By using linear, bilinear, and trilinear estimates in Bourgain-type spaces and analytic spaces, the local well-posedness of the Cauchy problem for the a Kawahara-Korteweg-de-Vries equation
$ \partial_{t}u+\omega\partial_{x}^{5}u+\nu \partial_{x}^{3}u+\mu\partial_{x}u^{2}+\lambda\partial_{x}u^{3}+\mathfrak{d}(x)u = 0, $
was established for analytic initial data $ u_{0} $. Besides, based on the obtained local result, together with an analytic approximate conservation law, we prove that the global solutions exist. Furthermore, the analytic radius has a fixed positive lower bound uniformly for all time.
Citation: Aissa Boukarou, Khaled Zennir, Mohamed Bouye, Abdelkader Moumen. Nondecreasing analytic radius for the a Kawahara-Korteweg-de-Vries equation[J]. AIMS Mathematics, 2024, 9(8): 22414-22434. doi: 10.3934/math.20241090
By using linear, bilinear, and trilinear estimates in Bourgain-type spaces and analytic spaces, the local well-posedness of the Cauchy problem for the a Kawahara-Korteweg-de-Vries equation
$ \partial_{t}u+\omega\partial_{x}^{5}u+\nu \partial_{x}^{3}u+\mu\partial_{x}u^{2}+\lambda\partial_{x}u^{3}+\mathfrak{d}(x)u = 0, $
was established for analytic initial data $ u_{0} $. Besides, based on the obtained local result, together with an analytic approximate conservation law, we prove that the global solutions exist. Furthermore, the analytic radius has a fixed positive lower bound uniformly for all time.
[1] | J. Ahn, J. Kim, I. Seo, Lower bounds on the radius of spatial analyticity for the Kawahara equation, Anal. Math. Phys., 11 (2021), 1–22. |
[2] | A. Boukarou, K. Guerbati, K. Zennir, S. Alodhaibi, S. Alkhalaf, Well-posedness and time regularity for a system of modified Korteweg-de-Vries-type equations in analytic Gevrey spaces, Mathematics, 8 (2020), 809. https://doi.org/10.3390/math8050809 doi: 10.3390/math8050809 |
[3] | A. Boukarou, K. Zennir, K. Guerbati, S. G. Georgiev, Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili Ⅰ equation in the analytic Bourgain spaces, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 66 (2020), 255–272. https://doi.org/10.1007/s11565-020-00340-8 doi: 10.1007/s11565-020-00340-8 |
[4] | A. Boukarou, K. Guerbati, K. Zennir, M. Alnegga, Gevrey regularity for the generalized Kadomtsev-Petviashvili Ⅰ (gKP-Ⅰ) equation, AIMS Math., 6 (2021), 10037–10054. https://doi.org/10.3934/math.2021583 doi: 10.3934/math.2021583 |
[5] | H. A. Biagioni, F. Linares, On the Benny—Lin and Kawahara equations, J. Math. Anal. Appl., 211 (1997), 131–152. https://doi.org/10.1006/jmaa.1997.5438 doi: 10.1006/jmaa.1997.5438 |
[6] | G. M. Coclite, L. di Ruvo, Well-posedness of the classical solutions for a Kawahara-Korteweg-de Vries-type equation, J. Evol. Equ., 21 (2021), 625–651. https://doi.org/10.1007/s00028-020-00594-x doi: 10.1007/s00028-020-00594-x |
[7] | T. Dufera, S. Mebrate, A Tesfahun, On the persistence of spatial analyticity for the beam equation, J. Math. Anal. Appl., 509 (2022), 126001. https://doi.org/10.1016/j.jmaa.2022.126001 doi: 10.1016/j.jmaa.2022.126001 |
[8] | A. Elmansouri, K. Zennir, A. Boukarou, O. Zehrour, Analytic Gevrey well-posedness and regularity for class of coupled periodic KdV systems of Majda-Biello type, Appl. Sc., 24 (2022), 117–130. |
[9] | A. V. Faminskii, N. A. Larkin, Odd-order quasilinear evolution equations posed on a bounded interval, Bol. Soc. Parana. Mat., 28 (2010), 67–77. https://doi.org/10.5269/bspm.v28i1.10816 doi: 10.5269/bspm.v28i1.10816 |
[10] | A. V. Faminskii, A. Nikolayev, On stationary solutions of KdV and mKdV equations, Diff. Equ. Appl., 164 (2016), 63–70. https://doi.org/10.1007/978-3-319-32857-7_6 doi: 10.1007/978-3-319-32857-7_6 |
[11] | A. V. Faminsky, Cauchy problem for quasilinear equations of odd order, Mat. Sat., 180 (1989), 1183–1210. |
[12] | S. Georgiev, A. Boukarou, K. Zennir, Classical solutions for the coupled system gKdV equations, Russ. Math., 66 (2022), 1–15. https://doi.org/10.3103/S1066369X22120052 doi: 10.3103/S1066369X22120052 |
[13] | A. T. Ilyichev, On the properties of a fifth-order nonlinear evolution equation describing wave processes in media with weak dispersion, Proc. MIAN., 186 (1989), 222–226. |
[14] | Y. Jia, Z. Huo, Well-posedness for the fifth-order shallow water equations, J. Diff. Equ., 246 (2009), 2448–2467. https://doi.org/10.1016/j.jde.2008.10.027 doi: 10.1016/j.jde.2008.10.027 |
[15] | T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan., 33 (1972), 260–264. https://doi.org/10.1143/JPSJ.33.260 doi: 10.1143/JPSJ.33.260 |
[16] | F. Linares, A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, P. Am. Math. Soc., 135 (2007), 1515–1522. https://doi.org/10.1090/S0002-9939-07-08810-7 doi: 10.1090/S0002-9939-07-08810-7 |
[17] | K. Liu, M. Wang, Fixed analytic radius lower bound for the dissipative KdV equation on the real line, NODEA-Nonlinear Diff., 29 (2022), 57. |
[18] | A. V. Marchenko, About long waves in shallow water under ice cover, Appl. Math. Fur., 52 (1988), 230–234. https://doi.org/10.1016/0021-8928(88)90132-3 doi: 10.1016/0021-8928(88)90132-3 |
[19] | G. P. Menzala, C. F. Vasconcellos, E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Q. Appl. Math., 60 (2002), 111–129. https://doi.org/10.1090/qam/1878262 doi: 10.1090/qam/1878262 |
[20] | G. Petronilho, P. L. d. Silva, On the radius of spatial analyticity for the modified Kawahara equation on the line, Math. Nachr., 292 (2019), 2032–2047. https://doi.org/10.1002/mana.201800394 doi: 10.1002/mana.201800394 |
[21] | L. Rosier, B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries qquation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927–956. https://doi.org/10.1137/050631409 doi: 10.1137/050631409 |
[22] | S. Selberg, D. O. Silva, Lower bounds on the radius of a spatial analyticity for the KdV equation, Ann. Henri Poincar´e, 18 (2016), 1009–1023. https://doi.org/10.1007/s00023-016-0498-1 doi: 10.1007/s00023-016-0498-1 |
[23] | J. C. Saut, Sur quelques genéralizations de l'equation de Korteweg-de-Vries, J. Math. Pures Appl., 58 (1979), 21–61. |
[24] | M. Wang, Nondecreasing analytic radius for the KdV equation with a weakly damping, Nonlinear Anal., 215 (2022), 112653. https://doi.org/10.1016/j.na.2021.112653 doi: 10.1016/j.na.2021.112653 |
[25] | M. Wang, Improved lower bounds of analytic Radius for the Benjamin-Bona-Mahony equation, J. Geom. Anal., 18 (2023), 23. https://doi.org/10.1007/s12220-022-01091-y doi: 10.1007/s12220-022-01091-y |
[26] | Z. Zhang, Z. Liu, Y. Deng, L. M. Li, F. He, C. X. Huang, A trilinear estimate with application to the perturbed nonlinear Schrödinger equations with the Kerr law nonlinearity, J. Evol. Equ., 21 (2021), 1477–1494. https://doi.org/10.1007/s00028-020-00631-9 doi: 10.1007/s00028-020-00631-9 |
[27] | Z. Zhang, Z. Liu, Y. Deng, Lower bounds on the radius of spatial analyticity for the higher-order nonlinear dispersive equation on the real line, Discrete Cont. Dyn.-B, 28 (2024), 937–970. https://doi.org/10.3934/dcdsb.2023119 doi: 10.3934/dcdsb.2023119 |