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1. Introduction

Ordinary differential equations are equations involving a single variable whereas partial
differential equation (PDE) involves two or more variables. There is a significant development in
the field of differential equations during the 20th century. The major reason behind this is ever-
increasing mathematical applications in the field of medicine, engineering, computer technology,
mathematical biology, aerodynamics, etc. All physical processes are described mathematically by
non-linear PDEs. Fractional differential equations (FDEs) are the generalization of ODEs and
have magnanimous applications in quantum mechanics, solid-state physics, ultrasonography, signal
processing, mathematical biology, physics, fractional dynamics, finance, engineering, control theory,
and have progressively captivated the attention of researchers due to immense applications. Recent
work on FDEs can be seen in [1–5]. To accomplish analytical as well as exact solutions of traveling
waves traced by nonlinear fractional differential equations is a major contribution in nonlinear sciences
since it portrays mixed natural processes like solitons, vibrations and speed distribution. FDEs
remove the constraints of locality and provide in-depth knowledge about system mechanism [6].
Solitons are the solutions of non-linear diffusive PDEs describing any tangible systems. John Scott
Russel (1808–1882) was the first one who described the phenomenon of soliton in 1834 and detected a
soliton wave in the Union Canal in Scotland. In mathematics and physics, a solitary wave or soliton is
just like a spiral wave bundle that preserves its shape when it spreads at an invariant velocity [7,8]. All
real-world processes are described with the help of PDEs, constituting a complicated set of problems
that might not be solved exactly but their analytical solutions can be achieved by keeping in mind their
practical scenarios and theoretic prospects. Many efficient techniques demonstrated in the literature,
are applied to investigate exact or analytic solutions of PDE.

To explore the dynamic behavior of tangible real systems is always an active research domain
for mathematicians in every era. During the 20th-century, researchers started inquiring in-depth
analysis of non-linear systems and their centripetal compositions and considerable attention was paid
to Chaos theory which states that PDEs and ODEs could demonstrate unbelievably plenteous behavior,
permitting around settled schemes to be exponentially episodic for flaring time. Soliton theory enables
mathematicians to vouch for the stable behavior of non-linear PDEs (systems) in a quasi-linear manner.
Atangana and Seda modeled Labyrinth chaotic problems with fractional operators which include power
law, exponential decay and Mittag-Leffler kernel. The mathematical model is worked out through a
numeric scheme named Atangana-Seda established on Newton polynomial [9].

In another manuscript, they’ve formulated a COVID-19 spread mathematical model in South
Africa and Turkey, portrayed statistical analysis, applied optimal theory [10] and modified numerical
scheme [11]. In another article, they have studied three epidemiologic troubles, incorporating the
zika and zombie virus spread model and Ebola model. The solution of these models is obtained by
the proposed numeric scheme [12]. Mirzazadeh had obtained a one-soliton solution by employing
1st integral and complex fractional transformed method to time-dependent parabolic fractional-order
PDE [13]. Tebue et al. had acquired the soliton solutions of fractional non-linear Zoomeron equations
and illustrated that these results could explain numerous phenomena in optics, lasers as well as in fluid
mechanics [14]. Tebue et al. studied the nonlinear Schrodinger equation and obtained exact analytical
results by acquiring two advances: (i) nonlinear impulsive parameters and (ii) new Jacobi elliptic
function expansion technique. The dynamics of solitary wave optic proclamation had been discovered
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in mono-mode optical fibers [15].
Zayed et al. has made the group analysis to work out soliton and invariant solutions of Euler

non-linear PDEs by using extended modified Tanh-function [16]. The solutions of traveling waves
representing the Schrodinger equation in non-Kerr law media were investigated by Biswas et al. [17].
They had obtained optical perturbed solitons with the help of perturbation theory. Solitary solutions
commonly appear in nature. The mathematical description of these wave solutions is a remarkable
achievement of researchers and mathematicians. These solutions represent kink-shaped or dark
solitons which are tangent hyperbolic results, bell-shaped (secant hyperbolic expressions) [18]. Soliton
solutions were obtained by applying various method like, tangent hyperbolic (extended function) [19],
1st integral method [20], the Darboux transformation process [21], F-expansion technique [22]. In all
these methods non-linear PDEs were expressed in terms of the set of algebraic equations by adapting
the balancing terms approach and their solutions yield explicit wave expressions.

Some recent research papers are presented here. Akinyemi et al. [23] applied three distinct
techniques which are G′

G , Riccati and Kudryashov method, and obtained soliton solutions for
conformable Schrödinger (NLCS) system of equations. Akbar et al. [24] acquired kink, bell-type, anti-
bell type solitons and compactons for the Boussinesq equation by using the generalized Kudryashov
and sine Gorden method. Akinyemi et al. [25] analyzed the bright and singular solitons of the
nonlinear Schrödinger equation. Akinyemi et al. [26] investigated the solitons with parabolic non-
linearity by using the auxiliary equation method. Mirzazadeh et al. [27] studied the solitary wave
solutions of perturbed Biswas-Milovic equation with the aid of Kudryashov’s law of refractive index.
Kilicman et al. [28] studied the analytical solutions of the M-Burgers fractional equation by using
the homotopy perturbation method. Shokhanda et al. [29] established the analytical approximation
for the time-fractional two-mode couple Burger equation with the aid of the modified homotopy
perturbation method. Yuan et al. [30] presented the multiple solitons for discrete nonlocal nonlinear
self-dual network equation by using nonlocal discrete N-fold Darboux transformation. Wang and
Wen [31] investigated the semi-discrete two-component integrable system on zigzag runged ladder
lattice and obtained a variety of two-component localized waves. Yuan and Wen [32] analyzed discrete
modified exponential Toda lattice equation by using the Darboux transformation and acquired soliton
solutions. Wen and Wang [33] constructed generalized Darboux transformation and obtained solutions
of coupled Ablowitz-Ladik equations. Wang et al. [34] investigated the Hirota coupled system with
variable coefficients and obtained rogue waves by using the Darboux transformation and also provided
modulation instability. Wang et al. [35] considered coupled Biswas-Milovic (CMB) system and applied
n-fold Darboux transformation to get a generalized solution of the system.

The multi-wave non-linear Hirota equation is an integral conjecture of the Schrodinger wave
equation that illustrates ultra-short beats due to higher-order dissemination and self-steepening
impression [36]. It is significant in the domain of mathematical and theoretical physics. This non-linear
differential equation traces the generation of femtosecond solitonic pulse in a single-phase mode fiber.
Subsequently, the multitudinous, schnorkels, rogue waving and varlet higher-order waves for Hirota
equation [37] was speculated by numerous analysts through generalized Darboux transformation
technique and other ways [38, 39].

El-Rashidy [40] studied the Hirota equation and discussed a few soliton solutions and their
interaction, but a lot of solitons types were still missed. El-Rashidy just discussed the kinky type
solitons and their interaction but dark, bright, singular, rational, periodic, dark-bright, dark singular,
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bright singular and periodic type solitons, etc., were missed. Therefore, to fulfill this gap, the authors
tried to establish this study and to find others types of solitons. The other most significant gap was
that the existed study in literature was done with the classical theory of differentiation, which is a
local theory, authors also tried to develop solitons with the fractional theory of calculus which is a
generalization and global theory. The multi-wave non-linear Hirota equation in [41]:

i
∂Q
∂t

+ β
∂2Q
∂x2 + δQ|Q|2 + iγ

∂3Q
∂x3 + 3iλ

∂Q
∂x
|Q|2 = 0. (1.1)

Here, Q=Q(x,t) is representing the complex amplitude of a slowly varying optical field. The subscripts
x and t indicate the spatial and temporal partial derivative respectively, and |Q|2QX, |Q|2Q, QXX, QXXX

demonstrates the self-steepening, self-phase modulation, group velocity dispersion and third-order
dispersion respectively [42]. The parameters β, λ, γ and δ in Eq (1.1) are the real constants that
satisfies the relation λβ = δγ. To illustrate the generalization of the Hirota equation, some limiting
cases will also be discussed:
(i) By setting λ = γ = 0, Eq (1.1) turns to the non-linear schrödinger equation [41].
(ii) By setting β = δ = 0 with real Q, Eq (1.1) turns to the modified Korteweg de Vries equation [41].

The goal of this paper is to provide an intuition for the multi-wave non-linear Hirota equation
with the fractional generalized approach. The algebraic extended process is adopted to get a series of
solutions. We begin with a simple description and definition of the classical non-linear Hirota model.
In Section 2, fractional operator’s basic definitions and their properties are provided. In Section 3,
fractional configuration of a non-linear multi-wave, the Hirota equation driven by three well-defined
fractional-order operators covering the singular and non-singular kernel is represented. Section 4
provides the basic details about the extended algebraic method and its fractional implementation on
the non-linear Hirota equation. Graphical analysis is presented and we concluded that the present
fractional model gets the ordinary configuration that has a resemblance to the cubic Duffing equation.
The solutions are also displaying the validity of the utilized technique with concern to yielding the
analytical solutions of the non-linear equation.

2. Preliminaries

Basic notations and preliminaries are mentioned in subsections (2.1) and (2.2).

2.1. Modified Riemann-Liouville fractional order operator

Definition 2.1. Consider j : x→ j(x) is a continues function, but not exceptionally differentiable. The
derivative comprises fractional-order α is explicated as in [43]:

RLDα
x j(x) =


1

Γ(α)

∫ x

o
(x − ζ)−α−1( j(ζ) − j(0))dζ, α < 0

1
Γ(α)

d
dx

∫ x

o
(x − ζ)−α( j(ζ) − j(0))dζ, 0 < α < 1

( jn(α))α−n, n ≤ α ≤ n + 1, n ≥ 1.

(2.1)

The characteristics of the modified Riemann-Liouville fractional derivative are [43]:
(1) RLDα

x (m( j(x)) + n(g(x))) = mDα
x ( j(x)) + nDα

x (g(x));
(2) RLDα

x (k( j(x))) = kDα
x ( j(x));

(3) RLDα
x xξ =

Γ(1+ξ)
Γ(1+ξ−α) xξ−α, ξ ≥ 0.
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2.2. β-fractional derivative

Definition 2.2. β-fractional derivative is stated as [44]:

B
0 Dα

x ( j(x)) = lim
ε→0

j(x + ε(x + 1
Γ(α) )) − j(x)

ε
. (2.2)

The characteristics of the fractional operator are [44]:
Theorem 2.1. As 0 < α ≤ 1, m, n, c ∈ Randh(x), g(x) are differentiable at t > o, so
(1) B

0 Dα
x (c) = 0;

(2) B
0 Dα

x (k( j(x))) = k B
0 Dα

x (g(x))( j(x));
(3) B

0 Dα
x (m( j(x)) + n(g(x))) = m B

0 Dα
x ( j(x)) + n B

0 Dα
x (g(x));

(4) B
0 Dα

x ( j(x) ∗ j(x)) = (g(x)) B
0 Dα

x ( j(x)) ∗ ( j(x)) B
0 Dα

x (g(x));

(5) B
0 Dα

x ( g(x)
j(x) ) =

( j(x)) B
0 Dα

x (g(x))−(g(x)) B
0 Dα

x ( j(x))
( j(x))2 .

2.3. Atangana-Baleanu in Riemann-Liouville sense(ABR) fractional derivative

Definition 2.3. Let z ∈ H1(a, b), b > a, then Atangana-Baleanu fractional integral with 0 < α ≤ 1 for
the function z(t) is [45]:

ABR
0 Dα

a+(h(t)) =
ABR(α)
(1 − α)

d
dt

∫ t

a
h(τ)Eα(

−α(t − τ)α

1 − α
)dτ, (2.3)

where ABR(α) is the normalized function such as ABR(1) = ABR(0) = 1 and Eα is Mittag-leffer
function. Thus,

ABR
0 Dα

a+(h(t)) =
ABR(α)
(1 − α)

∞∑
n=0

(
−α

1 − α
)nRLIαn

a h(t). (2.4)

3. Fractional forms of Eq (1.1)

The fractional arrangement of non-linear multi wave Hirota model by different fractional
order derivative.
(1) Modified Riemann-Liouville fractional derivative is applying on Eq (1.1):

iRLDα
t Q + βRLD2α

xx Q + δQ|Q|2 + iγRLD3α
xxxQ + 3iλRLDα

x Q|Q|2 = 0, (3.1)

where RLDα
x and RLDα

t are modified RL fractional order operators w. r. t. to x and t.
(2) The β-fractional order operator on Eq (1.1):

iBDα
t Q + βBD2α

xx Q + δQ|Q|2 + iγBD3α
xxxQ + 3iλBDα

x Q|Q|2 = 0, (3.2)

where B
0 Dα

t and B
0 Dα

x are the β operators in sense of t and x.
(3) Atangana-Baleanu in sense of Riemann-Liouville (ABR) fractional order derivative applied
on Eq (1.1):

iABRDα
t Q + βQxx + δQ|Q|2 + iγQxxx + 3iλQx|Q|2 = 0, (3.3)

where ABR
0 Dα

t is Atangana-Baleanu (AB) operators concerned to t.
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3.1. Transformations concerned to fractional order derivative

Here, we will establish transformations concerned to operators for conversion of PDE to ODE:

Q = Q(x, t), where Q(x, t) = U(ε)eiθ(x,t). (3.4)

We will build ε and θ according to fractional order operator.
(1) ε and θ for RL fractional order operator:ε = e xα

α
− c tα

α
,

θ = l xα
α
− m tα

α
+ γo.

(3.5)

(2) ε and θ for β fractional operator:ε = e
(
x + 1

Γ(α)

)α
− c

(
t + 1

Γ(α)

)α
,

θ = l
(
x + 1

Γ(α)

)α
− m

(
t + 1

Γ(α)

)α
+ γo.

(3.6)

(3) ε and θ for Atangana-Baleanu (AB) fractional order operator:ε = ex − (1−α)(ct−nα)
AB(α)

∑∞
n=0( −α1−α )Γ(1−αn)

,

θ = lx − (1−α)(mt−nα)
AB(α)

∑∞
n=0( −α1−α )Γ(1−αn)

+ γo.
(3.7)

4. Multi-wave soliton solutions

4.1. Explanation of the scheme

New extended direct algebraic algorithm is detailed as [46].
Assume a PDE:

H(Q,Qt,Qx,Qtt,Qxx, ...) = 0. (4.1)

PDE is transforming into ODE:
R(U,U′,U′′, ...) = 0, (4.2)

with the aid of transformation:
Q(x, t) = U(ε)eiθ(x,t), (4.3)

where ε = k1x + k2t, θ = k3x + k4t + γ0 and prime in Eq (4.2) is representing the differentiation.
Let Eq (4.2) has solution in the following form:

U(ε) = a0 +

j∑
i=− j

[
ai(W(ε))i

]
, (4.4)

where
W ′(ε) = ln(ρ)

(
δ + υW(ε) + χW2(ε)

)
, ρ , 0, 1, (4.5)

χ, υ, and δ are real constants.
The solutions of Eq (4.5) concerning to parameters δ, υ and χ are:
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Case 1. When υ2 − 4δχ < 0 and χ , 0,

W1(ε) = −
υ

2χ
+

√
−Ξ

2χ
tanρ

 √−Ξ

2
ε

 , (4.6)

W2(ε) = −
υ

2χ
−

√
−Ξ

2χ
cotρ

 √−Ξ

2
ε

 , (4.7)

W3(ε) = −
υ

2χ
+

√
−Ξ

2χ

(
tanρ

(√
−Ξε

)
±
√

mn secρ
(√
−Ξε

))
, (4.8)

W4(ε) = −
υ

2χ
+

√
−Ξ

2χ

(
cotρ

(√
−Ξε

)
±
√

mn cscρ
(√
−Ξε

))
, (4.9)

W5(ψ) = −
υ

2χ
+

√
−Ξ

4χ

tanρ

 √−Ξ

4
ε

 − cotρ

 √−Ξ

4
ε

 . (4.10)

Case 2. When υ2 − 4δχ > 0 and χ , 0,

W6(ε) = −
υ

2χ
−

√
Ξ

2χ
tanhρ

 √Ξ

2
ε

 , (4.11)

W7(ψ) = −
υ

2χ
−

√
Ξ

2χ
cothρ

 √Ξ

2
ε

 , (4.12)

W8(ε) = −
υ

2χ
+

√
Ξ

2χ

(
− tanhρ

(√
Ξε

)
± i
√

mn sechρ
(√

Ξε
))
, (4.13)

W9(ε) = −
υ

2χ
+

√
Ξ

2χ

(
− cothρ

(√
Ξε

)
±
√

mn cschρ
(√

Ξε
))
, (4.14)

W10(ε) = −
υ

2χ
−

√
Ξ

4χ

 tanhρ

 √Ξ

4
ε

 + cothρ

 √Ξ

4
ε

 . (4.15)

Case 3. When δχ > 0 and υ = 0,

W11(ψ) =

√
δ

χ
tanρ

( √
δχε

)
, (4.16)

W12(ε) = −

√
δ

χ
cotρ

( √
δχε

)
, (4.17)

W13(ψ) =

√
δ

χ

(
tanρ

(
2
√
δχε

)
±
√

mn secρ
(
2
√
δχε

))
, (4.18)

W14(ε) =

√
δ

χ

(
− cotρ

(
2
√
δχε

)
±
√

mn cscρ
(
2
√
δχε

))
, (4.19)
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W15(ε) =
1
2

√
δ

χ

(
tanρ

( √
δχ

2
ε

)
− cotρ

( √
δχ

2
ε

))
. (4.20)

Case 4. When δχ < 0 and υ = 0,

W16(ψ) = −

√
−
δ

χ
tanhρ

( √
−δχε

)
, (4.21)

W17(ε) = −

√
−
δ

χ
cothρ

( √
−δχε

)
, (4.22)

W18(ε) =

√
−
δ

χ

(
− tanhρ

(
2
√
−δχε

)
± i
√

mn sechρ
(
2
√
−δχψ

))
, (4.23)

W19(ε) =

√
−
δ

χ

(
− cothρ

(
2
√
−δχε

)
±
√

mn cschρ
(
2
√
−δχε

))
, (4.24)

W20(ε) = −
1
2

√
−
δ

χ

(
tanhρ

( √
−δχ

2
ε

)
+ cothρ

( √
−δχ

2
ε

))
. (4.25)

Case 5. When υ = 0 and δ = χ,
W21(ε) = tanρ (δε) , (4.26)

W22(ε) = − cotρ (δε) , (4.27)

W23(ε) = tanρ (2δε) ±
√

mn secρ (2δε) , (4.28)

W24(ε) = − cotρ (2δε) ±
√

mn cscρ (2δε) , (4.29)

W25(ε) =
1
2

(
tanρ

(
δ

2
ε
)
− cotρ

(
δ

2
ε
))
. (4.30)

Case 6. When υ = 0 and χ = −δ,
W26(ε) = − tanhρ (δε) , (4.31)

W27(ε) = − cothρ (δε) , (4.32)

W28(ε) = − tanhρ (2δε) ± i
√

mn sechρ (2δε) , (4.33)

W29(ε) = − cothρ (2δε) ±
√

mn cschρ (2δε) , (4.34)

W30(ε) = −
1
2

(
tanhρ

(
δ

2
ε
)

+ cothρ
(
δ

2
ε
) )
. (4.35)

Case 7. When υ2 = 4δχ,

W31(ε) =
−2δ(υε ln ρ + 2)

υ2ε ln ρ
. (4.36)

Case 8. When δ = pq, υ = p, χ = 0 and (q , 0),

W32(ε) = ρpε − q. (4.37)
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Case 9. When υ = χ = 0,
W33(ε) = δε ln ρ. (4.38)

Case 10. When υ = δ = 0,

W34(ε) =
−1

χε ln ρ
. (4.39)

Case 11. When υ , 0 and δ = 0,

W35(ε) = −
mυ

χ
(
coshρ (υψ) − sinhρ (υε) + m

) , (4.40)

W36(ε) = −
υ
(
sinhρ (υε) + coshρ (υε)

)
χ
(
sinhρ (υε) + coshρ (υε) + n

) . (4.41)

Case 12. When χ = pq, υ = p, δ = 0 and q , 0,

W37(ε) = −
mρpε

m − qnρpε , (4.42)

sinhρ(ε) =
mρε − nρ−ε

2
, coshρ(ε) =

mρε + nρ−ε

2
,

tanhρ(ε) =
mρε − nρ−ε

mρε + nρ−ε
, cothρ(ε) =

mρε + nρ−ε

mρε − nρ−ε
,

sechρ(ε) =
2

mρε + nρ−ε
, cschρ(ε) =

2
mρε − nρ−ε

,

sinρ(ε) =
mρiε − nρ−iε

2i
, cosρ(ε) =

mρiε + nρ−iε

2
,

tanρ(ε) = −i
mρiε − nρ−iε

mρiε + nρ−iε , cotρ(ε) = i
mρiε + nρ−iε

mρiε − nρ−iε ,

secρ(ε) =
2

mρε + nρ−ε
, cscρ(ε) =

2i
mρε − nρ−ε

.

The deformation parameters m and n are arbitrary constants greater than zero.

4.2. Application to Eq (4.1)

Applying the transformations Eqs (3.5)–(3.7) on the Eqs (3.1)–(3.3) respectively. The real and
imaginary parts of the obtained ordinary differential equation are respectively:

e2(β − 3γl)U′′(ε) + (m + γl3 − l2β)U(ε) + (δ − 3λl)U3(ε) = 0, (4.43)(
c + 3βel − 3γel2

)
U′(ε) + 3λeU2(ε)U′(ε) + γe3U′′′(ε) = 0, (4.44)

where c = 3γel2−2βle. The homogeneous balancing constant N=1 of Eq (4.43). Therefore, the solution
can be written in the form

U(ε) = a0 + a1(W(ε)), (4.45)
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where
W ′(ε) = ln(ρ)

(
δ + υQ(ε) + χQ2(ψ)

)
, ρ , 0, 1. (4.46)

By using Eq (4.45) into Eq (4.43) and equating the coefficients of different powers of W(ε), we will
obtain a system of algebraic equations which can be solved with the help of Mathematica software:[

a0 = ±
υe

√
β − 3lγ

√
6lλ − 2δ

log[ρ], a1 = ±
2χe

√
β − 3lγ

√
6lλ − 2δ

log[ρ], m = l2(β − lγ) +
1
2

e2(β − 3γl)Ξ log[ρ]2
]
.

(4.47)
We get the general solution by substituting Eq (4.47) into Eq (4.45):

Q(x, t) = (υΩ + 2χΩ(Wi(ε))) × eiθ(x,t). (4.48)

Here, Ω = ±
e
√
β−3lγ

√
6lλ−2δ

log[ρ] and Ξ = υ2 − 4δχ. Many different solutions can be generated by taking Wi

from the Eqs (4.6)–(4.42).
Case 1. When υ2 − 4δχ < 0 and χ , 0,

Q1(x, t) = Ω
√
−Ξ tanρ

 √−Ξ

2
ε

 × eiθ(x,t), (4.49)

Q2(x, t) = −Ω
√
−Ξ cotρ

 √−Ξ

2
ε

 × eiθ(x,t), (4.50)

Q3(x, t) = Ω
√
−Ξ

(
tanρ

(√
−Ξε

)
±
√

mn secρ
(√
−Ξε

))
× eiθ(x,t), (4.51)

Q4(x, t) = Ω
√
−Ξ

(
cotρ

(√
−Ξε

)
±
√

mn cscρ
(√
−Ξε

))
× eiθ(x,t), (4.52)

Q5(x, t) =
Ω
√
−Ξ

2

tanρ

 √−Ξ

4
ε

 − cotρ

 √−Ξ

4
ε

 × eiθ(x,t). (4.53)

Case 2. When υ2 − 4δχ > 0 and χ , 0,

Q6(x, t) = Ω
√
−Ξ tanhρ

 √−Ξ

2
ε

 × eiθ(x,t), (4.54)

Q7(x, t) = −Ω
√
−Ξ cothρ

 √−Ξ

2
ε

 × eiθ(x,t), (4.55)

Q8(x, t) = Ω
√
−Ξ

(
tanhρ

(√
−Ξε

)
± ι
√

mn sechρ
(√
−Ξε

))
× eiθ(x,t), (4.56)

Q9(x, t) = Ω
√
−Ξ

(
cothρ

(√
−Ξε

)
±
√

mnρ
(√
−Ξε

))
× eiθ(x,t), (4.57)

Q10(x, t) = −
Ω
√

Ξ

4χ

tanhρ

 √Ξ

4
ε

 + cothρ

 √Ξ

4
ε

 × eiθ(x,t). (4.58)

Case 3. When δχ > 0 and υ = 0,

Q11(x, t) = 2Ω
√
δχ tanρ

( √
δχε

)
× eiθ(x,t), (4.59)
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Q12(x, t) = −2χ
( √

δχ cotρ
( √

δχε
))
× eiθ(x,t), (4.60)

Q13(x, t) = 2Ω
( √

δχ
(
tanρ

(
2
√
δχε

)
±
√

mn secρ
(
2
√
δχε

)))
× eiθ(x,t), (4.61)

Q14(x, t) = 2Ω
( √

δχ
(
− cotρ

(
2
√
δχε

)
±
√

mn cscρ
(
2
√
δχε

)))
× eiθ(x,t), (4.62)

Q15(x, t) = Ω

(√
δχ

(
tanρ

( √
δχ

2
ε

)
− cotρ

( √
δχ

2
ε

)))
× eiθ(x,t). (4.63)

Case 4. When δχ < 0 and υ = 0,

Q16(x, t) = −2Ω
( √
−δχ tanhρ

( √
−δχε

))
× eiθ(x,t), (4.64)

Q17(x, t) = −2Ω
( √
−δχ cothρ

( √
−δχε

))
× eiθ(x,t), (4.65)

Q18(x, t) = 2Ω
( √
−δχ

(
− tanhρ

(
2
√
−δχε

)
± i
√

mn sechρ
(
2
√
−δχψ

)))
× eiθ(x,t), (4.66)

Q19(x, t) = 2Ω
( √
−δχ

(
− cothρ

(
2
√
−δχε

)
±
√

mn cschρ
(
2
√
−δχε

)))
× eiθ(x,t), (4.67)

Q20(x, t) = −Ω

(√
−δχ

(
tanhρ

( √
−δχ

2
ε

)
+ cothρ

( √
−δχ

2
ε

)))
× eiθ(x,t). (4.68)

Case 5. When υ = 0 and δ = χ,

Q21(x, t) = 2χΩ
(
tanρ (χε)

)
× eiθ(x,t), (4.69)

Q22(x, t) = 2χΩ
(
− cotρ (χε)

)
× eiθ(x,t), (4.70)

Q23(x, t) = 2χΩ
(
tanρ (2χε) ±

√
mn secρ (2χε)

)
× eiθ(x,t), (4.71)

Q24(x, t) = 2χΩ
(
− cotρ (2χε) ±

√
mn cscρ (2χε)

)
× eiθ(x,t), (4.72)

Q25(x, t) = χΩ

((
tanρ

(
χ

2
ε
)
− cotρ

(
χ

2
ε
)))
× eiθ(x,t). (4.73)

Case 6. When υ = 0 and δ = −χ,

Q26(x, t) = 2χΩ
(
− tanhρ (−χε)

)
× eiθ(x,t), (4.74)

Q27(x, t) = 2χΩ
(
− cothρ (−χε)

)
× eiθ(x,t), (4.75)

Q28(x, t) = 2χΩ
(
− tanhρ (−2χε) ± i

√
mn sechρ (−2χε)

)
× eiθ(x,t), (4.76)

Q29(x, t) = 2χΩ
(
− cothρ (−2χε) ±

√
mn cschρ (−2χε)

)
× eiθ(x,t), (4.77)

Q30(x, t) = −χΩ

((
tanhρ

(
−χ

2
ε
)

+ cothρ
(
−χ

2
ε
) ))
× eiθ(x,t). (4.78)

Case 7. When υ2 =
√

4δχ,

Q31(x, t) = Ω
√

4δχ + Ω

−(
√

4δχε ln ρ + 2)
ε ln ρ

 × eiθ(x,t). (4.79)
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Case 8. When δ = pq, q , 0, υ = p and χ = 0,

Q32(x, t) = Constant solution. (4.80)

Case 9. When υ = 0 and χ = 0,
Q33(x, t) = 0. (4.81)

Case 10. When υ = 0 and δ = 0,

Q34(x, t) = −2Ω

(
1

εln[ρ]

)
× eiθ(x,t). (4.82)

Case 11. When υ , 0 and δ = 0,

Q35(ε) = υΩ − 2Ω

− mυ(
coshρ (υψ) − sinhρ (υε) + m

) × eiθ(x,t), (4.83)

Q36(ε) = υΩ − 2Ω

 υ
(
sinhρ (υε) + coshρ (υε)

)(
sinhρ (υε) + coshρ (υε) + n

) × eiθ(x,t). (4.84)

Case 12. When χ = pq, υ = p, q , 0 and δ = 0,

Q37(ε) = υΩ − 2χΩ

(
mρpε

m − qnρpε

)
× eiθ(x,t). (4.85)

Adopt the ε and θ as per concerning fractional derivative from Eqs (3.5)–(3.7) corresponding to
Riemann-Liouvilla, β and Atangana-Baleanue operators respectively.

5. Graphical analysis

Figure 1 is providing 2D and 3D graphical description of complex amplitude of waves for the
solution Q1(x, t) with the parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1, λ = 1, β = 1, l = 0.4,
e = 0.3, υ = 1, χ = 1 and δ = 1 by utilizing the RL, β and AB fractional operator for α = 0.1.
Figure (1a)–(1c) is 3D presentation of complex amplitude that is displaying the bright-dark, bright
and bright periodic singular behavior with the RL, β and AB fractional order derivatives respectively.
Figure (1d) is made to portray 2D graphical comparison of the fractional operators used to attain our
results.
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(a) 3D description of complex amplitude with the RL (b) 3D description of complex amplitude with the β

(c) 3D description of complex amplitude with AB (d) 2D graphical comparison of the operators

Figure 1. Three dimensional graphical explanation for Q1(x, t) at the α = 0.1.
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Figure 2 is providing 2D and 3D graphical description of complex amplitude of waves for the
solution Q1(x, t) with the parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1, λ = 1, β = 1,
l = 0.4, e = 0.3, υ = 1, χ = 1 and δ = 1 by utilizing the RL, β, and AB fractional operator at
the α = 0.5. Figure (2a)–(2c) is 3D presentation of complex amplitude that is displaying the bright
singular, bright and bright-singular periodic behavior with the RL, β and AB fractional derivative
respectively. Figure (2d) is displaying 2D graphical comparison of the utilized fractional operators.

(a) 3D description of complex amplitude with the RL (b) 3D description of complex amplitude with the β

(c) 3D description of complex amplitude with the AB (d) 2D graphical comparison of the operators

Figure 2. Three dimensional graphical explanation for Q1(x, t) at the α = 0.5.
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Figure 3 is providing description of complex amplitude of waves for the solution Q1(x, t) with the
parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1, λ = 1, β = 1, l = 0.4, e = 0.3, υ = 1, χ = 1
and δ = 1 by utilizing the RL, β and AB fractional operator at the α = 0.9. Figure (3a)–(3c) is 3D
presentation of complex amplitude that is displaying the bright-singular, bright-singular, and bright
periodic singular behavior with the RL, β and AB fractional derivative respectively. Figure (3d) is
displaying 2D graphical comparison of the utilized fractional operators.
Remark 5.1. It is observed that as we increase the fractional-order towards the classical order
operators are trying to get a similar pattern.

(a) 3D description of complex amplitude with the RL (b) 3D description of complex amplitude with the β

(c) 3D description of complex amplitude with the AB (d) 2D graphical comparison of the operators

Figure 3. Three dimensional graphical explanation for Q1(x, t) at the α = 0.9.
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Figure 4 is depicting the 2D graphical comparison of utilized operators and influence of fractional
order for the solution Q1(x, t) with the parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1, λ = 1, β = 1,
l = 0.4, e = 0.3, υ = 1, χ = 1 and δ = 1 by utilizing the RL, β and AB fractional operator. Figure (4a)
is comparison of fractional and classical results. Figure (4b)–(4d) are showing the difference due to
variation of fractional order for the RL, β and AB operator.

Remark 5.2. It is investigated that the behavior with RL and β-fractional derivative is showing
fluctuations due to variance of fractional order but AB operator is same throughout.

(a) 2D comparison at classic order

(b) 2D graphical impact of α on RL

(c) 2D graphical impact of α on β

(d) 2D graphical impact of α on AB

Figure 4. Two dimensional graphical explanation for Q1(x, t) at classic order and variance
of fractional order.
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Figure 5 is providing 2D and 3D graphical description of complex amplitude of waves for the
solution Q35(x, t) with the parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1, λ = 1, β = 1,
l = 0.4, e = 0.3, υ = 1 and δ = 0 by utilizing the RL, β and AB fractional operator at the α = 0.1.
Figure (5a)–(5c) is 3D presentation of complex amplitude that is displaying the dark, bright and bright-
dark behavior with RL, β and AB fractional derivative respectively. Figure (5d) is displaying 2D
graphical comparison of the utilized fractional operators.

(a) 3D description of complex amplitude with the the RL (b) 3D description of complex amplitude with the β

(c) 3D description of complex amplitude with the AB (d) 2D graphical comparison of the operators

Figure 5. Three dimensional graphical explanation for Q35(x, t) at the α = 0.1.
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Figure 6 is providing 2D and 3D graphical description of complex amplitude of waves for the
solution Q35(x, t) with the parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1, λ = 1, β = 1,
l = 0.4, e = 0.3, υ = 1 and δ = 0 by utilizing the RL, β and AB fractional operator at the α =

0.5. Figure (6a)–(6c) are 3D presentation of complex amplitude that is displaying the dark, bright
and bright-dark behavior with the RL, β and AB fractional derivative. Figure (6d) is displaying 2D
graphical comparison of the utilized fractional operators.

(a) 3D description of complex amplitude with the RL (b) 3D description of complex amplitude with the β

(c) 3D description of complex amplitude with the AB (d) 2D graphical comparison of the operators

Figure 6. Three dimensional graphical explanation for Q35(x, t) at the α = 0.5.
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Figure 7 is providing 2D and 3D graphical description of complex amplitude of waves for the
solution Q35(x, t) with the parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1, λ = 1, β = 1,
l = 0.4, e = 0.3, υ = 1 and δ = 0 by utilizing the RL, β and AB fractional operator at the α = 0.9.
Figure (7a)–(7c) is 3D presentation of complex amplitude that is displaying the bright-dark, bright-
dark and bright-dark behavior with RL, β and AB fractional derivative respectively. Figure (7d) is
displaying 2D graphical comparison of the utilized fractional operators.
Remark 5.3. It is observed that as we increase the fractional order towards the classical order
operators are trying to get similar pattern.

(a) 3D description of complex amplitude with the RL (b) 3D description of complex amplitude with the β

(c) 3D description of complex amplitude with the AB (d) 2D graphical comparison of the operators

Figure 7. Three dimensional graphical explanation for Q35(x, t) at the α = 0.9.
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Figure 8 is depicting the 2D graphical comparison of utilized operators and influence of fractional
operator for the solution Q35(x, t) with the parametric values are ρ = 0.5, γ = 1, γ0 = 1, δ = 1,
λ = 1, β = 1, l = 0.4, e = 0.3, υ = 1 and δ = 0 by utilizing the RL, β and AB fractional operator.
Figure (8a) provides a comparison of fractional and classical results. Figure (8b)–(8d) are showing the
difference due to variation of fractional order for the RL, β and AB operator.

Remark 5.4. It is investigated that the behavior with RL and β-fractional derivative is showing
fluctuations due to the variance of fractional order but the AB operator is the same throughout.

(a) 2D comparison at classic order

(b) 2D graphical impact of fractional order on the RL

(c) 2D graphical impact of fractional order on the β

(d) 2D graphical impact of fractional order on the AB

Figure 8. Two dimensional graphical explanation for Q35(x, t) at classic order and variance
of fractional order.
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6. Conclusions

The present study has developed a multi-wave non-linear fractional Hirota model from the classical
non-linear Hirota equation with the help of three different fractional definitions namely as Riemann-
Liouville fractional order derivative, β-fractional operator, and Atangana-Baleanu in sense of Riemann-
Liouville derivative. This fractional model gets the ordinary configuration that has a resemblance to
the cubic Duffing equation. The extended direct algebraic method has been deployed with success to
extract the exact traveling wave solutions. The obtained results carry some new features specifically,
trigonometric, exponential, rational, and hyperbolic functions that delineate an interesting pattern of
waves in the non-linear optical field. The important outcomes are listed below:

• On the same value of fractional order, Riemann-Liouville derivative predicted dark-singular
soliton, the β-fractional operator exhibited dark soliton, while the Atangana-Baleanu operator
delineated dark-singular-periodic soliton.
• The Atangan-Baleanu fractional operator is more reliable operator as compared to Riemann-

Liouville and β-fractional operator.
• The Atangana-Baleanu derivative is also more consistent than Riemann-Liouville and β

differential operator.

To interpret the graphic phenomenon, 2D and 3D plots are plotted by holding suitable values of the
involved parameters. The extracted solutions are also evidence of method liability and a remarkable
role in treating the non-linear complex models.
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23. L. Akinyemi, M. Şenol, H. Rezazadeh, H. Ahmad, H. Wang, Abundant optical soliton solutions
for an integrable (2+1)-dimensional nonlinear conformable Schrödinger system, Results Phys., 25
(2021), 104177. https://doi.org/10.1016/j.rinp.2021.104177

24. M. A. Akbar, L. Akinyemi, S. W. Yao, A. Jhangeer, H. Rezazadeh, M. M. A. Khater, et al.,
Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method,
Results Phys., 25 (2021), 104228. https://doi.org/10.1016/j.rinp.2021.104228

25. L. Akinyemi, K. Hosseini, S. Salahshour, The bright and singular solitons of (2+1)-dimensional
nonlinear Schrödinger equation with spatio-temporal dispersions, Optik, 242 (2021), 167120.
https://doi.org/10.1016/j.ijleo.2021.167120

26. L. Akinyemi, H. Rezazadeh, S. W. Yao, M. A. Akbar, M. M. A. Khatere, A. Jhangeer, et al.,
Nonlinear dispersion in parabolic law medium and its optical solitons, Results Phys., 26 (2021),
104411. https://doi.org/10.1016/j.rinp.2021.104411
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