, Control Eng. Pract., 131 (2023), 105391. https://doi.org/10.1016/j.conengprac.2022.105391 doi: 10.1016/j.conengprac.2022.105391
    [12] H. Razmjooei, G. Palli, F. Janabi-Sharifi, S. Alirezaee, Adaptive fast-finite-time extended state observer design for uncertain electro-hydraulic systems, Eur. J. Control, 69 (2023), 100749. https://doi.org/10.1016/j.ejcon.2022.100749 doi: 10.1016/j.ejcon.2022.100749
    [13] Z. Q. Gao, Scaling and bandwidth-parameterization based controller tuning, Proceedings of the 2003 American Control Conference, 2003, 4989–4996. https://doi.org/10.1109/ACC.2003.1242516 doi: 10.1109/ACC.2003.1242516
    [14] A. A. Prasov, H. K. Khalil, A nonlinear high-gain observer for systems with measurement noise in a feedback control framework, IEEE Trans. Autom. Control, 58 (2013), 569–580. https://doi.org/10.1109/TAC.2012.2218063 doi: 10.1109/TAC.2012.2218063
    [15] S. Battilotti, Robust observer design under measurement noise with gain adaptation and saturated estimates, Automatica, 81 (2017), 75–86. https://doi.org/10.1016/j.automatica.2017.02.008 doi: 10.1016/j.automatica.2017.02.008
    [16] J. Ahrens, H. Khalil, High-gain observers in the presence of measurement noise: a switched-gain approach, Automatica, 45 (2009), 936–943. https://doi.org/10.1016/j.automatica.2008.11.012 doi: 10.1016/j.automatica.2008.11.012
    [17] D. Astolfi, L. Marconi, A high-gain nonlinear observer with limited gain power, IEEE Trans. Autom. Control, 60 (2015), 3059–3064. https://doi.org/10.1109/TAC.2015.2408554 doi: 10.1109/TAC.2015.2408554
    [18] X. Y. Li, H. Xia, A new extended state observer with low sensitivity to high frequency noise and low gain power, IFAC PapersOnLine, 53 (2020), 4929–4934. https://doi.org/10.1016/j.ifacol.2020.12.1072 doi: 10.1016/j.ifacol.2020.12.1072
    [19] K. Łakomy, R. Madonski, Cascade extended state observer for active disturbance rejection control applications under measurement noise, ISA Trans., 109 (2021), 1–10. https://doi.org/10.1016/j.isatra.2020.09.007 doi: 10.1016/j.isatra.2020.09.007
    [20] H. Sun, R. Madonski, S. H. Li, Y. Zhang, W. C. Xue, Composite control design for systems with uncertainties and noise using combined extended state observer and kalman filter, IEEE Trans. Ind. Electron., 69 (2022), 4119–4128. https://doi.org/10.1109/TIE.2021.3075838 doi: 10.1109/TIE.2021.3075838
    [21] R. Madonski, P. Herman, Method of sensor noise attenuation in high-gain observers-experimental verification on two laboratory systems, 2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings, 2012,121–126. https://doi.org/10.1109/ROSE.2012.6402616 doi: 10.1109/ROSE.2012.6402616
    [22] M. Cocetti, S. Tarbouriech, L. Zaccarian, High-gain dead-zone observers for linear and nonlinear plants, IEEE Control. Syst. Lett., 3 (2019), 356–361. https://doi.org/10.1109/LCSYS.2018.2880931 doi: 10.1109/LCSYS.2018.2880931
    [23] D. Astolfi, L. Marconi, L. Praly, A. R. Teel, Low-power peaking-free high-gain observers, Automatica, 98 (2018), 169–179. https://doi.org/10.1016/j.automatica.2018.09.009 doi: 10.1016/j.automatica.2018.09.009
    [24] D. Wu, K. Chen, Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method, IEEE Trans. Ind. Electron., 60 (2013), 3906–3914. https://doi.org/10.1109/TIE.2012.2203777 doi: 10.1109/TIE.2012.2203777
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1377) PDF downloads(61) Cited by(2)

Article outline

Figures and Tables

Figures(4)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog