Research article

Configuration angle effect on the control process of an oscillatory rotor in 8-pole active magnetic bearings

  • Received: 22 February 2024 Revised: 21 March 2024 Accepted: 26 March 2024 Published: 07 April 2024
  • MSC : 34A34, 34C15, 34C23, 34C25, 34D20, 34E13, 37N15, 70B05, 70K05, 70K40, 70K42, 70K50

  • In an active magnetic bearings (AMBs) model, every pair of opposite poles is aligned at an angle with the horizontal axis. In some configurations, there is a pair of poles which is in line with the horizontal axis. In other configurations, the same pair of poles might make a nonzero angle with the horizontal axis. This paper focused on the effect of changing such a configuration angle on the control process of an oscillatory rotor in an 8-pole active magnetic bearings model. Adopting the proportional-derivative (PD) control algorithm, the radial or Cartesian control techniques were applied. It was found that the rotor's oscillation amplitudes were not affected by the change in the configuration angle, even if its rotation speed and eccentricity were varied in the radial control scheme. However, the amplitudes were severely affected by the change in the configuration angle except at a specific angle in the Cartesian control scheme. The approximate modulating amplitudes and phases of the rotor's oscillations were extracted by the method of multiple-scales and a stability condition was tested based on the eigenvalues of the corresponding Jacobian matrix.

    Citation: Ali Kandil, Lei Hou, Mohamed Sharaf, Ayman A. Arafa. Configuration angle effect on the control process of an oscillatory rotor in 8-pole active magnetic bearings[J]. AIMS Mathematics, 2024, 9(5): 12928-12963. doi: 10.3934/math.2024631

    Related Papers:

  • In an active magnetic bearings (AMBs) model, every pair of opposite poles is aligned at an angle with the horizontal axis. In some configurations, there is a pair of poles which is in line with the horizontal axis. In other configurations, the same pair of poles might make a nonzero angle with the horizontal axis. This paper focused on the effect of changing such a configuration angle on the control process of an oscillatory rotor in an 8-pole active magnetic bearings model. Adopting the proportional-derivative (PD) control algorithm, the radial or Cartesian control techniques were applied. It was found that the rotor's oscillation amplitudes were not affected by the change in the configuration angle, even if its rotation speed and eccentricity were varied in the radial control scheme. However, the amplitudes were severely affected by the change in the configuration angle except at a specific angle in the Cartesian control scheme. The approximate modulating amplitudes and phases of the rotor's oscillations were extracted by the method of multiple-scales and a stability condition was tested based on the eigenvalues of the corresponding Jacobian matrix.



    加载中


    [1] J. C. Ji, C. H. Hansen, Non-linear oscillations of a rotor in active magnetic bearings, J. Sound Vib., 240 (2001), 599–612. https://doi.org/10.1006/jsvi.2000.3257 doi: 10.1006/jsvi.2000.3257
    [2] J. C. Ji, Dynamics of a Jeffcott rotor-magnetic bearing system with time delays, Int. J. Non. Linear. Mech., 38 (2003), 1387–1401. https://doi.org/10.1016/S0020-7462(02)00078-1 doi: 10.1016/S0020-7462(02)00078-1
    [3] W. Zhang, X. P. Zhan, Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness, Nonlinear Dyn., 41 (2005), 331–359. https://doi.org/10.1007/s11071-005-7959-2 doi: 10.1007/s11071-005-7959-2
    [4] X. Y. Li, Y. S. Chen, Z. Q. Wu, T. Song, Response of parametrically excited Duffing-van der Pol oscillator with delayed feedback, Appl. Math. Mech., 27 (2006), 1585–1595. https://doi.org/10.1007/s10483-006-1201-z doi: 10.1007/s10483-006-1201-z
    [5] P. Y. Couzon, J. Der Hagopian, Neuro-fuzzy active control of rotor suspended on active magnetic bearing, J. Vib. Control, 13 (2007), 365–384. https://doi.org/10.1177/1077546307074578 doi: 10.1177/1077546307074578
    [6] J. C. Ji, C. H. Hansen, A. C. Zander, Nonlinear dynamics of magnetic bearing systems, J. Intel. Mat. Syst. Str., 19 (2008), 1471–1491. https://doi.org/10.1177/1045389X08088666 doi: 10.1177/1045389X08088666
    [7] T. Inoue, Y. Sugawara, Nonlinear vibration analysis of a rigid rotating shaft supported by the magnetic bearing (influence of the integral feedback in the PID control of the vertical shaft), J. Syst. Des. Dyn., 4 (2010), 471–483. https://doi.org/10.1299/jsdd.4.471 doi: 10.1299/jsdd.4.471
    [8] T. Inoue, Y. Sugawara, M. Sugiyama, Modeling and nonlinear vibration analysis of a rigid rotor system supported by the magnetic bearing (effects of delays of both electric current and magnetic flux), J. Appl. Mech.-T. ASME., 77 (2010), 1–10. https://doi.org/10.1115/1.3172139 doi: 10.1115/1.3172139
    [9] M. Eissa, M. Kamel, H. S. Bauomy, Nonlinear behavior of tuned rotor-AMB system with time varying stiffness, Int. J. Bifurcat. Chaos, 21 (2011), 195–207. https://doi.org/10.1142/S0218127411028362 doi: 10.1142/S0218127411028362
    [10] X. Y. Xu, W. H: Jiang, Singularity analysis of Jeffcott rotor-magnetic bearing with time delays, Appl. Math., 27 (2012), 419–427. https://doi.org/10.1007/s11766-012-2752-8 doi: 10.1007/s11766-012-2752-8
    [11] L. Li, Y. J. Han, Z. Y. Ren, Nonlinear study of rotor-AMB system subject to multi-parametric excitations, Appl. Mech. Mater., 397 (2013), 359–364. https://doi.org/10.4028/www.scientific.net/AMM.397-400.359 doi: 10.4028/www.scientific.net/AMM.397-400.359
    [12] X. D. Yang, H. Z. An, Y. J. Qian, W. Zhang, M. H. Yao, Elliptic motions and control of rotors suspending in active magnetic bearings, J. Comput. Nonlinear Dyn., 11 (2016), 1–8. https://doi.org/10.1115/1.4033659 doi: 10.1115/1.4033659
    [13] R. Ebrahimi, M. Ghayour, H. M. Khanlo, Chaotic vibration analysis of a coaxial rotor system in active magnetic bearings and contact with auxiliary bearings, J. Comput. Nonlinear Dyn., 12 (2017). https://doi.org/10.1115/1.4034869 doi: 10.1115/1.4034869
    [14] R. Q. Wu, W. Zhang, M. H. Yao, Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness, Mech. Syst. Signal Pr., 100 (2018), 113–134. https://doi.org/10.1016/j.ymssp.2017.07.033 doi: 10.1016/j.ymssp.2017.07.033
    [15] A. K. Jha, S. S. Dasgupta, Attenuation of Sommerfeld effect in an internally damped eccentric shaft-disk system via active magnetic bearings, Meccanica, 54 (2019), 311–320. https://doi.org/10.1007/s11012-018-00936-7 doi: 10.1007/s11012-018-00936-7
    [16] Z. Sun, X. Zhang, T. Fan, X. Yan, J. Zhao, L. Zhao, et al., Nonlinear dynamic characteristics analysis of active magnetic bearing system based on cell mapping method with a case study, Mech. Syst. Signal Pr., 117 (2019), 116–137. https://doi.org/10.1016/j.ymssp.2018.07.030 doi: 10.1016/j.ymssp.2018.07.030
    [17] N. A. Saeed, A. Kandil, Lateral vibration control and stabilization of the quasiperiodic oscillations for rotor-active magnetic bearings system, Nonlinear Dyn., 98 (2019), 1191–1218. https://doi.org/10.1007/s11071-019-05256-3 doi: 10.1007/s11071-019-05256-3
    [18] S. A. A. Hosseini, A. Yektanezhad, Primary resonance analysis of a nonlinear flexible shaft supported by active magnetic bearings using analytical method, ZAMM-Z. Angew. Math. Me., 100 (2020). https://doi.org/10.1002/zamm.201900145 doi: 10.1002/zamm.201900145
    [19] A. Kandil, M. Sayed, N. A. Saeed, On the nonlinear dynamics of constant stiffness coefficients 16-pole rotor active magnetic bearings system, Eur. J. Mech. A-Solid., 84 (2020), 104051. https://doi.org/10.1016/j.euromechsol.2020.104051 doi: 10.1016/j.euromechsol.2020.104051
    [20] A. Kandil, Investigation of the whirling motion and rub/impact occurrence in a 16-pole rotor active magnetic bearings system with constant stiffness, Nonlinear Dynam., 102 (2020), 2247–2265. https://doi.org/10.1007/s11071-020-06071-x doi: 10.1007/s11071-020-06071-x
    [21] W. S. Ma, W. Zhang, Y. F. Zhang, Stability and multi-pulse jumping chaotic vibrations of a rotor-active magnetic bearing system with 16-pole legs under mechanical-electric-electromagnetic excitations, Eur. J. Mech. A-Solids., 85 (2021). https://doi.org/10.1016/j.euromechsol.2020.104120 doi: 10.1016/j.euromechsol.2020.104120
    [22] A. Kandil, Y. S. Hamed, Tuned positive position feedback control of an active magnetic bearings system with 16-Poles and constant stiffness, IEEE Access, 9 (2021), 73857–73872. https://doi.org/10.1109/ACCESS.2021.3080457 doi: 10.1109/ACCESS.2021.3080457
    [23] S. Zhong, L. Li, H. Chen, Z. Lu, A novel balancing method for rotor using unsupervised deep learning, Shock Vib., 2021 (2021). https://doi.org/10.1155/2021/1800164 doi: 10.1155/2021/1800164
    [24] A. Kandil, Y. S. Hamed, A. M. Alsharif, Rotor active magnetic bearings system control via a tuned nonlinear saturation oscillator, IEEE Access, 9 (2021), 133694–133709. https://doi.org/10.1109/ACCESS.2021.3114356 doi: 10.1109/ACCESS.2021.3114356
    [25] N. A. Saeed, A. Kandil, Two different control strategies for 16-pole rotor active magnetic bearings system with constant stiffness coefficients, Appl. Math. Model., 92 (2021), 1–22. https://doi.org/10.1016/j.apm.2020.11.005 doi: 10.1016/j.apm.2020.11.005
    [26] G. Zhang, G. Xi, Vibration control of a time-delayed rotor-active magnetic bearing system by time-varying stiffness, Int. J. Appl. Mech., 14 (2022). https://doi.org/10.1142/S1758825122500077 doi: 10.1142/S1758825122500077
    [27] T. Du, H. Geng, B. Wang, H. Lin, L. Yu, Nonlinear oscillation of active magnetic bearing-rotor systems with a time-delayed proportional-derivative controller, Nonlinear Dynam., 109 (2022), 2499–2523. https://doi.org/10.1007/s11071-022-07557-6 doi: 10.1007/s11071-022-07557-6
    [28] G. Zhang, P. Zhang, Z. Wang, G. Xi, H. Zou, Nonlinear vibration of a magnetic bearing-rotor system based on PD control, Journal Vib. Shock., 41 (2022), 99–105. https://doi.org/10.13465/j.cnki.jvs.2022.10.013 doi: 10.13465/j.cnki.jvs.2022.10.013
    [29] T. Yu, Z. Zhang, Y. Li, W. Zhao, J. Zhang, Improved active disturbance rejection controller for rotor system of magnetic levitation turbomachinery, Electron. Res. Arch., 31 (2023), 1570–1586. https://doi.org/10.3934/ERA.2023080 doi: 10.3934/ERA.2023080
    [30] P. K. Meher, M. A. Ansari, A. Bisoi, Effect of bias current of active magnetic bearing on Sommerfeld effect characterization in an unbalanced rotor dynamic system, Acta Mech., 235 (2024), 907–923. https://doi.org/10.1007/s00707-023-03772-3 doi: 10.1007/s00707-023-03772-3
    [31] W. S. Takam, A. M. Kongne, D. Yemélé, Nonlinear dynamics of two dimensional rotor-active magnetic bearing system with generalized-pole legs: stability state diagram and control strategy, Nonlinear Dynam., 111 (2023), 17909–17937. https://doi.org/10.1007/s11071-023-08800-4 doi: 10.1007/s11071-023-08800-4
    [32] W. Zhang, M. H. Yao, X. P. Zhan, Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness, Chaos Soliton. Fract., 27 (2006), 175–186. https://doi.org/10.1016/j.chaos.2005.04.003 doi: 10.1016/j.chaos.2005.04.003
    [33] J. Li, Y. Tian, W. Zhang, S. F. Miao, Bifurcation of multiple limit cycles for a rotor-active magnetic bearings system with time-varying stiffness, Int. J. Bifurc. Chaos, 18 (2008), 755–778. https://doi.org/10.1142/S021812740802063X doi: 10.1142/S021812740802063X
    [34] W. Zhang, J. W. Zu, Transient and steady nonlinear responses for a rotor-active magnetic bearings system with time-varying stiffness, Chaos Soliton. Fract., 38 (2008), 1152–1167. https://doi.org/10.1016/j.chaos.2007.02.002 doi: 10.1016/j.chaos.2007.02.002
    [35] W. Zhang, J. W. Zu, F. X. Wang, Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness, Chaos Soliton. Fract., 35 (2008), 586–608. https://doi.org/10.1016/j.chaos.2006.05.095 doi: 10.1016/j.chaos.2006.05.095
    [36] W. Zhang, R. Q. Wu, B. Siriguleng, Nonlinear vibrations of a rotor-active magnetic bearing system with 16-Pole legs and two degrees of freedom, Shock Vib., 2020 (2020), 5282904. https://doi.org/10.1155/2020/5282904 doi: 10.1155/2020/5282904
    [37] B. Yang, C. Peng, F. Jiang, S. Shi, A novel model calibration method for active magnetic bearing based on deep reinforcement learning, Guid. Navig. Control, 3 (2023), 2350017. https://doi.org/10.1142/S2737480723500176 doi: 10.1142/S2737480723500176
    [38] X. Xu, Y. Liu, Q. Han, A universal dynamic model and solution scheme for the electrical rotor system with wide range of eccentricity, Int. J. Nonlinear. Mech., 152 (2023), 104402. https://doi.org/10.1016/j.ijnonlinmec.2023.104402 doi: 10.1016/j.ijnonlinmec.2023.104402
    [39] S. Wei, J. Zhou, X. Han, S. Zheng, A simplified analysis method and suppression of the modalities of a magnetic levitation turbo rotor system, Vacuum., 217 (2023), 112452. https://doi.org/10.1016/j.vacuum.2023.112452 doi: 10.1016/j.vacuum.2023.112452
    [40] F. Y. Saket, P. S. Keogh, Force-based feedforward control of persistent synchronous rotor/touchdown bearing contact in active magnetic bearing systems, Mech. Syst. Signal Pr., 201 (2023), 110657. https://doi.org/10.1016/j.ymssp.2023.110657 doi: 10.1016/j.ymssp.2023.110657
    [41] Q. Liu, L. Wang, M. Feng, Clearance compatibility and design principle of the single-structured hybrid gas-magnetic bearing, Ind. Lubr. Tribol., 75 (2023), 1219–1228. https://doi.org/10.1108/ILT-03-2023-0077 doi: 10.1108/ILT-03-2023-0077
    [42] S. Wei, Y. Le, J. Zhou, Y. Yin, D. Zhang, S. Zheng, Stability control of high-speed magnetic levitation turbomolecular pumps with shock-excited disturbance, ISA T., 142 (2023), 585–593. https://doi.org/10.1016/j.isatra.2023.07.045 doi: 10.1016/j.isatra.2023.07.045
    [43] P. Jiang, Y. Tian, B. Wang, C. Guo, Design and analysis of centrifugal compressor in carbon dioxide heat pump system, Sci. Rep., 14 (2024), 5286. https://doi.org/10.1038/s41598-024-55698-y doi: 10.1038/s41598-024-55698-y
    [44] J. Han, Y. Li, F. Xiong, Y. Zuo, N. Zhang, Study on modeling and analysis method of active magnetic bearing-flexible support coupled system, J. Vib. Eng. Technol., 12 (2024), 995–1006. https://doi.org/10.1007/s42417-023-00889-6 doi: 10.1007/s42417-023-00889-6
    [45] Y. Ishida, T. Yamamoto, Linear and nonlinear rotor dynamics: A modern treatment with applications, 2 Eds., Wiley-VCH Verlag GmbH & Co. KGaA, 2012. https://doi.org/10.1002/9783527651894
    [46] A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, Wiley-VCH Verlag GmbH & Co. KGaA, 1995. https://doi.org/10.1002/9783527617586
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(720) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(30)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog