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Abstract: In an active magnetic bearings (AMBs) model, every pair of opposite poles is aligned at an 

angle with the horizontal axis. In some configurations, there is a pair of poles which is in line with the 

horizontal axis. In other configurations, the same pair of poles might make a nonzero angle with the 

horizontal axis. This paper focused on the effect of changing such a configuration angle on the control 

process of an oscillatory rotor in an 8-pole active magnetic bearings model. Adopting the proportional-

derivative (PD) control algorithm, the radial or Cartesian control techniques were applied. It was found 

that the rotor’s oscillation amplitudes were not affected by the change in the configuration angle, even 

if its rotation speed and eccentricity were varied in the radial control scheme. However, the amplitudes 

were severely affected by the change in the configuration angle except at a specific angle in the 

Cartesian control scheme. The approximate modulating amplitudes and phases of the rotor’s 

oscillations were extracted by the method of multiple-scales and a stability condition was tested based 

on the eigenvalues of the corresponding Jacobian matrix. 

Keywords: configuration angle; 8-pole active magnetic bearings; rotor dynamics; quasiperiodic 

response; chaotic response; unbounded response 
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1. Introduction 

Many academics from around the globe are interested in the dynamics of suspended rotors in an 

active magnetic bearings (AMBs) mechanism because of the rotors’ ability to move without friction. 

Incorporating additional design parameters into the study to get closer to the real-world application 

makes rotor dynamics more difficult. Some examples of such design parameters are the rotor’s weight, 

the number of stator poles, the control algorithm type, the presence of eddy currents, and so on. We 

should also enroll and discuss the configuration angle of the poles, another critical aspect. A steady-

state solution to destabilize via saddle-node or Hopf bifurcation was studied by Ji and Hansen [1]. 

There were two stable solutions in the regime where several coexisting solutions were present. They 

looked at how the system’s non-linear response was affected by imbalance eccentricity and the 

controller’s proportional and derivative gains. Ji [2] examined the impact of delays on the system’s 

non-linear dynamical behavior using a Jeffcott rotor that included an extra magnetic bearing located 

at the disc. To find out what a single Hopf bifurcation was, a center manifold was built. This study 

examined the relationship between the amplitude of the steady-state response and various parameters 

such as excitation amplitude, time delays, and control gains. Zhang and Zhan [3] employed the 

asymptotic perturbation approach to study chaotic dynamics and nonlinear oscillations in a rotor-

AMBs system with 8-pole legs and time-varying stiffness. As a function of time, the AMB’s stiffness 

was thought of as periodic. Amplitude oscillations with periods of 3, 4, 6, 7, and 8 were seen, along 

with quasiperiodic and chaotic motions. 

Some papers dealt with approximating the AMBs model by using combinations of simple 

oscillator equations to ease the analysis. Li et al. [4] addressed the dynamical behavior of a 

parametrically stimulated Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback 

control with a time delay. For the major parametric resonance situation, two slow-flow equations on 

the amplitude and phase of response were developed using the method of averaging in conjunction 

with truncation of Taylor expansions. Couzon and Der Hagopian [5] explored the active control of 

structures through AI capabilities, capitalizing on the great promise of merging neural networks with 

fuzzy logic. The study delved into the design, adjustment, and use of this sort of automatically 

adjustable nonlinear controller. In this case, a flexible rotor mounted on AMBs was controlled in its 

operational position by means of neuro-fuzzy control. Ji et al. [6] covered analysis methods, nonlinear 

vibrations caused by a rotor contacting auxiliary bearings, and other related topics in this literature 

review on nonlinear dynamics of magnetic bearing systems. Inoue and Sugawara [7,8] modeled the 

magnetic force by considering the electric current’s second-order delay and the magnetic flux’s first-

order delay. They showed that the AMBs and PID (proportional-integral-derivative) control theory 

could enable a nonlinear analysis of a vertical rigid rotor. Eissa et al. [9] investigated a rotor-AMBs 

system with a stiffness that changed over time while being tuned and subjected to external excitations. 

In the studied resonance situation, Lyapunov’s first approach was used to study the stability of the 

steady-state solution. 

A connection between the Jeffcott rotor and AMBs model is analyzed in some research papers. 

Xu et al. [10] explored a Jeffcott rotor-AMBs model that incorporated time delays. The important 

findings were that the system’s characteristic equation was singularity-satisfying, and the bifurcation 

between simple zero and zero-purely imaginary singularities was studied using center manifold 
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reduction and normal form. Li et al. [11] studied the non-linear behavior of a rotor under multi-

parametric stimuli that was supported by AMBs. Two modes of a rotor-AMBs model were analyzed 

in response to the primary resonance case using the method of multiple scales. In AMBs with eight 

pole pairs, the nonlinear dynamics of the rotors suspended were studied by Yang et al. [12]. Three 

kinds of motions (in-unison modal, elliptic modal, and quasi-periodic) were discovered through research 

into the conservative free vibrations of general 2DOF nonlinear systems. A coaxial rotor system 

supported by two AMBs and in touch with two auxiliary bearings was the focus of the work done by 

Ebrahimi et al. [13], which aimed to forecast the nonlinear dynamic behavior of the system. They also 

included an examination of the contact forces felt by the auxiliary bearings and the inner shaft. 

The stiffness types in AMBs model may create a problem in investigating the optimum conditions 

for the rotor’s operations. Wu et al. [14] examined the complex nonlinear dynamics of rotor-AMBs 

with 16-pole legs and time-varying stiffness. A 2DOF nonlinear system that included the parametric 

excitation, quadratic and cubic nonlinearities was used to formulate the ensuing dimensionless 

equations of motion for the rotor-AMB system. Jha and Dasgupta [15] investigated the Sommerfeld 

effect, characterized by nonlinear jump phenomena of amplitude and rotor speed upon exceeding a 

critical nonlinear input around the critical speed, which was shown by eccentric shaft-disk systems 

with internal damping that were powered by an imperfect power source. Sun et al. [16] applied a cell 

mapping type method to analyze the nonlinear characteristics of an AMBs model. During the on-site 

commissioning experiment, this system was unstable under specific conditions and was stabilized after 

modifying the controller. Saeed and Kandil [17] presented a novel approach to controlling the rotor-

AMBs model’s lateral vibrations to enhance the system’s vibrational behaviors. Thus, the rotor-AMB 

model was updated by incorporating the positive position feedback (PPF) controller and the standard 

proportional-derivative (PD) controller into the system under consideration. Hosseini and Yektanezhad [18] 

examined the primary resonance of a rotor that was both flexible and supported by AMBs. The 

gyroscopic effect was accounted for in the shaft model, but rotating inertia and shear deformation were 

ignored. This situation involved nonlinear boundary conditions and equations of motion. 

Different types of controllers have been applied to suppress the vibrations of AMBs model. 

Kandil et al. [19] focused on a rotor-AMBs system with 16 poles for its oscillatory tendencies. 

Stabilizing the system’s lateral oscillations, which were induced by the rotating disk eccentricity when 

the rotor’s spinning speed was near to the system linear natural frequency, was achieved by using a 

regulated electromagnetic force generated by a typical proportional-derivative controller. Kandil [20] 

studied a constant-stiffness rotor-AMBs system with 16 poles. The imbalance between the rotor’s 

horizontal and vertical displacements was demonstrated by deriving the equations of motion. Thus, the 

rotor could display a variety of whirls, including forward, backward, intermediate, or hybrid. Ma et al. [21] 

studied a nonlinear rotor-AMBs system with time-varying stiffness and 16-pole legs for its stability 

and Shilnikov-type multi-pulse jumping chaotic vibrations under mechanical-electric-electromagnetic 

excitations. The number and type of equilibrium points for the averaged equations were determined 

by applying certain coordinate transformations. To get around the standard PPF’s two high peaks, 

Kandil and Hamed [22] introduced a tuned PPF controller that was combined with a PD controller to 

dampen vibrations in a system of rotor-AMBs with 16 poles and constant stiffness. Zhong et al. [23] 

proposed a unique rotor balancing method based on unsupervised deep learning. In the proposed 

network, additional convolution layers were used not only for the learning of the inverse mapping but 

also for identifying the unbalanced force without labeled data, in comparison to the supervised deep 

network. Kandil et al. [24] proposed a traditional nonlinear saturation controller (NSC) algorithm 

performance enhancement. With the use of a shaft encoder device, the NSC control unit could receive 

the rotor’s measured speed, allowing for the implementation of a tuning mechanism that would result 
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in a tuned NSC. Saeed and Kandil [25] suggested comparing two distinct control schemes in a rotor-

AMBs model. In the first approach, known as Cartesian control, the rotor’s horizontal and vertical 

displacements determined the applied currents to the poles. Second, there was radial control, which 

involved regulating the currents that flowed based on the rotor’s radial displacement. 

Incorporating time-delay in the control process of AMBs model is very crucial to get near to the 

real-world application. Zhang and Xi [26] examined the vibration control of a rotor-AMBs system that 

incorporated a time delay. The results demonstrated that there was a periodic relationship between the 

time delay and the vibration amplitude as well as the stable zone. The nonlinear vibration of a rigid 

rotor hung by AMBs that was subjected to multiple excitations was suppressed by applying a time-

delayed PD controller by Du et al. [27]. There were multi-solutions and jump phenomena, as shown 

by the results, but only under specific circumstances. Zhang et al. [28] investigated the effects of 

disturbance force, proportional gain, and differential gain on the soft-spring or hard-spring 

characteristics utilizing the multiple-scales method for an axial magnetic bearing-rotor system with a 

PD control. Yu et al. [29] established a mathematical model of the rotor of magnetic levitation 

turbomachinery, and an approach to PID control called a linear active disturbance rejection controller 

was introduced. This controller not only addressed previous common issues but also eliminated the need 

for the tedious parameter tuning that was used in the traditional nonlinear controller. Meher et al. [30] 

examined the steady-state and full transient characterization of the Sommerfeld effect in an unbalanced 

rotor-motor AMBs system considering the nonlinear bearing force. They obtained the precise voltage 

needed to pass through the resonance while the transient accelerated by the motor. Takam et al. [31] 

studied the dynamical behavior and static stability of AMBs constructed from 𝑛 arbitrary pairs of 

electromagnetic coils. The obtained frequency response demonstrated that increasing the number 𝑛 

in the bearing and selecting a controller’s proportional gain greater than a threshold value resulted in 

a decreased vibration amplitude. 

According to Shilnikov-type multi-pulse chaotic dynamics, some researchers investigated the 

solutions nature in the AMBs model. Zhang et al. [32] focused on the time-varying stiffness in the 8-pole 

rotor-AMBs system, specifically on the Shilnikov-type multi-pulse chaotic dynamics. The numerical 

results revealed the presence of the characteristic Shilnikov-type multi-pulse chaotic motions in the 

studied model as well as a novel jumping phenomenon with time-varying stiffness. Li et al. [33] 

examined the bifurcations of multiple limit cycles in a rotor-AMBs model where the stiffness changed 

over time. It was discovered that the model, when subjected to various regulating conditions, exhibited 

limit cycles with time-varying stiffness at least 17, 19, 21, and 22 cycles. Zhang and Zu [34] studied 

both the steady and transient nonlinear dynamics of an 8-pole rotor-AMBs model with time-varying 

stiffness. They discovered solutions with 2, 3, 4, 5, 6, multi-, and quasiperiodic behaviors where it was 

possible to apply auto-controlling transient state chaos to both periodic and quasiperiodic motions in 

the steady-state behavior. Zhang et al. [35] focused on the rotor-AMBs model and how it displayed 

chaotic dynamics and global bifurcations. The given methods of selecting other adjacent spaces and 

applying the inner product further reduced the normal form to a simpler one. They showed that there 

were heteroclinic bifurcations and a Shilnikov-type single pulse homoclinic orbit. Zhang et al. [36] 

studied the chaotic dynamics of a rotor-AMBs model with time-varying stiffness and 16-pole legs 

using the asymptotic perturbation method. The frequency response study revealed that the studied 

model exhibited both hardening-type and softening-type nonlinearities. 

Some recent papers discussed including deep learning in controlling the AMBs model. Yang et al. [37] 

proposed the deep reinforcement learning based model calibration frame (DRLMC) as a model 

calibration method. They initiated the dynamic life cycle modeling of a magnetic bearing with damage 

degradation where a Markov decision process (MDP) was then used to model the calibration process, 
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and the degradation parameters were inferred via reinforcement learning (RL). Xu et al. [38] 

presented a universal dynamic model and solution scheme to use both static and dynamic eccentricities 

in a single, succinct air-gap length model to obtain the magnetic pull force and the analytical and 

numerical computation approaches in an electrical rotor model. Wei et al. [39] proposed a method for 

modeling the rotor dynamics based on the rotor’s structural properties to address the problem of the 

magnetic levitation turbo rotor system’s modal self-excited oscillation. The results of the experiments 

confirmed the accuracy and effectiveness of the proposed system. Saket and Keogh [40] described the 

novel contact control method in AMBs system based on measuring the strain in the stator that resulted 

from the contact between the rotor and the touchdown bearings. With the help of the measured data, 

they could determine the phase shifts and frequency dependent magnetic bearing control forces that 

allowed the rotor to recover from contact. Liu et al. [41] investigated the clearance compatibility of 

gas bearings and active magnetic bearings to develop a hybrid bearing design that combined the best 

of both functions of gas and magnetic bearings. Wei et al. [42] dealt with the control of stability of 

shock-excited disturbance in high-speed magnetic levitation turbomolecular pumps to reduce the 

impact of external low-frequency disturbing force on a magnetic levitation turbomolecular pump. 

Jiang et al. [43] designed a carbon dioxide heat pump system with a centrifugal compressor where a 

synchronous motor with a high-speed permanent magnet drove the compressor directly. The motor was 

equipped with active magnetic bearings and two-stage impellers on either side. Han et al. [44] obtained 

an effective solution for vibration control of the AMB-flexible support structure by modifying the 

structure according to the method proposed, where this modification reduced base vibration under the 

excitation of rotor rotation frequency. 

An 8-pole AMBs model with an oscillating rotor was introduced in this research along with a 

study on how the configuration angle affected the control process. The popular PD control algorithm-

based radial and Cartesian control schemes were chosen. We have shown that the rotor’s oscillation 

amplitudes were not affected by the change in the configuration angle, even if its rotation speed and 

eccentricity were varied in the radial control scheme. Furthermore, the amplitudes were severely 

affected by the change in the configuration angle except at a specific angle in the Cartesian control 

scheme. The rotor’s oscillations were governed by a system of two ordinary differential equations that 

are nonlinear. A stability test was constructed by checking the associated Jacobian matrix’s eigenvalues, 

and the approximate modulating amplitudes and phases of the rotor’s oscillations were retrieved using 

the multiple-scales approach. The current study provides a broader view of the authors’ investigation 

by including various numerical and analytical responses. 

2. Modelling the motion of an 8-pole rotor-AMBs model 

The vertically supported 8-pole rotor-AMBs model is shown in Figure 1. The motion equations 

of the rotor are written as [45]: 

𝑀�̈� + 𝛿�̇� − 𝑅𝑥 = 𝑀𝐸Ω2 cos(Ω𝑡),        (1) 

𝑀�̈� + 𝛿�̇� − 𝑅𝑦 = 𝑀𝐸Ω2 sin(Ω𝑡),        (2) 

where 𝑥 and 𝑦 are the horizontal and vertical displacements of the rotor, respectively, the dot refers to 

differentiation with respect to time 𝑡 , and 𝑅𝑥  and 𝑅𝑦  represent the nonlinear magnetic restoring 

resultant forces in the 𝑥 and 𝑦 directions, respectively. Additionally, the symbols 𝑀, 𝐸, and Ω are 

the mass, eccentricity, and rotating speed of the rotor, respectively, while 𝛿 is the presumed viscous 

damping factor. Due to the mechanical design, the angle between the central axes of any two consecutive 
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poles is 𝛼 = 𝜋/4. 

   
(a)           (b) 

Figure 1. Vertically supported 8-pole rotor-AMBs model: (a) initial configuration at 𝛽 =
0°; (b) another configuration at 𝛽 > 0°. 

As shown in Figure 1(a), the poles are arranged in an initial configuration at 𝛽 = 0°, i.e., the 

central axes of the first and fifth poles are horizontal. In addition, Figure 1(b) shows another 

configuration at 𝛽 > 0°, or in other words, the central axes of the first and fifth poles are inclined with 

the horizontal axis by an angle 𝛽. Moreover, every pole (electromagnet) of the eight poles can induce 

an electromagnetic force 𝐹𝑛 (𝑛 = 1, 2, ⋯ , 8) according to the relation: 

𝐹𝑛 = 𝐾 (
𝐼0−𝐼𝑛

𝐶0−𝐶𝑛
)

2

,          (3) 

where 𝐾 is a constant value related to the design parameters of each pole’s coil, 𝐼0 is the preliminary 

current for an initial suspension, 𝐼𝑛 is the control current which is adjusted through a feedback control, 

and 𝐶0 and 𝐶𝑛 are the static and dynamic gaps, respectively, between the rotor and every pole. The 

dynamic gap 𝐶𝑛 can be defined as 

𝐶𝑛 = 𝑥 cos((𝑛 − 1)𝛼 + 𝛽) + 𝑦 sin((𝑛 − 1)𝛼 + 𝛽),      (4) 

where 𝛼  is the angle between any two poles and 𝛽  is the configuration angle. The nonlinear 

magnetic restoring resultant forces 𝑅𝑥 and 𝑅𝑦 can be computed as 

𝑅𝑥 = ∑ 𝐹𝑗 cos((𝑗 − 1)𝛼 + 𝛽)
8

𝑗=1
,       (5) 

𝑅𝑦 = ∑ 𝐹𝑗 sin((𝑗 − 1)𝛼 + 𝛽)
8

𝑗=1
.       (6) 

The control current 𝐼𝑛 is generated depending on the most suitable way to control such a model that 

is the proportional-derivative (PD) controller. Hence, we are introducing two different strategies, the 

radial PD control method and the Cartesian PD control method, and will explore whether there is a 

relation between the applied control strategy and the configuration angle 𝛽. 
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2.1. The relation between the radial PD control technique and the configuration angle 𝛽 

The proportional-derivative (PD) controller is one of the most robust controllers in AMBs models 

as was stated in [1–3,6,9,14]. It can be enrolled into the model’s equations of motion by being 

analytically differentiated and approximated in an easy manner. In addition, it can give acceptable 

levels of vibration suppression via adjusting its simple gains. In this paper, our focus is not on the 

application of PD on AMBs because it was used before. Our focus is on exploring the effect of 

changing the configuration angle on the PD control process of AMBs. The radial PD control method 

adjusts the control current 𝐼𝑛  in order to be a function of the rotor’s dynamic gap 𝐶𝑛  and its 

derivative �̇�𝑛 as follows 

𝐼𝑛 = 𝑔1𝐶𝑛 + 𝑔2�̇�𝑛,         (7) 

where 𝑔1 and 𝑔2 denote the proportional and derivative gains, respectively. Substituting Eqs (4) and (7) 

into Eq (3) gives us the approximated forms of Eqs (5) and (6) up to the third-order expansions. 

Afterward, inserting the resulting 𝑅𝑥 and 𝑅𝑦 into Eqs (1) and (2) yields 

�̈� + 휁𝑟�̇� + 𝜔𝑟
2𝑥 + 𝜚1(𝑥3 + 𝑥𝑦2) + 𝜚2(�̇�𝑦2 + 2𝑥𝑦�̇� + 3𝑥2�̇�) + 𝜚3(𝑥�̇�2 + 2�̇�𝑦�̇� + 3𝑥�̇�2) 

= 𝑒Ω2 cos(Ω𝑡),               (8) 

�̈� + 휁𝑟�̇� + 𝜔𝑟
2𝑦 + 𝜚1(𝑦3 + 𝑥2𝑦) + 𝜚2(𝑥2�̇� + 2𝑥�̇�𝑦 + 3𝑦2�̇�) + 𝜚3(�̇�2𝑦 + 2𝑥�̇��̇� + 3𝑦�̇�2) 

= 𝑒Ω2 sin(Ω𝑡),               (9) 

where the parameters 𝑒, 휁𝑟 , 𝜔𝑟
2, 𝜚1, 𝜚2, and 𝜚3 are given in Appendix A. The detailed derivation 

of Eqs (8) and (9) is given in Appendix C. To get an approximate solution of the nonlinear DEs 

Eqs (8) and (9), the multiple-scales procedure [46] has been utilized. The dimensionless horizontal 

and vertical rotor’s oscillations 𝑥(𝑡) and 𝑦(𝑡) can be expressed as 

𝑥(𝑡; 휀) = 𝑥0(𝑇0, 𝑇1) + 휀𝑥1(𝑇0, 𝑇1) + 𝑂(휀2),     (10) 

𝑦(𝑡; 휀) = 𝑦0(𝑇0, 𝑇1) + 휀𝑦1(𝑇0, 𝑇1) + 𝑂(휀2),     (11) 

where 𝑇0 and 𝑇1 are two different time scales and 휀 is a perturbation parameter. The adopted real-

time ordinary-derivative is converted to multiple-times partial-derivatives to be 

𝑑𝑗

𝑑𝑡𝑗 = (∑ 휀𝑖𝐷𝑖
∞
𝑖=0 )

𝑗
,         (12) 

where we need in this work the second derivative as the highest one, so 𝑗 = 1, 2, and also the adopted 

partial derivatives are 𝐷0 = 𝜕/𝜕𝑇0  and 𝐷1 = 𝜕/𝜕𝑇1 , so 𝑖 = 1, 2 . A suitable scaling with 휀  is 

imposed on specific parameters of Eqs (8) and (9) such that 

휁𝑟 = 휀휁̃𝑟, 𝜚1 = 휀�̃�1, 𝜚2 = 휀�̃�2, 𝜚3 = 휀�̃�3, 𝑒 = 휀�̃�.      (13) 

Substituting Eqs (10)–(13) into Eqs (8) and (9) and following the procedure of multiple scales can lead 

us to the following autonomous system governing the rotor’s motion amplitudes (𝑎𝑥 and 𝑎𝑦) and 

phases (𝜓𝑥 and 𝜓𝑦): 

�̇�𝑥 = − (
𝜁𝑟

2
) 𝑎𝑥 − (

𝜚1+𝜚3𝜔𝑟
2

8𝜔𝑟
) 𝑎𝑥𝑎𝑦

2 sin(2𝜓𝑥𝑦) − (
𝜚2

8
) 𝑎𝑥𝑎𝑦

2 cos(2𝜓𝑥𝑦)  

− (
3𝜚2

8
) 𝑎𝑥

3 − (
𝜚2

4
) 𝑎𝑥𝑎𝑦

2 + (
𝑒Ω2

2𝜔𝑟
) sin 𝜓𝑥,        (14) 
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�̇�𝑥 = Ω − 𝜔𝑟 − (
𝜚1+𝜚3𝜔𝑟

2

8𝜔𝑟
) 𝑎𝑦

2 cos(2𝜓𝑥𝑦) + (
𝜚2

8
) 𝑎𝑦

2 sin(2𝜓𝑥𝑦) − (
3𝜚1+3𝜚3𝜔𝑟

2

8𝜔𝑟
) 𝑎𝑥

2  

− (
𝜚1+𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑦

2 + (
𝑒Ω2

2𝜔𝑟
)

cos 𝜓𝑥

𝑎𝑥
,           (15) 

�̇�𝑦 = − (
휁𝑟

2
) 𝑎𝑦 + (

𝜚1 + 𝜚3𝜔𝑟
2

8𝜔𝑟
) 𝑎𝑥

2𝑎𝑦 sin(2𝜓𝑥𝑦) − (
𝜚2

8
) 𝑎𝑥

2𝑎𝑦 cos(2𝜓𝑥𝑦) − (
3𝜚2

8
) 𝑎𝑦

3  

− (
𝜚2

4
) 𝑎𝑥

2𝑎𝑦 − (
𝑒Ω2

2𝜔𝑟
) cos 𝜓𝑦,             (16) 

�̇�𝑦 = Ω − 𝜔𝑟 − (
𝜚1 − 𝜚3𝜔𝑟

2

8𝜔𝑟
) 𝑎𝑥

2 cos(2𝜓𝑥𝑦) − (
𝜚2

8
) 𝑎𝑥

2 sin(2𝜓𝑥𝑦) − (
3𝜚1 + 𝜚3𝜔𝑟

2

8𝜔𝑟
) 𝑎𝑦

2  

− (
𝜚1+𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥

2 + (
𝑒Ω2

2𝜔𝑟
)

sin 𝜓𝑦

𝑎𝑦
,            (17) 

where 𝜓𝑥𝑦 = 𝜓𝑥 − 𝜓𝑦. The fixed points of Eqs (14)–(17) can be found by assuming that �̇�𝑥 = �̇�𝑦 =

�̇�𝑥 = �̇�𝑦 = 0. Hence, the resulting system of nonlinear equations is solved numerically to find the set 

of fixed points {𝑎𝑥𝑠, 𝑎𝑦𝑠, 𝜓𝑥𝑠, 𝜓𝑦𝑠}. This set of fixed points is tested for stability by proposing the 

following: 

𝑎𝑥 = 𝑎𝑥𝑠 + Δ𝑎𝑥,          (18) 

𝜓𝑥 = 𝜓𝑥𝑠 + Δ𝜓𝑥,         (19) 

𝑎𝑦 = 𝑎𝑦𝑠 + Δ𝑎𝑦,          (20) 

𝜓𝑦 = 𝜓𝑦𝑠 + Δ𝜓𝑦,         (21) 

where the set {Δ𝑎𝑥 , Δ𝑎𝑦 , Δ𝜓𝑥 , Δ𝜓𝑦 } are small changes added to the set {𝑎𝑥𝑠 , 𝑎𝑦𝑠 , 𝜓𝑥𝑠 , 𝜓𝑦𝑠 }. 

Inserting Eqs (18)–(21) into Eqs (14)–(17) and keeping only the linear terms in the expansions of the 

set {Δ𝑎𝑥, Δ𝑎𝑦, Δ𝜓𝑥, Δ𝜓𝑦}, we get 

[Δ�̇�𝑥 Δ�̇�𝑥 Δ�̇�𝑦 Δ�̇�𝑦]
𝑇

= 𝑱[Δ𝑎𝑥 Δ𝜓𝑥 Δ𝑎𝑦 Δ𝜓𝑦]𝑇,     (22) 

where 𝑱  is the Jacobian matrix, and Appendix B contains its entries. Asymptotically stable fixed 

points are those that have all their real parts in the Jacobian eigenvalues being negative. They are 

considered unstable otherwise. 

2.2. The relation between the Cartesian PD control and the configuration angle 𝛽 

Herein, the control current 𝐼𝑛 is to be adjusted as 

𝐼1 = 𝐼8 = −𝐼4 = −𝐼5 = 𝑔1𝑥 + 𝑔2�̇�,        (23) 

𝐼2 = 𝐼3 = −𝐼6 = −𝐼7 = 𝑔1𝑦 + 𝑔2�̇�.        (24) 

Substituting Eqs (23) and (24) into Eq (3), then inserting the third-order expansions of Eqs (5) and (6) 

into Eqs (1) and (2) lead to the following dimensionless system of DEs according to the same 

normalization process done in subsection 2.1. 

�̈� + 휁𝑐�̇� + 𝜔𝑐
2𝑥 + 휂1𝑥3 + 휂2𝑥𝑦2 + 휂3𝑥2�̇� + 휂4�̇�𝑦2 + 휂5𝑥�̇�2 + 휂6𝑥�̇�2 + 휂7𝑥𝑦�̇� + 휂8�̇� 

+휂9𝑦 + 휂10𝑥2𝑦 + 휂11𝑦3 + 휂12𝑥2�̇� + 휂13𝑦2�̇� + 휂14�̇�2𝑦 − 휂14𝑦�̇�2 
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+휂15𝑥�̇�𝑦 = 𝑒Ω2 cos(Ω𝑡),            (25) 

�̈� + 휁𝑐�̇� + 𝜔𝑐
2𝑥 + 휂1𝑥3 + 휂2𝑥𝑦2 + 휂3𝑥2�̇� + 휂4�̇�𝑦2 + 휂5𝑥�̇�2 + 휂6𝑥�̇�2 + 휂7𝑥𝑦�̇� + 휂8�̇� 

+휂9𝑦 + 휂10𝑥2𝑦 + 휂11𝑦3 + 휂12𝑥2�̇� + 휂13𝑦2�̇� + 휂14�̇�2𝑦 − 휂14𝑦�̇�2 

+휂15𝑥�̇�𝑦 = 𝑒Ω2 cos(Ω𝑡),            (26) 

where the parameters 휁𝑐, 𝜔𝑐
2, and 휂1,…, 휂15 depend directly on the configuration angle 𝛽 and are 

given in Appendix A. Using the multiple-scales approach [46], an approximate solution of the 

nonlinear DEs Eqs (25) and (26) has been obtained. The rotor’s modulated amplitudes (𝑎𝑥 and 𝑎𝑦) 

and phases (𝜓𝑥 and 𝜓𝑦) are governed by the given autonomous system: 

 

�̇�𝑥 = − (
휁𝑐

2
) 𝑎𝑥 − (

휂2 − 휂6𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑥𝑎𝑦

2 sin(2𝜓𝑥𝑦) − (
휂10 + 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥

2𝑎𝑦 sin 𝜓𝑥𝑦

− (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑦

3 sin 𝜓𝑥𝑦 − (
휂9

2𝜔𝑐
) 𝑎𝑦 sin 𝜓𝑥𝑦

+ (
휂4 − 휂7

8
) 𝑎𝑥𝑎𝑦

2 cos(2𝜓𝑥𝑦) − (
휂12 + 휂15

8
) 𝑎𝑥

2𝑎𝑦 cos 𝜓𝑥𝑦

− (
휂13

8
) 𝑎𝑦

3 cos 𝜓𝑥𝑦 − (
휂8

2
) 𝑎𝑦 cos 𝜓𝑥𝑦 − (

휂3

8
) 𝑎𝑥

3 − (
휂4

4
) 𝑎𝑥𝑎𝑦

2

+ (
𝑒Ω2

2𝜔𝑐
) sin 𝜓𝑥 , 

(27) 

�̇�𝑥 = Ω − 𝜔𝑐 − (
휂2 − 휂6𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑦

2 cos(2𝜓𝑥𝑦) − (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑎𝑦 cos 𝜓𝑥𝑦

− (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑦
3 cos 𝜓𝑥𝑦

𝑎𝑥
− (

휂9

2𝜔𝑐
)

𝑎𝑦 cos 𝜓𝑥𝑦

𝑎𝑥

− (
휂4 − 휂7

8
) 𝑎𝑦

2 sin(2𝜓𝑥𝑦) − (
3휂12 + 휂15

8
) 𝑎𝑥𝑎𝑦 sin 𝜓𝑥𝑦 + (

휂13

8
)

𝑎𝑦
3 sin 𝜓𝑥𝑦

𝑎𝑥

+ (
휂8

2
)

𝑎𝑦 sin 𝜓𝑥𝑦

𝑎𝑥
− (

3휂1 + 휂5𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑥

2 − (
휂2 + 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑦

2 + (
𝑒Ω2

2𝜔𝑐
)

cos 𝜓𝑥

𝑎𝑥
, 

(28) 

�̇�𝑦 = − (
휁𝑐

2
) 𝑎𝑦 + (

휂2 − 휂6𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑥

2𝑎𝑦 sin(2𝜓𝑥𝑦) − (
휂10 + 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑎𝑦

2 sin 𝜓𝑥𝑦

− (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥

3 sin 𝜓𝑥𝑦 − (
휂9

2𝜔𝑐
) 𝑎𝑥 sin 𝜓𝑥𝑦

+ (
휂4 − 휂7

8
) 𝑎𝑥

2𝑎𝑦 cos(2𝜓𝑥𝑦) + (
휂12 + 휂15

8
) 𝑎𝑥𝑎𝑦

2 cos 𝜓𝑥𝑦

+ (
휂13

8
) 𝑎𝑥

3 cos 𝜓𝑥𝑦 + (
휂8

2
) 𝑎𝑥 cos 𝜓𝑥𝑦 − (

휂3

8
) 𝑎𝑦

3 − (
휂4

4
) 𝑎𝑥

2𝑎𝑦

− (
𝑒Ω2

2𝜔𝑐
) cos 𝜓𝑦, 

(29) 
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�̇�𝑦 = Ω − 𝜔𝑐 − (
휂2 − 휂6𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥

2 cos(2𝜓𝑥𝑦) + (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑎𝑦 cos 𝜓𝑥𝑦

+ (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑥
3 cos 𝜓𝑥𝑦

𝑎𝑦
+ (

휂9

2𝜔𝑐
)

𝑎𝑥 cos 𝜓𝑥𝑦

𝑎𝑦

+ (
휂4 − 휂7

8
) 𝑎𝑥

2 sin(2𝜓𝑥𝑦) + (
3휂12 − 휂15

8
) 𝑎𝑥𝑎𝑦 sin 𝜓𝑥𝑦 + (

휂13

8
)

𝑎𝑥
3 sin 𝜓𝑥𝑦

𝑎𝑦

+ (
휂8

2
)

𝑎𝑥 sin 𝜓𝑥𝑦

𝑎𝑦
− (

3휂1 + 휂5𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑦

2 − (
휂2 + 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥

2 + (
𝑒Ω2

2𝜔𝑐
)

sin 𝜓𝑦

𝑎𝑦
. 

(30) 

The fixed points of Eqs (27)–(30) are computed by letting �̇�𝑥 = �̇�𝑦 = �̇�𝑥 = �̇�𝑦 = 0, then the resulting 

system of nonlinear equations is solved numerically to find the set of fixed points {𝑎𝑥𝑠, 𝑎𝑦𝑠, 𝜓𝑥𝑠, 𝜓𝑦𝑠}. 

The stability of the gained fixed points can be tested by substituting Eqs (18)–(21) into Eqs (27)–(30), then 

following the same stability analysis done in subsection 2.1 to derive an equation in the following form: 

[Δ�̇�𝑥 Δ�̇�𝑥 Δ�̇�𝑦 Δ�̇�𝑦]
𝑇

= 𝑳[Δ𝑎𝑥 Δ𝜓𝑥 Δ𝑎𝑦 Δ𝜓𝑦]𝑇,     (31) 

where the entries of the newly deduced Jacobian matrix 𝑳 are given in Appendix B. 

3. Analytical results and discussion 

The figures indicating the effect of the configuration angle 𝛽 and different parameters of the 

studied model for either control scheme are included in this section. Furthermore, there are adopted 

values for some other parameters such as: 𝑝 = 1.22, 𝑑 = 0.005, 𝛿1 = 0.001, and 𝑒 = 0.01, unless 

otherwise mentioned. The curves that are plotted in solid form denote stable paths of equilibrium 

amplitudes, while the dashed curves refer to unstable paths of equilibrium amplitudes based upon the 

stability criteria discussed in Eqs (22) and (31). 

3.1. Results on the relation between the configuration angle 𝛽 and the radial control scheme 

Herein, we are going to plot the figures depending on the analysis done in Section 2.1. In Eqs (8) 

and (9), there are nonlinear coefficients 𝜚1, 𝜚2, and 𝜚3 that are given in Appendix A as functions of 

the parameters 𝑝, 𝑑, and 𝛽. These nonlinear coefficients are plotted as functions of the configuration 

angle 𝛽  (in a range from 0°  to 45° ) keeping 𝑝  and 𝑑  fixed at specific values. This is to 

investigate the dependence of such coefficients on the angle 𝛽 as shown in Figure 2. The nonlinear 

coefficients 𝜚1 , 𝜚2 , and 𝜚3  are not affected by the change in the angle 𝛽  in the radial control 

method. They change only if the parameters 𝑝  and 𝑑  are varied. This can be explained as the 

sinusoidal functions of 𝛽, defined in the equations of 𝜚1, 𝜚2, and 𝜚3, cancel each other as if they do 

not exist. 
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(a)        (b)        (c) 

Figure 2. The relations between 𝜚1, 𝜚2, 𝜚3 vs. the configuration angle 𝛽: (a) 𝜚1 vs. 𝛽 

at 𝑑 = 0.005 and different 𝑝, (b) 𝜚2 vs. 𝛽 at 𝑑 = 0.005 and different 𝑝, (c) 𝜚3 vs. 

𝛽 at 𝑝 = 1.22 and different 𝑑. 

As can be seen from Eqs (9) and (10), the displacements 𝑥(𝑡)  and 𝑦(𝑡)  are governed by 

symmetrical differential equations in the parameters’ values. The only difference is that they are 

excited by cos(Ω𝑡)  and sin(Ω𝑡) , respectively, where this will affect the solutions’ phases only 

without affecting the solutions’ amplitudes. Moreover, computing the amplitudes 𝑎𝑥 and 𝑎𝑦 in 

Eqs (14)–(17) gives us identical values for both amplitudes. Hence, we have merged the two identical 

amplitude plots into one figure as will be shown. For different values of the angle 𝛽 (0°, 10°, 22.5°, 

30°, and 45°), the rotor’s equilibrium amplitudes 𝑎𝑥 and 𝑎𝑦 of Eqs (14)–(17) have been plotted in 

response to the change of the rotor’s rotation speed Ω and its eccentricity 𝑒 as shown in Figure 3. It 

is also assured, as in Figure 2, that the amplitudes 𝑎𝑥 and 𝑎𝑦 are not affected by the change in the 

angle 𝛽. On the other hand, raising the rotor’s eccentricity 𝑒 can enhance the nonlinear behavior 

denoted by the curve’s bending to the right due to the hardening behavior of the electromagnetic 

restoring forces. 

 

(a)          (b) 

Figure 3. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. its rotation speed Ω at different values of 

its eccentricity 𝑒: (a) 𝑎𝑥 and 𝑎𝑦 vs. Ω, (b) 3D surface of 𝑎𝑥 and 𝑎𝑦 vs. Ω and 𝑒. 

In addition, the relations of the rotor’s equilibrium amplitudes 𝑎𝑥 and 𝑎𝑦 versus its eccentricity 𝑒 

at different values of its rotation speed Ω and different configuration angles 𝛽 are shown in Figure 4. 
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The crucial role of Ω is when it increases, the response curve begins to have unstable branches as 

shown in the figure. Each unstable branch is confined between two saddle-node bifurcation points that 

switch the stability condition of the curve. It seems that the unstable branch is enlarged in proportion 

to increasing the rotation speed Ω, where a possibility of an amplitude jump can happen between two 

stable branches. 

 

(a)            (b) 

Figure 4. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. its eccentricity 𝑒 at different values of 

its rotation speed Ω: (a) 𝑎𝑥 and 𝑎𝑦 vs. 𝑒, (b) 3D surface of 𝑎𝑥 and 𝑎𝑦 vs. 𝑒 and Ω. 

The effect of varying the position-gain 𝑝 on the rotor’s equilibrium amplitudes in response to its 

rotation speed Ω is depicted in Figure 5. As can be seen, the amplitudes get larger in the case of raising 

the position-gain 𝑝 along with the rotation speed Ω. This gives us a clue about higher oscillation 

amplitudes to make the rotor impact with the pole legs. The unstable branches at lower values of 𝑝 

and Ω do not exist at higher values of 𝑝 and Ω. Furthermore, Figure 6 shows the effect of increasing 

the position-gain 𝑝 and the rotor’s eccentricity 𝑒 on its amplitudes 𝑎𝑥 and 𝑎𝑦  at rotation speed 

Ω = 1.5 . Increasing the value of 𝑝  is extremely important in this response curve because of the 

elimination of the unstable dashed branches that in turn eliminate the amplitude jumps with generated 

lower rotor’s amplitudes, as shown. It is also appearing on the 3D surface that beyond the value 𝑝 =

1.4, the rotor’s amplitudes become linearly proportional of small slope with its eccentricity 𝑒. This 

can be illustrated from Eqs (8) and (9) where the cubic restoring force parameter 𝜚1 =

−6(𝑝 − 1)(𝑝 − 2). This parameter’s value can mainly affect the nonlinear behavior of the curve (jump 

phenomenon and unstable branches). As can be noticed, if 𝑝 → 2, then the value of 𝜚1 approaches 

zero, which means the elimination of the curve’s right-bending form. 
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(a)            (b) 

Figure 5. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. rotation speed Ω at different values of 

the position-gain 𝑝 and eccentricity 𝑒 = 0.01: (a) 𝑎𝑥 and 𝑎𝑦 vs. Ω, (b) 3D surface of 

𝑎𝑥 and 𝑎𝑦 vs. Ω and 𝑝. 

 
(a)             (b) 

Figure 6. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. eccentricity 𝑒 at different values of the 

position-gain 𝑝 and rotation speed Ω = 1.5: (a) 𝑎𝑥 and 𝑎𝑦 vs. 𝑒, (b) 3D surface of 𝑎𝑥 

and 𝑎𝑦 vs. 𝑒 and 𝑝. 

As the effects of the position-gain 𝑝 have been investigated on the rotor’s amplitudes responses 

to its speed Ω and eccentricity 𝑒, the same analysis will be done with respect to the velocity-gain 𝑑. 

Figures 7 and 8 clarify such effects on the rotor’s amplitudes at a position-gain value 𝑝 = 1.22. The 

figures show that the velocity-gain 𝑑 can enhance the damping performance of the rotor’s oscillatory 

amplitudes. In Figure 7, the peak amplitudes have been suppressed monotonically with increasing 𝑑 

in addition to getting rid of the unstable dashed branches, as shown. Moreover, in Figure 8, raising 𝑑 

can eliminate the unstable dashed branches, too. This can be helpful in avoiding the amplitude jump 

either when varying the rotor’s speed Ω or its eccentricity 𝑒. 
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(a)            (b) 

Figure 7. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. rotation speed Ω at different values of 

the velocity-gain 𝑑 and eccentricity 𝑒 = 0.01: (a) 𝑎𝑥 and 𝑎𝑦 vs. Ω, (b) 3D surface of 

𝑎𝑥 and 𝑎𝑦 vs. Ω and 𝑑. 

 
(a)            (b) 

Figure 8. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. eccentricity 𝑒 at different values of the 

velocity-gain 𝑑 and rotation speed Ω = 1.4: (a) 𝑎𝑥 and 𝑎𝑦 vs. 𝑒, (b) 3D surface of 𝑎𝑥 

and 𝑎𝑦 vs. 𝑒 and 𝑑. 

3.2. Results on the relation between the configuration angle 𝛽 and the Cartesian control scheme 

Unlike the discussion in Section 3.1, the figures depending on the analysis done in Section 2.2 are 

plotted within this section. The damping factor 휁𝑐 , the natural frequency 𝜔𝑐 , and the nonlinear 

coefficients 휂1 to 휂15, that are included in Eqs (25) and (26) are given in Appendix A as functions of 

the position-gain 𝑝, the velocity-gain 𝑑, and the configuration angle 𝛽. The plots of these coefficients 

in terms of 𝛽 (in a range from 0° to 45°) are included at fixed values of 𝑝 and 𝑑 to explore their 

dependence on 𝛽. Figure 9(a) shows the relation between 휁𝑐 and 𝛽 where it can reach its maximum 

value at 𝛽 = 22.5°. This specific angle is where each pole is at the halfway point between its old 

position and the adjacent pole’s old position. We can conclude that this Cartesian control method 

exhibits an optimum damping performance at 𝛽 = 22.5°. Figure 9(b) pictures the relation between 

𝜔𝑐
2 and 𝛽 where the maximum natural frequency happens also at 𝛽 = 22.5° and its minimum value 

occurs at 𝛽 = 0° (the initial or old pole’s position in Figure 1(a)) or 𝛽 = 45° (the pole travels the 
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full way to take the adjacent pole’s position). This preliminary discussion gives us a key that the 

configuration angle 𝛽 affects the Cartesian control process severely. 

 
(a)          (b) 

Figure 9. The relations between the damping 휁𝑐, the squared natural frequency 𝜔𝑐
2 vs. 

the configuration angle 𝛽 at 𝑝 = 1.22 and 𝑑 = 0.005: (a) 휁𝑐 vs. 𝛽, (b) 𝜔𝑐
2 vs. 𝛽. 

The relations between the nonlinear coefficients 휂1  (coefficient of 𝑥3 ), 휂2  (coefficient of 

𝑥𝑦2), 휂10 (coefficient of 𝑥2𝑦), and 휂11 (coefficient of 𝑦3) versus the configuration angle 𝛽 are 

plotted in Figure 10. In Figure 10(a), we can see intersections between the curves of 휂1 and 휂2 at 

the angles 𝛽 = 5.3° and 𝛽 = 39.7° that will be discussed later. Also, the curve of 휂1 has reached 

its maximum at the angle 𝛽 = 22.5°, exactly where the curve of 휂2 reached its minimum. On the 

other hand, in Figure 10(b), the values of 휂10 and 휂11 vanish simultaneously at the angle 𝛽 = 22.5°. 

 
(a)          (b) 

Figure 10. The relations between the nonlinear coefficients 휂1, 휂2, 휂10, and 휂11 vs. the 

configuration angle 𝛽 at 𝑝 = 1.22 and 𝑑 = 0.005: (a) 휂1 and 휂2 vs. 𝛽, (b) 휂10 and 

휂11 vs. 𝛽. 

Figure 11 pictures the nonlinear coefficients 휂3  (coefficient of 𝑥2�̇� ), 휂4  (coefficient of 

�̇�𝑦2 ), 휂7  (coefficient of 𝑥𝑦�̇� ), 휂12  (coefficient of 𝑥2�̇� ), 휂13  (coefficient of 𝑦2�̇� ), and 휂15 

(coefficient of 𝑥�̇�𝑦) as functions of the configuration angle 𝛽. It can be noticed that the curves of 휂4 

and 휂7  intersect at the angles 𝛽 = 8.3°  and 𝛽 = 36.7° . Accordingly, the curves of 휂3  and 휂4 
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have their maximum and minimum values at 𝛽 = 22.5°. In Figure 11(b), the values of 휂12, 휂13 and 

휂15 reach the zero value at 𝛽 = 22.5°. 

 
(a)           (b) 

Figure 11. The relations between the nonlinear coefficients 휂3 , 휂4 , 휂7 , 휂12 , 휂13 , and 

휂15 vs. the configuration angle 𝛽 at 𝑝 = 1.22 and 𝑑 = 0.005: (a) 휂3, 휂4 and 휂7 vs. 

𝛽, (b) 휂12, 휂13 and 휂15 vs. 𝛽. 

Figure 12 demonstrates how the nonlinear coefficients 휂5 (coefficient of 𝑥�̇�2), 휂6 (coefficient 

of 𝑥�̇�2 ), 휂14  (coefficient of �̇�2𝑦  and 𝑦�̇�2 ), 휂8  (coefficient of �̇� ), and 휂9  (coefficient of 𝑦 ) are 

affected by varying the configuration angle 𝛽. At the angle 𝛽 = 22.5°, the coefficients 휂5 and 휂6 

become minimum and maximum, respectively. Moreover, the coefficients 휂14, 휂8 and 휂9 are zeros 

at the same angle 𝛽 = 22.5° as shown. 

 
(a)       (b)        (c) 

Figure 12. The relations between the nonlinear coefficients 휂5, 휂6, 휂14, 휂8, and 휂9 vs. 

the configuration angle 𝛽 at 𝑝 = 1.22 and 𝑑 = 0.005: (a) 휂5 and 휂6 vs. 𝛽, (b) 휂14 

vs. 𝛽, (c) 휂8 and 휂9 vs. 𝛽. 

In this control strategy, the rotor exhibits stable oscillations only at the configuration angle 𝛽 =
22.5°  at which we introduce the following response curves based upon Eqs (27)–(30). The other 

responses, at different angles of 𝛽 will be introduced later numerically. For the configuration angle 

𝛽 = 22.5° , the rotor’s equilibrium amplitudes 𝑎𝑥  and 𝑎𝑦  have been plotted in response to the 

change of the rotor’s rotation speed Ω at different values of its eccentricity 𝑒, as shown in Figure 13. 

It is noticeable that the rotor’s amplitudes are high inside the band of rotor’s speeds Ω ∈ [0.8, 1.2], 
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unlike the band of speeds that the radial-controlled rotor exhibited, i.e., Ω ∈ [1, 1.7]. Moreover, as long 

as the rotor’s eccentricity 𝑒 increases, multiple stable solutions (up to three solid curves) can be noticed 

in Figure 13(c) in the band Ω ∈ [1.06, 1.18]. 

 
(a)      (b)        (c) 

Figure 13. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. its rotation speed Ω at different values 

of its eccentricity 𝑒: (a) at 𝑒 = 0.005, (b) at 𝑒 = 0.01, (c) at 𝑒 = 0.02. 

Furthermore, at the same angle 𝛽 = 22.5° , the rotor’s equilibrium amplitudes 𝑎𝑥  and 𝑎𝑦  are 

depicted versus its eccentricity 𝑒 at different values of its rotation speed Ω in Figure 14. The role of Ω 

is different from its role in the radial control case. Herein, the possibility of multiple solid curves 

existence accompanied by severe amplitude jumps can be noticed in the figure. In the case of Ω =
0.9 (Figure 14(a)), three solid (stable) curves exist for 0.04 ≤ 𝑒 < 0.115. At 𝑒 = 0.115, the rotor 

passes through a Hopf bifurcation point at which there are two solid (stable) curves and one 

dashed (non-periodic unstable) curve. In the case of Ω = 1.0 (Figure 14(b)), double solid curves 

appear only in the range 0.008 ≤ 𝑒 < 0.041 after which the rotor passes through a Hopf bifurcation 

point. In the case of Ω = 1.1 (Figure 14(c)), the most important issue that can be noticed is the rotor’s 

impact with the stator pole legs at 𝑒 = 0.055  where there are two other solid curves without the 

chance of such an impact. 

 
(a)       (b)        (c) 

Figure 14. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. its eccentricity 𝑒 at different values 

of its rotation speed Ω: (a) at Ω = 0.9, (b) at Ω = 1.0, (c) at Ω = 1.1. 

As discussed before in Figure 5, Figure 15 clarifies the influence of varying the position-gain 𝑝 

on the rotor’s equilibrium amplitudes in response to its rotation speed Ω. Like Figure 5, the amplitudes 

increase with raising the value of 𝑝 and the region of multiple solutions tends to vanish. There is still 

an issue in the shrunk region of multiple solutions that the number of solid curves increases to reach 
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up to four solid curves as shown in the close-up view in Figure 15(c). This will be verified numerically 

at a later stage. Accordingly, the effect of varying 𝑝  on the amplitude-speed response curves is 

depicted in Figure 16. The responses in Figure 16(a) at 𝑝 = 1.22 suffer from multiple stable solutions, 

then the amplitudes turn unstable beyond 𝑒 = 0.04. On the other hand, raising the value of 𝑝 can 

eliminate the solutions multiplicity in addition to smaller rotor’s amplitudes in response to varying 

speed as shown in Figure 16(b),(c). 

 
(a)       (b)        (c) 

Figure 15. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. rotation speed Ω at different values of 

the position-gain 𝑝 and eccentricity 𝑒 = 0.01: (a) at 𝑝 = 1.22, (b) at 𝑝 = 1.35, (c) 

at 𝑝 = 1.50. 

 
(a)       (b)        (c) 

Figure 16. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. eccentricity 𝑒 at different values of 

the position-gain 𝑝 and rotation speed Ω = 1.00: (a) at 𝑝 = 1.22, (b) at 𝑝 = 1.35, (c) 

at 𝑝 = 1.50. 

Similarly, Figures 17 and 18 show the effects of different values of the velocity-gain 𝑑 on the 

rotor’s amplitudes responses to its speed Ω (Figure 17) or to its eccentricity 𝑒 (Figure 18) at 𝑝 =
1.22. The parameter 𝑑 guarantees a better damping performance for the rotor’s operation. The reader 

can see that the amplitudes have been suppressed by increasing 𝑑 and the region of multiple solutions 

shrinks as shown in Figure 17. In addition, the rotor’s passage through Hopf points, in Figure 18(a) at 

𝑒 = 0.04, is delayed later when 𝑑 increases as shown in Figure 18(b). In Figure 18(c), the Hopf points 

disappeared until the rotor’s eccentricity reached 𝑒 = 0.1, ensuring the important role of the velocity-

gain 𝑑 in the rotor’s control process. 
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(a)        (b)        (c) 

Figure 17. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. rotation speed Ω at different values of 

the velocity-gain 𝑑 and eccentricity 𝑒 = 0.01: (a) at 𝑑 = 0.005, (b) at 𝑑 = 0.006, (c) 

at 𝑑 = 0.007. 

 
(a)       (b)        (c) 

Figure 18. The rotor’s amplitudes 𝑎𝑥 and 𝑎𝑦 vs. eccentricity 𝑒 at different values of 

the velocity-gain 𝑑 and rotation speed Ω = 1.00: (a) at 𝑑 = 0.005, (b) at 𝑑 = 0.010, 

(c) at 𝑑 = 0.015. 

4. Numerical results and discussion 

This section presents the simulation results upon direct integration of Eqs (8) and (9) for the radial 

control case, or Eqs (25) and (26) for the Cartesian control case. Different values of the configuration 

angle 𝛽 have been adopted to show its effect on both control cases. The other adopted parameters 

will be used with the same values discussed in Section 3, 𝑝 = 1.22, 𝑑 = 0.005, 𝛿1 = 0.001, Ω =

1.00, and 𝑒 = 0.02, unless otherwise mentioned. In the radial control scheme, we conclude that the 

configuration angle 𝛽 does not affect the rotor’s operation according to the invariant values of the 

nonlinear coefficients 𝜚1, 𝜚2, and 𝜚3. We are going to validate this behavior through the following 

figures. Figures 19–27 show the numerical simulation of the rotor’s motion in the form of time 

responses, Poincare and orbit maps, and frequency spectra for both the horizontal and vertical 

displacements of the rotor. In Figures 19 and 20, these simulations display the effects of Ω’s backward-

sweeping and forward-sweeping on the rotor’s oscillations amplitudes where there is a period-1 

response with different amplitudes due to the sweeping process, as shown. The corresponding Poincare 

and orbit maps, in addition to the frequency spectra, have verified this period-1 response as shown in 

each figure. In the case that the position-gain 𝑝 increases to 𝑝 = 2.00, the period-1 response has not 

been changed but the rotor’s critical speed moves to a bigger value Ω = 2.83 as depicted in Figure 21. 
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Furthermore, the velocity-gain 𝑑 can have a great damping influence on the rotor’s amplitudes that 

were suppressed by about 70%  if the value of 𝑑  is raised from 𝑑 = 0.005  to 𝑑 = 0.015  as 

displayed in Figure 22. Figures 19–22 have been plotted at different values of the configuration 

angle 𝛽 showing that it has no effect on the analytical or numerical responses in the case of radial 

control scheme, and the rotor exhibits symmetric oscillations for both 𝑥(𝑡) and 𝑦(𝑡) that are shown 

as circular orbits, as well. 

 
(a)        (b)       (c) 

Figure 19. Simulation of rotor’s backward-sweeping behavior of 𝑥(𝑡) and 𝑦(𝑡) in the 

case of radial control at 𝑝 = 1.22, 𝑑 = 0.005, 𝑒 = 0.02, Ω = 1.45, and different values 

of the angle 𝛽: (a) time response, (b) orbit and Poincare maps, (c) frequency spectra. 

 
(a)              (b)           (c) 

Figure 20. Simulation of rotor’s forward-sweeping behavior of 𝑥(𝑡)  and 𝑦(𝑡)  in the 

case of radial control at 𝑝 = 1.22, 𝑑 = 0.005, 𝑒 = 0.02, Ω = 1.45, and different values 

of the angle 𝛽: (a) time response, (b) orbit and Poincare maps, (c) frequency spectra. 
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(a)              (b)           (c) 

Figure 21. Simulation of rotor’s behavior of 𝑥(𝑡) and 𝑦(𝑡) in the case of radial control 

at 𝑝 = 2.00, 𝑑 = 0.005, 𝑒 = 0.01, Ω = 2.83, and different values of the angle 𝛽: (a) 

time response, (b) orbit and Poincare maps, (c) frequency spectra. 

 
(a)       (b)        (c) 

Figure 22. Simulation of rotor’s behavior of 𝑥(𝑡) and 𝑦(𝑡) in the case of radial control 

at 𝑝 = 1.22, 𝑑 = {0.005, 0.015}, 𝑒 = 0.02, Ω = 1.4, and different values of the angle 

𝛽: (a) time response, (b) orbit and Poincare maps, (c) frequency spectra. 

In the case of a Cartesian control scheme, Figures 23–28 clarify the simulation of the rotor’s 

oscillations in response to varying its eccentricity 𝑒 and at a configuration angle 𝛽 = 22.5°. In Figure 23, 

there exists a period-1 response, which is verified by the corresponding Poincare and orbit maps as 

well as the frequency spectra. Unlike the radial control scheme, the rotor exhibits asymmetric 

oscillations for both 𝑥(𝑡)  and 𝑦(𝑡)  that are shown as elliptic orbits. If the rotor’s eccentricity is 

raised to 𝑒 = 0.04, as in Figure 24, a quasiperiodic response is approached where the Poincare map 

is a closed trajectory or pattern as displayed. By raising 𝑒 to 0.059, the rotor follows a multi-periodic 

(period-9) response as depicted by the Poincare map in Figure 25. At 𝑒 = 0.06 in Figure 26, a hybrid 

response between quasiperiodic and chaotic happens where the Poincare map depicts a closed pattern 

with discrete dots as shown. Figure 27 shows the rotor’s chaotic behavior when its eccentricity reaches 

𝑒 = 0.08 . The Poincare section now is a form of scattered dots without any pattern and, 

correspondingly, the frequency spectra contain a big number of spikes denoting chaos. Accordingly, 

Figure 28 clarifies the bifurcation diagram of the rotor’s motion in response to its varying eccentricity 

𝑒. 
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(a)              (b)           (c) 

Figure 23. Simulation of rotor’s behavior of 𝑥(𝑡)  and 𝑦(𝑡)  in the case of Cartesian 

control at 𝑝 = 1.22 , 𝑑 = 0.005 , 𝑒 = 0.02 , Ω = 1.00 , and 𝛽 = 22.5° : (a) time 

response, (b) orbit and Poincare maps, (c) frequency spectra. 

 
(a)              (b)           (c) 

Figure 24. Simulation of rotor’s behavior of 𝑥(𝑡)  and 𝑦(𝑡)  in the case of Cartesian 

control at 𝑝 = 1.22 , 𝑑 = 0.005 , 𝑒 = 0.04 , Ω = 1.00 , and 𝛽 = 22.5° : (a) time 

response, (b) orbit and Poincare maps, (c) frequency spectra. 

  

(a)              (b)           (c) 

Figure 25. Simulation of rotor’s behavior of 𝑥(𝑡)  and 𝑦(𝑡)  in the case of Cartesian 

control at 𝑝 = 1.22 , 𝑑 = 0.005 , 𝑒 = 0.059 , Ω = 1.00 , and 𝛽 = 22.5° : (a) time 

response, (b) orbit and Poincare maps, (c) frequency spectra. 
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(a)              (b)           (c) 

Figure 26. Simulation of rotor’s behavior of 𝑥(𝑡)  and 𝑦(𝑡)  in the case of Cartesian 

control at 𝑝 = 1.22 , 𝑑 = 0.005 , 𝑒 = 0.06 , Ω = 1.00 , and 𝛽 = 22.5° : (a) time 

response, (b) orbit and Poincare maps, (c) frequency spectra. 

   

(a)              (b)           (c) 

Figure 27. Simulation of rotor’s behavior of 𝑥(𝑡)  and 𝑦(𝑡)  in the case of Cartesian 

control at 𝑝 = 1.22 , 𝑑 = 0.005 , 𝑒 = 0.08 , Ω = 1.00 , and 𝛽 = 22.5° : (a) time 

response, (b) orbit and Poincare maps, (c) frequency spectra. 

 

(a)                         (b) 

Figure 28. Rotor’s bifurcation behavior in response to its eccentricity 𝑒 in the case of 

Cartesian control at 𝑝 = 1.22, 𝑑 = 0.005, Ω = 1.00, and 𝛽 = 22.5°: (a) 𝑥(𝑡) vs. 𝑒, 

(b) 𝑦(𝑡) vs. 𝑒. 
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The effect of varying the configuration angle 𝛽  on the rotor’s oscillations in the case of the 

Cartesian control method is discussed in Figures 29 and 30. In these two figures, we have plotted 𝑥(𝑡) 

and 𝑦(𝑡) as functions of time and, upon them, the radial displacement 𝑟(𝑡) = √[𝑥(𝑡)]2 + [𝑦(𝑡)]2 

is also plotted to see when the rotor is impacting with the stator legs. In Figure 29, the configuration 

angle 𝛽 is varied from its initial value 𝛽 = 0° to 𝛽 = 20°. As can be seen, the rotor impacts with 

the stator legs at 𝑡 ≈ 4.1 and 𝛽 = 0°, while the possibility of impact is deferred if the configuration 

angle 𝛽 increases just before the optimum angle 𝛽 = 22.5°. This optimum angle has been proven to 

make the rotor work safely with poor possibility of impact. Afterward, the angle has been raised to 

𝛽 = 25° and the rotor starts to hit the stator at 𝑡 ≈ 8. If the angle is raised more and more away from 

the optimum one (𝛽 = 22.5°), the impact possibility becomes faster in time, as shown. 

 
(a)              (b)           (c) 

 
(d)               (e) 

Figure 29. Effects of varying the configuration angle 𝛽 on the temporal oscillations of 

the rotor in the case of Cartesian control at 𝑝 = 1.22, 𝑑 = 0.005, 𝑒 = 0.02, and Ω =
1.00: (a) 𝛽 = 0°, (b) 𝛽 = 5.3°, (c) 𝛽 = 8.3°, (d) 𝛽 = 15°, (e) 𝛽 = 20°. 
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(a)              (b)           (c) 

 
(d)        (e) 

Figure 30. Effects of varying the configuration angle 𝛽 on the temporal oscillations of 

the rotor in the case of Cartesian control at 𝑝 = 1.22, 𝑑 = 0.005, 𝑒 = 0.02, and Ω =
1.00: (a) 𝛽 = 25°, (b) 𝛽 = 30°, (c) 𝛽 = 36.7°, (d) 𝛽 = 39.7°, (e) 𝛽 = 45°. 

5. Conclusions 

This work focused on the effect of the configuration angle on the control process of an oscillatory 

rotor in 8-pole active magnetic bearings. The mentioned angle is between the axis of a specific pair of 

poles and the positive 𝑥-axis. Adopting the PD control algorithm, the well-known radial control and 

Cartesian control techniques were applied in this work. The approximate modulating amplitudes and 

phases of the rotor’s oscillations were extracted by the method of multiple-scales and a stability 

condition was built based on testing the corresponding Jacobian matrix. This study can be summarized 

in the following notes. In the radial control scheme, the rotor’s equilibrium amplitudes were not 

affected by the change in the configuration angle, even if the rotor’s rotation speed Ω and eccentricity 

𝑒  were varied. The rotor’s numerical responses exhibited symmetric and periodic (period-1) 

oscillations that were shown as circular orbits at different adopted values of the configuration angle. 

In the Cartesian control scheme, the damping parameter 휁𝑐 could reach its maximum value (optimum 

damping performance) at a configuration angle 𝛽 = 22.5° . In addition, the rotor’s motion natural 

frequency was also affected by the change in the configuration angle where it was also maximum at 

𝛽 = 22.5°. At such an angle, different responses (periodic, multi-periodic, quasiperiodic, and chaotic) 

were shown when the rotor’s eccentricity increased. Eventually, different configuration angles (𝛽 ≠
22.5°) were affecting the rotor’s oscillations severely where the rotor impacted with the stator legs in 

small intervals of time. 
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Appendix 

Appendix A 

The parameters of Eqs (8) and (9): 

𝑝 = 𝐼0𝐶0𝑔1, 

𝑑 =
𝐼0𝐶0𝑔2

𝐵
, 

𝛿1 =
𝐵𝛿

𝑀
, 

휁𝑟 = 𝛿1 + 8𝑑, 

𝑒 =
𝐸

𝐶0
, 

𝜔𝑟
2 = 8(𝑝 − 1), 

𝜚1 = −16 + 24𝑝 − 24 cos2 𝛽 sin2 𝛽 − 2𝑝2 sin4 𝛽 + 16 cos 𝛽 sin3 𝛽 − 16 sin 𝛽 cos 𝛽
+ 16 sin 𝛽 cos3 𝛽 + 12𝑝2 cos2 𝛽 − 10𝑝2 cos4 𝛽 + 30𝑝 cos4 𝛽 + 6𝑝 sin4 𝛽
+ 4𝑝2 sin2 𝛽 − 36𝑝 cos2 𝛽 − 12𝑝 sin2 𝛽 + 36𝑝 cos2 𝛽 sin2 𝛽 + 24𝑝 sin 𝛽 cos 𝛽
− 12𝑝2 cos2 𝛽 sin2 𝛽 − 24𝑝 sin 𝛽 cos3 𝛽 − 24𝑝 cos 𝛽 sin3 𝛽 + 8𝑝2 sin 𝛽 cos3 𝛽
− 8𝑝2 sin 𝛽 cos 𝛽 + 8𝑝2 cos 𝛽 sin3 𝛽 + 8 sin2 𝛽 − 8𝑝2 − 4 sin4 𝛽 − 20 cos4 𝛽
+ 24 cos2 𝛽, 

𝜚2 = −24𝑑 sin 𝛽 cos 𝛽 + 20𝑑𝑝 cos4 𝛽 − 36𝑑  cos2 𝛽 sin2 𝛽 + 4𝑑𝑝 sin4 𝛽 − 24𝑑𝑝 cos2 𝛽

+ 16𝑑𝑝 sin 𝛽 cos 𝛽 − 6𝑑 sin4 𝛽 − 8𝑑𝑝 sin2 𝛽 + 24𝑑 cos 𝛽 sin3 𝛽 − 30𝑑 cos4 𝛽
+ 24𝑑𝑝 cos2 𝛽 sin2 𝛽 + 36𝑑 cos2 𝛽 + 12𝑑 sin2 𝛽 − 16𝑑𝑝 cos 𝛽 sin3 𝛽
− 16𝑑𝑝 sin 𝛽 cos3 𝛽 + 24𝑑 sin 𝛽 cos3 𝛽, 

𝜚3 = 10𝑑2 cos4 𝛽 − 4𝑑2 sin2 𝛽 − 12𝑑2 cos2 𝛽 + 2𝑑2 sin4 𝛽 + 12𝑑2 cos2 𝛽 sin2 𝛽
− 8𝑑2 cos 𝛽 sin3 𝛽 + 8𝑑2 sin 𝛽 cos 𝛽 − 8𝑑2 sin 𝛽 cos3 𝛽. 

The parameters of Eqs (25) and (26): 

휁𝑐 = 2√2𝑑 ((1 + √2) cos 𝛽 + sin 𝛽) + 𝛿1, 

https://doi.org/10.1038/s41598-024-55698-y
https://doi.org/10.1007/s42417-023-00889-6
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𝜔𝑐
2 = 2√2𝑝 ((1 + √2) cos 𝛽 + sin 𝛽) − 8, 

휂1 = −
3𝑝

√2
((1 − √2) cos(3𝛽) − sin(3𝛽)) − 2𝑝2(cos(2𝛽) + sin(2𝛽) + 2)

+
9𝑝

√2
((1 + √2) cos 𝛽 + sin 𝛽) − 12, 

휂2 =
9𝑝

√2
((1 − √2) cos(3𝛽) − sin(3𝛽)) + 2𝑝2(cos(2𝛽) + sin(2𝛽) − 2)

+
9𝑝

√2
((1 + √2) cos 𝛽 + sin 𝛽) − 12, 

휂3 = −
3𝑑

√2
((1 − √2) cos(3𝛽) − sin(3𝛽)) +

9𝑑

√2
((1 + √2) cos 𝛽 + sin 𝛽)

− 4𝑝𝑑(cos(2𝛽) + sin(2𝛽) + 2), 

휂4 =
3𝑑

√2
((1 − √2) cos(3𝛽) − sin(3𝛽)) +

3𝑑

√2
((1 + √2) cos 𝛽 + sin 𝛽), 

휂5 = −2𝑑2(cos(2𝛽) + sin(2𝛽) + 2), 

휂6 =  2𝑑2(cos(2𝛽) + sin(2𝛽) − 2), 

휂7 = 3√2𝑑 ((1 − √2) cos(3𝛽) − sin(3𝛽)) + 4𝑝𝑑(cos(2𝛽) + sin(2𝛽) − 2)

+  3√2𝑑 ((1 + √2) cos 𝛽 + sin 𝛽), 

휂8 = 2√2𝑑(cos 𝛽 − (1 + √2) sin 𝛽) = (
𝑑

𝑝
) 휂9, 

휂10 = −
9𝑝

√2
(cos(3𝛽) + (1 − √2) sin(3𝛽)) + 2𝑝2(cos(2𝛽) − sin(2𝛽))

+
3𝑝

√2
(cos 𝛽 − (1 + √2) sin 𝛽), 

휂11 =
3𝑝

√2
(cos(3𝛽) + (1 − √2) sin(3𝛽)) + 2𝑝2(sin(2𝛽) − cos(2𝛽))

+
3𝑝

√2
(cos 𝛽 − (1 + √2) sin 𝛽), 

휂12 = −
3𝑑

√2
(cos(3𝛽) + (1 − √2) sin(3𝛽)) +

9𝑑

√2
(cos 𝛽 − (1 + √2) sin 𝛽), 

휂13 =
3𝑑

√2
(cos(3𝛽) + (1 − √2) sin(3𝛽)) − 4𝑝𝑑(cos(2𝛽) − sin(2𝛽))

+
3𝑑

√2
(cos 𝛽 − (1 + √2) sin 𝛽), 

휂14 = 2𝑑2(cos(2𝛽) − sin(2𝛽)), 
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휂15 = −3√2𝑑(cos(3𝛽) + (1 − √2) sin(3𝛽)) + 4𝑝𝑑(cos(2𝛽) − sin(2𝛽))

− 3√2𝑑(cos 𝛽 − (1 + √2) sin 𝛽). 

Appendix B 

The entries of the Jacobian matrix 𝑱 of Eq (22), considering that 𝜓𝑥𝑦𝑠 = 𝜓𝑥𝑠 − 𝜓𝑦𝑠: 

𝐽11 = −
휁𝑟

2
− (

𝜚1 + 𝜚3𝜔𝑟
2

8𝜔𝑟
) 𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
𝜚2

8
) 𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠) − (
9𝜚2

8
) 𝑎𝑥𝑠

2 − (
𝜚2

4
) 𝑎𝑦𝑠

2 , 

𝐽12 = − (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠) + (
𝜚2

4
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) + (
𝑒Ω2

2𝜔𝑟
) cos 𝜓𝑥𝑠, 

𝐽13 = − (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) − (

𝜚2

4
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) − (

𝜚2

2
) 𝑎𝑥𝑠𝑎𝑦𝑠, 

𝐽14 = (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠) − (
𝜚2

4
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠), 

𝐽21 = − (
3𝜚1 + 3𝛾𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠 − (

𝑒Ω2

2𝜔𝑟
)

cos 𝜓𝑥𝑠

𝑎𝑥𝑠
2

, 

𝐽22 = (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) + (
𝜚2

4
) 𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠) − (
𝑒Ω2

2𝜔𝑟
)

sin 𝜓𝑥𝑠

𝑎𝑥𝑠
, 

𝐽23 = − (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) + (

𝜚2

4
) 𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) − (

𝜚1 + 𝜚3𝜔𝑟
2

4𝜔𝑟
) 𝑎𝑦𝑠, 

𝐽24 = − (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
𝜚2

4
) 𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠), 

𝐽31 = (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) − (

𝜚2

4
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) − (

𝜚2

2
) 𝑎𝑥𝑠𝑎𝑦𝑠, 

𝐽32 = (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) + (
𝜚2

4
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠), 

𝐽33 = −
휁𝑟

2
+ (

𝜚1 + 𝜚3𝜔𝑟
2

8𝜔𝑟
) 𝑎𝑥𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
𝜚2

8
) 𝑎𝑥𝑠

2 cos(2𝜓𝑥𝑦𝑠) − (
9𝜚2

8
) 𝑎𝑦𝑠

2 − (
𝜚2

4
) 𝑎𝑥𝑠

2 , 

𝐽34 = − (
𝜚1 + 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) − (
𝜚2

4
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) + (
𝑒Ω2

2𝜔𝑟
) sin 𝜓𝑦𝑠, 

𝐽41 = − (
𝜚1 − 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠 cos(2𝜓𝑥𝑦𝑠) − (

𝜚2

4
) 𝑎𝑥𝑠 sin(2𝜓𝑥𝑦𝑠) − (

𝜚1 + 𝜚3𝜔𝑟
2

2𝜔𝑟
) 𝑎𝑥𝑠, 

𝐽42 = (
𝜚1 − 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
𝜚2

4
) 𝑎𝑥𝑠

2 cos(2𝜓𝑥𝑦𝑠), 
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𝐽43 = − (
3𝜚1 + 3𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑦𝑠 − (

𝑒Ω2

2𝜔𝑟
)

sin 𝜓𝑦𝑠

𝑎𝑦𝑠
2

, 

𝐽44 = − (
𝜚1 − 𝜚3𝜔𝑟

2

4𝜔𝑟
) 𝑎𝑥𝑠

2 sin(2𝜓𝑥𝑦𝑠) + (
𝜚2

4
) 𝑎𝑥𝑠

2 cos(2𝜓𝑥𝑦𝑠) + (
𝑒Ω2

2𝜔𝑟
)

cos 𝜓𝑦𝑠

𝑎𝑦𝑠
. 

The entries of the Jacobian matrix 𝑳 of Eq (31), considering that 𝜓𝑥𝑦𝑠 = 𝜓𝑥𝑠 − 𝜓𝑦𝑠: 

𝐿11 = −
휁𝑐

2
− (

휂2 − 휂6𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
휂10 + 3휂14𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

+ (
휂4 − 휂7

8
) 𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠) − (
휂12 + 휂15

4
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠 − (

3휂3

8
) 𝑎𝑥𝑠

2 − (
휂4

4
) 𝑎𝑦𝑠

2 , 

𝐿12 = − (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠) − (
휂10 + 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

− (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑦𝑠

3 cos 𝜓𝑥𝑦𝑠 − (
휂9

2𝜔𝑐
) 𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

− (
휂4 − 휂7

4
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) + (
휂12 + 휂15

8
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠 + (
휂13

8
) 𝑎𝑦𝑠

3 sin 𝜓𝑥𝑦𝑠

+ (
휂8

2
) 𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠 + (

𝑒Ω2

2𝜔𝑐
) cos 𝜓𝑥𝑠, 

𝐿13 = − (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) − (

휂10 + 3휂14𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑥𝑠

2 sin 𝜓𝑥𝑦𝑠

− (
9휂11 − 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑦𝑠

2 sin 𝜓𝑥𝑦𝑠 − (
휂9

2𝜔𝑐
) sin 𝜓𝑥𝑦𝑠 + (

휂4 − 휂7

4
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠)

− (
휂12 + 휂15

8
) 𝑎𝑥𝑠

2 cos 𝜓𝑥𝑦𝑠 − (
3휂13

8
) 𝑎𝑦𝑠

2 cos 𝜓𝑥𝑦𝑠 − (
휂8

2
) cos 𝜓𝑥𝑦𝑠 − (

휂4

2
) 𝑎𝑥𝑠𝑎𝑦𝑠, 

𝐿14 = (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠) + (
휂10 + 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

+ (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑦𝑠

3 cos 𝜓𝑥𝑦𝑠 + (
휂9

2𝜔𝑐
) 𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

+ (
휂4 − 휂7

4
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
휂12 + 휂15

8
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠 − (
휂13

8
) 𝑎𝑦𝑠

3 sin 𝜓𝑥𝑦𝑠

− (
휂8

2
) 𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠, 

𝐿21 = − (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠 + (

3휂11 − 휂14𝜔𝑐
2

8𝜔𝑐
)

𝑎𝑦𝑠
3 cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
2

+ (
휂9

2𝜔𝑐
)

𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
2

− (
3휂12 + 휂15

8
) 𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠 − (

휂13

8
)

𝑎𝑦𝑠
3 sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
2

− (
휂8

2
)

𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
2

− (
3휂1 + 휂5𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠 − (

𝑒Ω2

2𝜔𝑐
)

cos 𝜓𝑥𝑠

𝑎𝑥𝑠
2

, 
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𝐿22 = (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) + (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

+ (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑦𝑠
3 sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
+ (

휂9

2𝜔𝑐
)

𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
− (

휂4 − 휂7

4
) 𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠)

− (
3휂12 + 휂15

8
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠 + (

휂13

8
)

𝑎𝑦𝑠
3 cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
+ (

휂8

2
)

𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠

− (
𝑒Ω2

2𝜔𝑐
)

sin 𝜓𝑥𝑠

𝑎𝑥𝑠
, 

𝐿23 = − (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) − (

3휂10 + 휂14𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑥𝑠 cos 𝜓𝑥𝑦𝑠

− (
9휂11 − 3휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑦𝑠
2 cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
− (

휂9

2𝜔𝑐
)

cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
− (

휂4 − 휂7

4
) 𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠)

− (
3휂12 + 휂15

8
) 𝑎𝑥𝑠 sin 𝜓𝑥𝑦𝑠 + (

3휂13

8
)

𝑎𝑦𝑠
2 sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
+ (

휂8

2
)

sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠

− (
휂2 + 휂6𝜔𝑐

2

2𝜔𝑐
) 𝑎𝑦𝑠, 

𝐿24 = − (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑦𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

− (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑦𝑠
3 sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
− (

휂9

2𝜔𝑐
)

𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
+ (

휂4 − 휂7

4
) 𝑎𝑦𝑠

2 cos(2𝜓𝑥𝑦𝑠)

+ (
3휂12 + 휂15

8
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠 − (

휂13

8
)

𝑎𝑦𝑠
3 cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
− (

휂8

2
)

𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

𝑎𝑥𝑠
, 

𝐿31 = (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) − (

휂10 + 3휂14𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑦𝑠

2 sin 𝜓𝑥𝑦𝑠

− (
9휂11 − 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠

2 sin 𝜓𝑥𝑦𝑠 − (
휂9

2𝜔𝑐
) sin 𝜓𝑥𝑦𝑠 + (

휂4 − 휂7

4
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠)

+ (
휂12 + 휂15

8
) 𝑎𝑦𝑠

2 cos 𝜓𝑥𝑦𝑠 + (
3휂13

8
) 𝑎𝑥𝑠

2 cos 𝜓𝑥𝑦𝑠 + (
휂8

2
) cos 𝜓𝑥𝑦𝑠 − (

휂4

2
) 𝑎𝑥𝑠𝑎𝑦𝑠, 

𝐿32 = (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) − (
휂10 + 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 cos 𝜓𝑥𝑦𝑠

− (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠

3 cos 𝜓𝑥𝑦𝑠 − (
휂9

2𝜔𝑐
) 𝑎𝑥𝑠 cos 𝜓𝑥𝑦𝑠

− (
휂4 − 휂7

4
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) − (
휂12 + 휂15

8
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 sin 𝜓𝑥𝑦𝑠 − (
휂13

8
) 𝑎𝑥𝑠

3 sin 𝜓𝑥𝑦𝑠

− (
휂8

2
) 𝑎𝑥𝑠 sin 𝜓𝑥𝑦𝑠, 

𝐿33 = −
휁𝑐

2
+ (

휂2 − 휂6𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑥𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
휂10 + 3휂14𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

+ (
휂4 − 휂7

8
) 𝑎𝑥𝑠

2 cos(2𝜓𝑥𝑦𝑠) + (
휂12 + 휂15

4
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠 − (

3휂3

8
) 𝑎𝑦𝑠

2 − (
휂4

4
) 𝑎𝑥𝑠

2 , 
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𝐿34 = − (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 cos(2𝜓𝑥𝑦𝑠) + (
휂10 + 3휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 cos 𝜓𝑥𝑦𝑠

+ (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠

3 cos 𝜓𝑥𝑦𝑠 + (
휂9

2𝜔𝑐
) 𝑎𝑥𝑠 cos 𝜓𝑥𝑦𝑠

+ (
휂4 − 휂7

4
) 𝑎𝑥𝑠

2 𝑎𝑦𝑠 sin(2𝜓𝑥𝑦𝑠) + (
휂12 + 휂15

8
) 𝑎𝑥𝑠𝑎𝑦𝑠

2 sin 𝜓𝑥𝑦𝑠 + (
휂13

8
) 𝑎𝑥𝑠

3 sin 𝜓𝑥𝑦𝑠

+ (
휂8

2
) 𝑎𝑥𝑠 sin 𝜓𝑥𝑦𝑠 + (

𝑒Ω2

2𝜔𝑐
) sin 𝜓𝑦𝑠 , 

𝐿41 = − (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠 cos(2𝜓𝑥𝑦𝑠) + (

3휂10 + 휂14𝜔𝑐
2

8𝜔𝑐
) 𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠

+ (
9휂11 − 3휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑥𝑠
2 cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
+ (

휂9

2𝜔𝑐
)

cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
+ (

휂4 − 휂7

4
) 𝑎𝑥𝑠 sin(2𝜓𝑥𝑦𝑠)

+ (
3휂12 − 휂15

8
) 𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠 + (

3휂13

8
)

𝑎𝑥𝑠
2 sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
+ (

휂8

2
)

sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠

− (
휂2 + 휂6𝜔𝑐

2

2𝜔𝑐
) 𝑎𝑥𝑠, 

𝐿42 = (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠

2 sin(2𝜓𝑥𝑦𝑠) − (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

− (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑥𝑠
3 sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
− (

휂9

2𝜔𝑐
)

𝑎𝑥𝑠 sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
+ (

휂4 − 휂7

4
) 𝑎𝑥𝑠

2 cos(2𝜓𝑥𝑦𝑠)

+ (
3휂12 − 휂15

8
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠 + (

휂13

8
)

𝑎𝑥𝑠
3 cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
+ (

휂8

2
)

𝑎𝑥𝑠 cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
, 

𝐿43 = (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠 cos 𝜓𝑥𝑦𝑠 − (

3휂11 − 휂14𝜔𝑐
2

8𝜔𝑐
)

𝑎𝑥𝑠
3 cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
2

− (
휂9

2𝜔𝑐
)

𝑎𝑥𝑠 cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
2

+ (
3휂12 − 휂15

8
) 𝑎𝑥𝑠 sin 𝜓𝑥𝑦𝑠 − (

휂13

8
)

𝑎𝑥𝑠
3 sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
2

− (
휂8

2
)

𝑎𝑥𝑠 sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
2

− (
3휂1 + 휂5𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑦𝑠 − (

𝑒Ω2

2𝜔𝑐
)

sin 𝜓𝑦𝑠

𝑎𝑦𝑠
2

, 

𝐿44 = − (
휂2 − 휂6𝜔𝑐

2

4𝜔𝑐
) 𝑎𝑥𝑠

2 sin(2𝜓𝑥𝑦𝑠) + (
3휂10 + 휂14𝜔𝑐

2

8𝜔𝑐
) 𝑎𝑥𝑠𝑎𝑦𝑠 sin 𝜓𝑥𝑦𝑠

+ (
3휂11 − 휂14𝜔𝑐

2

8𝜔𝑐
)

𝑎𝑥𝑠
3 sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
+ (

휂9

2𝜔𝑐
)

𝑎𝑥𝑠 sin 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
− (

휂4 − 휂7

4
) 𝑎𝑥𝑠

2 cos(2𝜓𝑥𝑦𝑠)

− (
3휂12 − 휂15

8
) 𝑎𝑥𝑠𝑎𝑦𝑠 cos 𝜓𝑥𝑦𝑠 − (

휂13

8
)

𝑎𝑥𝑠
3 cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠
− (

휂8

2
)

𝑎𝑥𝑠 cos 𝜓𝑥𝑦𝑠

𝑎𝑦𝑠

+ (
𝑒Ω2

2𝜔𝑐
)

cos 𝜓𝑦𝑠

𝑎𝑦𝑠
. 

Appendix C 

The derivation of Eqs (8) and (9) can be as follows: 

Substituting Eqs (4) and (7) into Eq (3) gives us 
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𝐹𝑛 = 𝐾 (
𝐼0 − (𝑔1𝑥 + 𝑔2�̇�) 𝑐𝑜𝑠((𝑛 − 1)𝛼 + 𝛽) − (𝑔1𝑦 + 𝑔2�̇�) 𝑠𝑖𝑛((𝑛 − 1)𝛼 + 𝛽)

𝐶0 − 𝑥 𝑐𝑜𝑠((𝑛 − 1)𝛼 + 𝛽) − 𝑦 𝑠𝑖𝑛((𝑛 − 1)𝛼 + 𝛽)
)

2

, (C1) 

where 𝑛 = 1,2, … ,8. Inserting Eq (C1) into Eqs (5) and (6) yields 

𝑅𝑥 = 𝐾 ∑ (
𝐼0 − (𝑔1𝑥 + 𝑔2�̇�) 𝑐𝑜𝑠((𝑗 − 1)𝛼 + 𝛽) − (𝑔1𝑦 + 𝑔2�̇�) 𝑠𝑖𝑛((𝑗 − 1)𝛼 + 𝛽)

𝐶0 − 𝑥 𝑐𝑜𝑠((𝑗 − 1)𝛼 + 𝛽) − 𝑦 𝑠𝑖𝑛((𝑗 − 1)𝛼 + 𝛽)
)

2

cos((𝑗 − 1)𝛼 + 𝛽)

8

𝑗=1

, (C2) 

𝑅𝑦 = 𝐾 ∑ (
𝐼0 − (𝑔1𝑥 + 𝑔2�̇�) 𝑐𝑜𝑠((𝑗 − 1)𝛼 + 𝛽) − (𝑔1𝑦 + 𝑔2�̇�) 𝑠𝑖𝑛((𝑗 − 1)𝛼 + 𝛽)

𝐶0 − 𝑥 𝑐𝑜𝑠((𝑗 − 1)𝛼 + 𝛽) − 𝑦 𝑠𝑖𝑛((𝑗 − 1)𝛼 + 𝛽)
)

2

sin((𝑗 − 1)𝛼 + 𝛽)

8

𝑗=1

. (C3) 

Approximating 𝑅𝑥 and 𝑅𝑦 in Eqs (C2) and (C3) with Taylor series near the origin (𝑥 = 𝑦 = 0) up 

to the third order is 

𝑅𝑥 ≈ 𝐴1𝑥 + 𝐴2�̇� + 𝐴3(𝑥3 + 𝑥𝑦2) + 𝐴4(�̇�𝑦2 + 2𝑥𝑦�̇� + 3𝑥2�̇�) + 𝐴5(𝑥�̇�2 + 2�̇�𝑦�̇� + 3𝑥�̇�2), (C4) 

𝑅𝑦 ≈ 𝐴1𝑦 + 𝐴2�̇� + 𝐴3(𝑦3 + 𝑥2𝑦) + 𝐴4(𝑥2�̇� + 2𝑥�̇�𝑦 + 3𝑦2�̇�) + 𝐴5(�̇�2𝑦 + 2𝑥�̇��̇� + 3𝑦�̇�2), (C5) 

where 

𝐴1 =
8𝐾𝐼0(𝐼0 − 𝐶0𝑔1)

𝐶0
3 , 

𝐴2 = −
8𝐾𝐼0𝑔2

𝐶0
2 , 

𝐴3 =
8𝐾

𝐶0
5 (cos4 (

𝜋

4
+ 𝛽) + cos4 𝛽 − cos2 (

𝜋

4
+ 𝛽) − cos2 𝛽 + 1) (−𝐶0𝑔1 + 2𝐼0)(−𝐶0𝑔1 + 𝐼0), 

𝐴4 = −
16𝐾𝑔2

𝐶0
4 (cos4 (

𝜋

4
+ 𝛽) + cos4 𝛽 − cos2 (

𝜋

4
+ 𝛽) − cos2 𝛽) (𝐶0𝑔1 −

3

2
𝐼0), 

𝐴5 = −
8𝐾𝑔2

2

𝐶0
3 (cos4 (

𝜋

4
+ 𝛽) + cos4 𝛽 − cos2 (

𝜋

4
+ 𝛽) − cos2 𝛽). 

Inserting Eqs (C4) and (C5) into Eqs (1) and (2) and simplifying yield 

�̈� + (
𝛿 − 𝐴2

𝑀
) �̇� −

𝐴1

𝑀
𝑥 −

𝐴3

𝑀
(𝑥3 + 𝑥𝑦2) −

𝐴4

𝑀
(�̇�𝑦2 + 2𝑥𝑦�̇� + 3𝑥2�̇�)

−
𝐴5

𝑀
(𝑥�̇�2 + 2�̇�𝑦�̇� + 3𝑥�̇�2) = 𝐸Ω2 cos(Ω𝑡), 

(C6) 

�̈� + (
𝛿 − 𝐴2

𝑀
) �̇� −

𝐴1

𝑀
𝑦 −

𝐴3

𝑀
(𝑦3 + 𝑥2𝑦) −

𝐴4

𝑀
(𝑥2�̇� + 2𝑥�̇�𝑦 + 3𝑦2�̇�)

−
𝐴5

𝑀
(�̇�2𝑦 + 2𝑥�̇��̇� + 3𝑦�̇�2) = 𝐸Ω2 sin(Ω𝑡) . 

(C7) 

We can normalize the quantities 𝑥  and 𝑦  to get the dimensionless quantities �̂�  and �̂�  by 

making them relative to 𝐶0  such that �̂� = 𝑥/𝐶0  and �̂� = 𝑦/𝐶0 . Accordingly, we can continue the 
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time normalization process to get the dimensionless time �̂� such that �̂� = 𝑡/𝐵 and Ω̂ = 𝐵Ω where 

𝐵2 = 𝐾𝑀𝐶0
3𝐼0

−2. The hats will be omitted later for simplicity. Doing so, then simplifying, gives us 

�̈� + 휁𝑟�̇� + 𝜔𝑟
2𝑥 + 𝜚1(𝑥3 + 𝑥𝑦2) + 𝜚2(�̇�𝑦2 + 2𝑥𝑦�̇� + 3𝑥2�̇�) + 𝜚3(𝑥�̇�2 + 2�̇�𝑦�̇� + 3𝑥�̇�2)

= 𝑒Ω2 cos(Ω𝑡), 
(C8) 

�̈� + 휁𝑟�̇� + 𝜔𝑟
2𝑦 + 𝜚1(𝑦3 + 𝑥2𝑦) + 𝜚2(𝑥2�̇� + 2𝑥�̇�𝑦 + 3𝑦2�̇�) + 𝜚3(�̇�2𝑦 + 2𝑥�̇��̇� + 3𝑦�̇�2)

= 𝑒Ω2 sin(Ω𝑡) , 
(C9) 

where the parameters 𝑒, 휁𝑟 , 𝜔𝑟
2, 𝜚1, 𝜚2, and 𝜚3 are given in Appendix A. Equations (C8) and (C9) 

are Eqs (8) and (9) given in Section 2. 
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