In this article, we consider the parametric high-order fractional system with integral boundary value conditions involving derivatives of order $ p $-$ q $. With the aid of the fixed-point theorem, an exact interval from the existence to the solution of the system will be obtained, under the condition that the nonlinearities of the system may have singularities. Finally, we provide an instance to show the practicality of the primary outcomes.
Citation: Ying Wang, Limin Guo, Yumei Zi, Jing Li. Solvability of fractional differential system with parameters and singular nonlinear terms[J]. AIMS Mathematics, 2024, 9(8): 22435-22453. doi: 10.3934/math.20241091
In this article, we consider the parametric high-order fractional system with integral boundary value conditions involving derivatives of order $ p $-$ q $. With the aid of the fixed-point theorem, an exact interval from the existence to the solution of the system will be obtained, under the condition that the nonlinearities of the system may have singularities. Finally, we provide an instance to show the practicality of the primary outcomes.
[1] | K. B. Borberg, Cracks and fracture, San Diego: Academic Press, 1999. |
[2] | S. Westerlund, Dead matter has memory, Phys. Scr., 43 (1991), 174–179. https://doi.org/10.1088/0031-8949/43/2/011 |
[3] | Y. Yin, K. Zhu, Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model, Appl. Math. Comput., 173 (2006), 231–242. https://doi.org/10.1016/j.amc.2005.04.001 doi: 10.1016/j.amc.2005.04.001 |
[4] | Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2851. http://dx.doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064 |
[5] | S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. http://dx.doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239 |
[6] | W. Chen, Z. Fu, L. Grafakos, Y. Wu, Fractional Fourier transforms on $L^p$ and applications, Appl. Comput. Harmon. Anal., 55 (2021), 71–96. http://dx.doi.org/10.1016/j.acha.2021.04.004 doi: 10.1016/j.acha.2021.04.004 |
[7] | D. Chang, X. Duong, J. Li, W. Wang, Q. Wu, An explicit formula of Cauchy-Szeg$\ddot{o}$ kernel for quaternionic Siegel upper half space and applications, Indiana Univ. Math. J., 70 (2021), 2451–2477. http://dx.doi.org/10.1512/iumj.2021.70.8732 doi: 10.1512/iumj.2021.70.8732 |
[8] | M. Yang, Z. Fu, S. Liu, Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces, Adv. Nonlinear Stud., 18 (2018), 517–535. http://dx.doi.org/10.1515/ans-2017-6046 doi: 10.1515/ans-2017-6046 |
[9] | B. Dong, Z. Fu, J. Xu. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 61 (2018), 1807–1824. https://doi.org/10.1007/s11425-017-9274-0 doi: 10.1007/s11425-017-9274-0 |
[10] | M. Yang, Z. Fu, J. Sun, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, Sci. China Math., 60 (2017), 1837–1856. http://dx.doi.org/10.1007/s11425-016-0490-y doi: 10.1007/s11425-016-0490-y |
[11] | C. Alves, B. Araujo, A. Nobrega, Existence of periodic solution for a class of beam equation via variational methods, Monatshefte Math., 197 (2022), 227–256. http://dx.doi.org/10.1007/s00605-021-01583-z doi: 10.1007/s00605-021-01583-z |
[12] | X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion, Appl. Math. Lett., 66 (2017), 1–8. http://dx.doi.org/10.1016/j.aml.2016.10.015 doi: 10.1016/j.aml.2016.10.015 |
[13] | J. Li, Y. Wang, Nonexistence and existence of positive radial solutions to a class of quasilinear Schr$\ddot{o}$dinger equations in $R^N$, Bound. Value Probl., 2020 (2020), 81. https://doi.org/10.1186/s13661-020-01378-5 doi: 10.1186/s13661-020-01378-5 |
[14] | X. Liu, M. Jia, Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives, Appl. Math. Comput., 353 (2019), 230–242. https://doi.org/10.1016/j.amc.2019.02.011 doi: 10.1016/j.amc.2019.02.011 |
[15] | Y. Wang, J. Zhang, Positive solutions for higher-order singular fractional differential system with coupled integral boundary conditions, Adv. Differ. Equ., 2016 (2016), 117. http://dx.doi.org/10.1186/s13662-016-0844-0 doi: 10.1186/s13662-016-0844-0 |
[16] | Y. Wang, L. Liu, Uniqueness and existence of positive solutions for the fractional integro-differential equation, Bound. Value Probl., 2017 (2017), 12. http://dx.doi.org/10.1186/s13661-016-0741-1 doi: 10.1186/s13661-016-0741-1 |
[17] | W. Wang, J. Ye, J. Xu, D. O'Regan, Positive solutions for a high-order Riemann-Liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 14 (2022), 2320. https://doi.org/10.3390/sym14112320 doi: 10.3390/sym14112320 |
[18] | J. Xu, Z. Wei, W. Dong, Uniqueness of positive solutions for a class of fractional boundary value problems, Appl. Math. Lett., 25 (2012), 590–593. https://doi.org/10.1016/j.aml.2011.09.065 doi: 10.1016/j.aml.2011.09.065 |
[19] | C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., 23 (2010), 1050–1055. https://doi.org/10.1016/j.aml.2010.04.035 doi: 10.1016/j.aml.2010.04.035 |
[20] | J. Henderson, R. Luca, Existence of positive solutions for a singular fractional boundary value problem, Nonlinear Anal. Model. Control, 22 (2017), 99–114. http://dx.doi.org/10.15388/NA.2017.1.7 doi: 10.15388/NA.2017.1.7 |
[21] | H. Wang, J. Jiang, Multiple positive solutions to singular fractional differential equations with integral boundary conditions involving $p$-$q$-order derivatives, Adv. Differ. Equ., 2020 (2020), 2. https://doi.org/10.1186/s13662-019-2454-0 doi: 10.1186/s13662-019-2454-0 |
[22] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[23] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1999. |
[24] | X. Zhang, Z. Shao, Q. Zhong, Z. Zhao, Triple positive solutions for semipositone fractional differential equations m-point boundary value problems with singularities and p-q-order derivatives, Nonlinear Anal. Model. Control, 23 (2018), 889–903. https://doi.org/10.15388/NA.2018.6.5 doi: 10.15388/NA.2018.6.5 |
[25] | X. Zhang, Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 80 (2018), 12–19. https://doi.org/10.1016/j.aml.2017.12.022 doi: 10.1016/j.aml.2017.12.022 |
[26] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, New York: Academic Press, 1988. |
[27] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. https://doi.org/10.1137/1018114 doi: 10.1137/1018114 |