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1. Introduction

The topic of fractional differential equations received immense popularity and attraction due to their
extensive use in the mathematical modeling of several real world phenomena. Examples include HIV-
immune system with memory [1], stabilization of chaotic systems [2], chaotic synchronization [3, 4],
ecology [5], infectious diseases [6], economic model [7], fractional neural networks [8,9], COVID-19
infection [10], etc. A salient feature distinguishing fractional-order differential and integral operators
from the classical ones is their nonlocal nature, which can provide the details about the past history of
the phenomena and processes under investigation. In the recent years, many researchers contributed to
the development of fractional calculus, for example, see [11-24] and the references cited therein. One
can also find a substantial material about fractional order coupled systems in the articles [25-34].
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In this paper, motivated by [30], we consider a Caputo type coupled system of nonlinear fractional
differential equations supplemented with a new set of boundary conditions in terms of the sum and
difference of the governing functions given by

CDYo(1) = f(t, (1), y(1)), teJ:=[0,T],
DPY(t) = g(t, (1), Y(1)), teJ:=[0,T],

m

Pl +9)(0) + Pa(¢ + ¥)(T) = ) aile + ¥)(e),

i=1

T [
fo (¢ - w)(s)ds — f (6 —w)(s)ds = A,
n

(1.1)

where €DY is the Caputo fractional derivative operator of order y € {v,p}, v,p € (0,1],0 < o; < n <

{<T,i=1,...,m(thecase 0 < n < < o; < T can be treated in a similar way), Py, P,,a;, A are
m

nonnegative constants, such that P; + P, — a;#0,T-(+n#0,and f,g : [0,T] xR*> - R are
i=1
continuous functions.

Here it is imperative to notice that the first condition introduced in the problem (1.1) can be inter-
preted as the sum of the governing functions ¢ and i at the end positions of the interval [0, T'] is sum
of similar contributions due to arbitrary positions at o; € (0, T),i = 1, ..., m, while the second condition
describes that the contribution of the difference of the governing functions ¢ and ¢ on the domain [0, T']
differs from the one an arbitrary sub-domain (77, £) by a constant A.

We will also study the problem (1.1) by replacing A in the last condition with the one containing
nonlinear Riemann-Liouville integral term of the form:

1

T
Gl fo (T = 5)° 'h(s, o(s), ¥(s)ds, &> 0, (1.2)

where i : [0,T] x R? — R is a given continuous function.

We organize the rest of the paper as follows. In Section 2, we outline the related concepts of
fractional calculus and establish an auxiliary lemma for the linear analogue of the problem (1.1). We
apply the standard fixed point theorems to derive the existence and uniqueness results for the problem
(1.1) in Section 3. The case of nonlinear Riemann-Liouville integral boundary conditions is discussed
in Section 4. The paper concludes with some interesting observations and special cases.

2. Preliminaries

Let us begin this section with some preliminary concepts of fractional calculus [11].

Definition 2.1. The Riemann-Liouville fractional integral of order q > 0 of a function h : [0,0) — R
is defined by

t (t _ S)q—l
o Ig)
provided the right-hand side is point-wise defined on (0, 00), where I is the Gamma function.

Ih(t) = h(s)ds, t>0,

AIMS Mathematics Volume 7, Issue 5, 8314-8329.



8316

Definition 2.2. The Caputo fractional derivative of order q for a function h : [0, c0] — R with h(t) €
AC"[0, o) is defined by

1 " h"(s)

c _
i = L(n—q) Jo (t— sy

ds=TI"""@1), t>0,n—1< q <n.

Lemma 2.1. Let g > 0 and h(t) € AC"[0, o0) or C"[0, o). Then

Ly X))
(I CDIR)() = h(t) — Z () # t>0,n—1<qg<n. 2.1)

k=0
Now we present an auxiliary lemma related to the linear variant of problem (1.1).

Lemma 2.2. Let ¥,G € C[0,T), o, € AC[0,T). Then the solution of the following linear coupled
system:

CD'o(t) = F(#), tel:=[0,T],
DY) =G@), teJ:=[0,T],

m

Pi(p +¥)(0) + Polg + Y)(T) = ) ailp + Y,

i=1

(2.2)

T £
fo (o= ¥)(s)ds — f (p—¥)(s)ds = A,
n

is given by

y—1
o(t) = f - s) F(s)ds

T (s —x)! S(s=xp!
2{A_2 "y (fo oy ) On _fo My 9)s

TSy (T - sy
r(() )7-‘(1 s)ds + j; r((p) )pg(ls)ds) (2.3)

s—x)" S (s — x)P~
Az U o) F(x)dx — o) g(x)dx)ds

l ]al (O-l - S)V : (O-l )p :
o) ———F (s)ds +f7 o) (s)ds)},

t(t—S)p_l
d
) T W

(s =" (s =2y
_{_+— f f Ty T 0dx - f T G0dx)ds

(T =) (T = sy”!
o) F(s)ds + fo o G(s)ds) (2.4)

il
1 ¢ S (S—X)V_l S (S—X)p_l
i f; f oy s - |, S—Gwss

_ oyl -
1 lal (0-1 S) T(s)ds +f (0-1 S)p Q(s)ds)},

w(r) =

(v I'(p)
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where

A, =P+ Py — Z a; # 0, (2.5)

i=1

Ar:i=T -0+ #0. (2.6)

Proof. Applying the operators I and /¥ on the first and second fractional differential equations in
(2.2) respectively and using Lemma 2.1, we obtain

(i) = fo ¢ ;(?)V_lf (s)ds + ¢, 2.7)
Y1) = Ot(t ;(:);_lg(s)dHcZ, (2.8)
where 1, ¢ € R Tnserting (2.7) and (2.8) in the condition P, (+0)(0)+ Pa(o+)(T) = 3" aslg+9)(c),
we get -
R e T
_p, fo (Tr_ (3 ~ F(s)ds + fo & F_(;;p_ g(s)ds)}. (2.9)

T e
Using (2.7) and (2.8) in the condition f (o —Y)(s)ds — f (o —¥)(s)ds = A, we obtain
0 n

1 (s — x)V ! S (s—x)p!
cl—cy = Az{ f f F(x)dx — T g(x)dx)ds

_ -1l — -1
0

Solving (2.9) and (2.10) for ¢, and ¢;, yields

_ v—1 X _ -1
o = ;{Ai _ L f (s x) Foode— [ & B (f)))p G(x)dx)ds
2 0
(T—S)V ! (T — sy
) F(s)ds + fo o) g(s)ds)
(s —x)"! (s
A2 T] f o) F(x)dx . T To) g(x)dx)ds

(O-Z_S)Vl (l_s)pl
f o =L F(s)ds+ f o) (s)ds)},
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and
& = ;{;\Z‘ f (s_x)“?‘( x - Os(s;();))p_lg(x)dx)ds
g - (S;V ]T(S)ds al a - G5)ds)
Az , f (s - - ))V_lf(x)dx— Os(s ;(2);_1 G(0dx)ds

1 (o =) (o —sy!
o Zla( fo oy T s+ f o) g(s)ds)}.

Substituting the values of ¢; and ¢; in (2.7) and (2.8) respectively, we get the solution (2.3) and (2.4).
By direct computation, one can obtain the converse of this lemma. The proof is complete. m|

3. Main results

Let X = C([0,T],R) x C([0,T],R) denote the Banach space endowed with the norm ||(¢, ¥)|| =
llell + [l = sup le@@)| + sup [¥(2)|, (p,¥) € X. In view of Lemma 2.2, we define an operator

: X — X in relation to thetelg%gl]olem (1.1) as
B, (1) = (@4 (6. YD), Dol YD) 3.1)
where
®1 (. 0)(1)
- =/ (= 97 (5,50, 950
¥ ;{%——2 f (S_ )V 0. U~ fo o ;(Z))p_lgu,so(x>,w(x))dx)ds
- 2 f (Tr_(szvlf(s,so<s>,w<s))ds+ fo ' (Tr(;;p_lg<s,<,o<s),w<s>)ds)
+ AZ , f Sl - ;V_lﬂx,so(x),w(x))dx— Os(s ;(f)))p_lgu,so(x), w()dx)ds
e f e~ ))” (s, 9(5), W(s)ds + f T 1 (s,c,o<s>,«//(s>>ds)}, (32)
and
2. ) (1)
= r(p)f(t—S)p (s, (), Y(s))ds
' %{_AZ‘ A f (s_x)v 0, YN~ f i o " e g0, YO )ds
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~ &( (T— )vl _)pl

= (s p(s). (s + f &

¢ _ v—1 _
- A% () E F(X)) Fx,0), p(x))lx f (S x)” S g (r(0), () )ds

T (O'i _ s)p 1

m (0_l )v |
+ A1 - f” o) J(s,0(5), y(s8))ds + i F—(mg(s,go(s),w(s))ds)}. (3.3)

(s, ¢(s), ¥(s))ds)

In the forthcoming analysis, we need the following assumptions.
(H;) There exist continuous nonnegative functions y;, x; € C([0, 1],R"),i = 1,2, 3, such that
(@ 00| < pn(0) + po(lel + 3Ol V(10,40 € T X R
8t 0. 9| < k1 (1) + ka(Dlpl + k(O] V(. 0,9) € T X R,
(H,) There exist positive constants «;, B;, i = 1,2, such that
lf(t,01,91) = f(t, 02, 92| S @il — ol + aolyy —Yal, Yied, g €R,i=1,2;
182, 01, ¥1) — 8t 02, Y2)l < Biler — @l + Balprs —Yol, Vi€ d gy €R, i=12.

For computational convenience, we introduce the notation:

m v

g T 1 {v+1 _ nv+1 Tv+1
B T 1 P 4
T A ;alr(v+1)+ ool Il oy o) (3.4)
_ N T° 1 §P+1 _ nPJrl TP+l
@7 2|A1| Zalr(p I 1) Zr(p + 1)] + 2|A2|[ T(o+2) + T+ 2)], (3.5)

=

and

. T T*
M, = mln{l - [||,uz||(2gl + Tot 1)) + ||K2||(2Qz + T+ 1))],

4

T T°
1- [”/.13”(2Q1 + m) + ||K3||(292 + m)]}

We make use of the following fixed point theorem [35] to prove the existence of solutions for the
problem (1.1).

Lemma 3.1. Let & be the Banach space and Q : & — & be a completely continuous operator. If the
set Q = {x € E|x = uQx, 0 < u < 1} is bounded, then Q has a fixed point in &.

Theorem 3.1. Suppose that f,g : J X R?> — R are continuous functions and the condition (H,) holds.
Then there exists at least one solution for the problem (1.1) on J if

hall(201 + 7575) + Mall(202 + 7o) < 1,
hsll(201 + 7555) + sll(202 + 2o5) < 1.
where 0; (i = 1,2) are defined in (3.4)—(3.5).

(3.6)
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Proof. Observe that continuity of ® : X — X follows from that of the functions f and g. Now we
show that the operator ® maps any bounded subset of X into a relatively compact subset of X. For that,
let Q; C X be bounded. Then, for the positive real constants L; and L,, we have

|f @, (@), Y < Ly, 1g(2, (), y(0))] < Ly, Y(p,¢) € Q.
So, for any (¢, ¥) € Q;, t € J, we get

D1 (@, YD)

IA

Lf ! v—1
m \fo‘ (t—1s)""ds
(A 1 (7 S (s—x)! S (s —xp!
+ {|A2| —f (ijo‘ —F(v) dx+Lgf0 o) dx)ds
f -9 f T -
+ S
|A1| T T
N f (S—x)v 1 f (S—x)p 1 ds
1Al 0
o (O-l - )V ! (o-l - S)p !
* |A1|Z f ) d+Lf T s}

LfT Lf m O—i é«v+1 _ ]7 Tv+1
< S— 4 ] + + ]
Tor+1)  2Al & “To+n " r(v +1) 2|A2| Tv+2) T(+2)
A TP 0+1 +1 Tp+l A
+ [Z a —+ P ] + [{ U + ] + ,
2AML & T+ 1) T+ D! 2/Al T(o+2) " T(+2) " 2/A

which, in view of (3.4) and (3.5), takes the form:

v A
O (p, )| < L + + L,00 + ——. 3.7
D1 (¢, Y) 0] f(m D 01) + Leor T (3.7)
In a similar fashion, one can obtain
D (0, p)(1)] < L +L(L+ )+ 4 (3.8)
2P, = LyOr g Tp+1) ©2 2|A2|- .

From (3.7) and (3.8), we get

1D, Il = [|P1(p, Y + ([P, Y|
v o
Lf(r(v+ ) +2QI)JFLA’(F(,M +202) + Al

From the foregoing inequality, we deduce that the operator @ is uniformly bounded.
In order to show that ® maps bounded sets into equicontinuous sets of X, let #,#, € [0, T], #; < t,, and
(o, ¥) € Q;. Then

1 i
©1(¢, ¥)(12) ~ ()0 < 'W( fo [(22 = )" = (1 = 5" 1f (s (). Y(s))ds

+ f (12 = 5™ f(s,p(5). w())ds)

AIMS Mathematics Volume 7, Issue 5, 8314-8329.
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(2(t2 -0+ - t{)
f T(v+1)

Analogously, we can obtain

2(l2—l‘1)p+l'g—l'll)
T+ 1) )

D2, ¥)(12) = Do, ()| < L

Clearly the right-hand sides of the above inequalities tend to zero when #; — f,, independently of
(¢, ¥) € Q;. Thus it follows by the Arzela-Ascoli theorem that the operator @ : X — X is completely
continuous.

Next we consider the set & = {(¢, ¥) € X|(p,¥) = AD(p, ¥),0 < A < 1} and show that it is bounded.
Let (¢, ¥) € &, then (¢, ) = AD(p,¥), 0 < A < 1. For any t € J, we have

@(t) = AD (@, Y)(1), Y(1) = AD, (e, Y)(0).

As in the previous step, using o; (i = 1, 2) given by (3.4)-(3.5), we find that

v

r@+1)+@)

o)l = AP, ) < (Il + lealllpll + s i)

A
+ (lall + el + sl es + 5,

(] = AP (e, )@ < (||,Ul||+||,Uz||||90||+||,U3||||l//||)Q1

T? A
+ (Ill + il + ||K3||||w||)(m +02)+ AT
In consequence, we get
T T° A
< 2 2
lgll + gl < el 91+m+1))+nmn( Q2+F(p+1))+ ™
v P
+ 201 + + 20, +
[lle2ll(201 T ) lkelle: r<p+1>)]”‘””
T T
2 2 .
+{lusli(201 + o7 1)) + lIksl(202 + ot 1))]nwn
Thus, by the condition (3.6), we have
1 v TP A
< — 201 + + 20, + +
Il < efiball2en + Fos) + lall(2e2 r(p+1)) L

which shows that [|(¢, ¥)|| is bounded for ¢ € J. In consequence, the set & is bounded. Thus it follows
by the conclusion of Lemma 3.1 that the operator ®@ has at least one fixed point, which is indeed a
solution of the problem (1.1). O

Letting uy(t) = ps(r) = 0 and k,(f) = «3(f) = 0, the statement of Theorem 3.1 takes the following
form.
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Corollary 3.1. Let f,g : J x R? — R be continuous functions such that

fEe. Wl <@, lgte. 9l < k@),  Y,e,p) € J xR,
where uy,k; € C([0, T],R"). Then there exists at least one solution for the problem (1.1) on J.
Corollary 3.2. If u(t) = A;, ki(t) = &;,1 = 1,2, 3, then the condition (H,) becomes:
(H}) there exist real constants A;,&; > 0, i = 1,2, such that

lf(t, 0, W) < A + Dalgl + A3l (@, ) € X R?;

f(t, 0.0 < &1 + &gl + &3lyl YV, @,9) € T X R
and (3.6) takes the form:

v TP

/12(2@ + F(V n 1)) + 82(2@2 + m)

v TP
Aa(201 + T+ 1)) +ea(202+ T+ 1))

Then there exists at least one solution for the problem (1.1) on J.

The next result is concerned with the existence of a unique solution for the problem (1.1) and is
reliant on the contraction mapping principle due to Banach.

Theorem 3.2. Let f, g : [0,1] X R? — R be continuous functions and the assumption (H,) holds. Then
the problem (1.1) has a unique solution on J if

v 0

a(r(v+ DT 21) +ﬁ(m

where @ = max{a,a,}, B = max{B,5,} and o;, i = 1,2, are defined in (3.4)-(3.5).

+ 2@2) <1, (3.9)

Proof. Consider the operator @ : X — X defined by (3.1) and take

A
M, (r<v+1> + 291) + Mz(r(pn) + 292) Adl
1= (of iy +2¢1) +'8(r(p+1) +20:))
where M, = sup |f(¢,0,0)|, and M, = sup |g(#,0,0)|. Then we show that ®B, C B,, where B, =

t€[0,T] t€[0,T]
{(p,¥) € X : |l(¢,¥)|| < r}. By the assumption (H,), for (¢,¥) € B,, t € [0, T], we have

2

@ o), ) < |f (7, 0(0), (1) = f(£,0,0)] + |f(z,0,0)|
a(le®)] + [y () + M,
a(llell + [yl + M;.

IA

IA

In a similar manner, one can find that
g (7, (1), y(D)| < Blllgll + [W]) + Ms.
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In consequence, for (¢, ¥) € B,, we obtain

o 1)(a(||90|| + liyll) + M)

1l A 1 Tv+l Tp+l
[ (Cligplt + ||¢/||)+M1)+

D1 (e, )] <

(BClIgl + Iyl + M)

E |A2| i |A2| F(V—l— 2) r(p 2)
P
+ﬁ(m " 1)(a(||¢|| + llgll) + M) + (p (/3(||90|| + Iyl + My))
§v+1 _ nv+1 {p+1 n\p"'l
gl T2 (@il + WD+ 1)+ S (Bl + il + M)

1 «© fout O_p
#1202l + WD+ M) + e s (el + b + Mz))]

which, on taking the norm for ¢ € J, yields

v

T A
+01) + oz )(lell + ) + Ml(m Fo)+ Magn + 5

T
191 (p, )| < (“(rw T

In the same way, for (¢, {) € B,, one can obtain
T? N ) N A
T+ 7280

1D, WII < (e + B +02))(llgll + Il + M1 + Mo

TP
I'o+1)
Therefore, for any (¢, ) € B,, we have

|D(p, )] 1D (@, Y + [|D2(, Y|

< (a(r(VT; 5+ %) +/3(r(pTi 5+ 202) )il + D

v

T? A
MI(F(V+ D + 2@1) + MZ(F(p ) + 2@2) + — <,

1Al

which shows that ® maps B, into itself.
Next it will be shown that the operator ® is a contraction. For (¢, ¥), (¢2,42) € &, t € [0,T], it
follows by (H,) that

Dy (@1, Y1)(1) — D1 (@2, Y2)(2)]

! _ -l
< Y F(S)) |f(S’ ©1(8), ¥1(8)) = f(s,02(5), t//z(s))|ds
1 _ v—1
* {| Al f f & ) |0, @100, 1(0) = £(x, 92(x), Yo (X)) |dx
(s =y
+ T BRI Y1() — 8020, 0] dx)ds

T — v—1
! f ( s) |£(s, 1), 01 (5)) = f(s, @a(5), a(s))|dis

T -
+ f ( r(p) |g(S,901(S),l//1(S))— 85, @2(5), U (5))|ds)

AIMS Mathematics Volume 7, Issue 5, 8314-8329.
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1 _ )yl
* @f( R X) £, @1 (), Y1 (0) = f(x, @2(x), Ya(x))]dx
n

S (s —xy!
L'(p)

Sl [T 51006 - S5 2000 w0
|A1| P l 0 F(V) > P W ,02(S8), Y2

Ig(x,sol(x),wl(x» — 8(x, 92(x), Yo (x))|dx)ds

o - -1
+ \fOV (O-lr(;))p |g(S, @1 (S)’ '701 (S)) - g(S, ()02(‘9)’ 17[/2(S))|d5)}

IA

TV
{a/(l“(v D +Ql) +,392}(||901 = @all + |l = ¢alD),

and

| Dy (1, Y1)(#) — P2, Y2) (D)

fp oyl
= (t I‘*(;): |g(s’ QO](S)a wl (S)) - g(s, 902(5)’ wz(s))|ds
1 _ v—1
+ {|A2|f f (s X) |f(x ©1(x0), Y1 (x)) — f(x, 2(x), lﬂz(X))|dx
C(s—xp!
¥ ) Ig(x,mx),wl(x)) — gt @), Ya(0)|dx)ds
T — y—1
" |A1| f : r(ii [£(5,01(5).01(5) = f(5,02(5). Ya())|ds
T —
. [ F(;;p |05, 1(5). ¥1(5)) = 8(5, 92(5). Ya(s))|ds)
1 ¢ S _ -l
" @f(fo : F(i; £, @1(0), Y1(2)) = Fx, @2(x), Yo (x))|dx
n
S _ p_l
+ (s r(;)) |g(x,901(x),¢/1(x)) —g(x, 902(x),¢2(X))|dx)ds

1 2 Ti ;- v—1
" g 2 f T 1(5) = 5 2 (5]

+

f (mr(p) 1205, 1(5), 1 (5)) = g5, @2(5), wz(s>)|ds)}

< +B(—— + — |l + - .
< {agl ,B(F(pH) gz)}(nsol @l + s = vl
In view of the foregoing inequalities, it follows that

1D(p1, Y1) — P2, Yl = [|[@1(1,¥1) — O1(@2, Yl + |21, Y1) — P2, ¥l

T 17
< {“(r(v 120 A 292)}”(«,01 ~ e =Wl
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Using the condition (3.9), we deduce from the above inequality that @ is a contraction mapping. Con-
sequently @ has a unique fixed point by the application of contraction mapping principle. Hence there
exists a unique solution for the problem (1.1) on J. The proof is finished. O

Example 3.1. Consider the following problem
CD'p(r) = f(t, (1), (1), 1€ J:=[0,2],

DYy (r) = g(t, (), ¥ (1)), teJ:=10,2],

(e +¥)0) +5/2p + Y)(2) = 1/2(p + Y)(1/4) + 3/2(p + ¥)(1/2),
k@ -wods - [\ (@ -w)sds =1,

(3.10)

wherev = 1/2, p =4/5,n=2/3,{ =3/4,a, =1/2,a, =3/2, Py =1, P, =5/2, 01 = 1/4,0, =
1/2, A=1,T =2,and f(t,p,¥) and g(t, p,¥) will be fixed later.

Using the given data, we find that Ay = 1.5,A, = 1.91666667, o0 = 2.110627579, 0, =
2.494392906, where A, Ay, 01 and o, are respectively given by (2.5), (2.6), (3.4) and (3.5). For
illustrating theorem 3.1, we take

( lol
(t+2)0\1 + |y

ft, 0, 0) = tan”" @ + y + cost) and g(t.o,y) = sty +e). (31D

e—l‘
SVI16 + tz(

e !cost

Clearly f and g are continuous and satisfy the condition (H;) with p(f) = V6 U ()

e! _ e’ _ ! | _ 1
sV’ l‘t3(t) T 10vie2’ K1 (t) ~ +2)5° KZ(l) = (+2)6° and K3(l) T 2(t+2)6° Also

v P

T T
Ikal(201 + £ 5) + leall(202 + Fo ) ~ 0:398009902

and
v o

+ T+ 1)) + ||K3||(292 + m

Thus all the conditions of theorem 3.1 hold true and hence the problem (3.10) with f(z, ¢,¥) and
g(t, o, ) given by (3.11) has at least one solution on [0, 2].

lasll(2e1 ) ~ 0.199004951 < 1.

Next we demonstrate the application of Theorem 3.2. Let us choose

1

e 'tan” ||

_ @+ cosy 3 .
S, ¥0) = P and g(t,p,¥) = o+ t)6(2 A + smw). (3.12)

It is easy to show that the condition (H,) is satisfied with @; = @, = 1/20 = @ and 8, = 1/64, B, =
1/128 and so, B = 1/64. Also o zhg; + 201) +B( 5l + 202) ~ 039800990 < 1. Thus the hypothesis
of Theorem 3.2 holds and hence its conclusion implies that the problem (3.10) with f(z, ¢,¥) and
g(t, ¢, ¥) given by (3.12) has a unique solution on [0, 2].
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4. Nonlinear Riemann-Liouville integral boundary conditions case

In this section, we consider a variant of the problem (1.1) involving a nonlinear Riemann-Liouville
integral term in the last boundary condition given by

Do(t) = f(t, (1), y(t), teJ:=[0,T],
DY(t) = g(t, p(0),Y(1)), teJ:=[0,T],

= 4.1
Pie +¥)(0) + Polo + 0)(T) = > aip + )0, @D
=1

1

[ -wtsias- [o-oxoas = [ s s e, uas, 5o

Now we state a uniqueness result for the problem (4.1). We do not provide the proof of this result
as it is similar to that of Theorem 3.2.

Theorem 4.1. Let f,g,h : [0,1] Xx R> — R be continuous functions and the following assumption
holds:

(ﬁz) There exist positive constants «;, B;,vi, i = 1,2, such that
lf(t, o, 1) = [, 02, ¥0)l < @il — ool + aalfy —nl, Yied, g €R,i=1,2;

|g(t7 Qolawl) _g(ta 2, wZ)l Sﬁll‘pl - ‘702| +ﬁ2|'ﬁl - !//2|7 Vl‘ € Ja (I8 wi € Ra i = 172;
\h(t, @1, 41) — Wt @2, p2)l S vilpr — ool + yalpr =Yl Vi€ d, g €R, i=1,2.

Then the problem (4.1) has a unique solution on J if

VT Tv TP
A6 + 1) (F(v+ D +2Q1)+ﬁ(r(p+ )

where @ = max{a,, @z}, B = max{B,52},y = max{yy,y>}, and o0;, i = 1,2 are defined in (3.4)-(3.5).

+ 2@2) <1, (4.2)

Example 4.1. Let us consider the data given in Example 3.1 for the problem (4.1) with (3.12),
h(t, o, ) = (sing + cosy + 1/2)/ N2 +49 and § = 3/2. Theny = 1/7 and
T° Tv T°
Y ( + 2@1) + ,8(
|[AT(0 + 1) 'v+1) I'p+1)

Clearly the assumptions of Theorem 4.1 are satisfied. Hence, by the conclusion of Theorem 4.1, the
problem (4.1) with the given data has a unique solution on [0, 2].

+205) ~ 0.5565956 < 1.

5. Conclusions
We have studied a coupled system of nonlinear Caputo fractional differential equations supple-
mented with a new class of nonlocal multipoint-integral boundary conditions with respect to the sum

and difference of the governing functions by applying the standard fixed point theorems. The existence
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and uniqueness results presented in this paper are not only new in the given configuration but also
provide certain new results by fixing the parameters involved in the given problem. For example, our
results correspond to the ones with initial-multipoint-integral and terminal-multipoint-integral bound-
ary conditions by fixing P, = 0 and P; = O respectively in the present results. By taking A = 0 in
the present study, we obtain the results for the given coupled system of fractional differential equations
with the boundary conditions of the form:

m

T e
Pig +0)0) + Palp + 0T = Yty + ). [ e=wonds = [ o= uons
n

i=1

where the second (integral) condition means that the contribution of the difference of the unknown
functions (¢ — ¥) on the domain (0, 7') is equal to that on the sub-domain (7, ). Such a situation arises
in heat conduction problems with sink and source. In the last section, we discussed the uniqueness of
solutions for a variant of the problem (1.1) involving nonlinear Riemann-Liouville integral term in the
last boundary condition of (1.1). This consideration further enhances the scope of the problem at hand.
As a special case, the uniqueness result (Theorem 4.1) for the problem (4.1) corresponds to nonlinear
integral boundary conditions for 6 = 1.
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