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Abstract: By using linear, bilinear, and trilinear estimates in Bourgain-type spaces and analytic
spaces, the local well-posedness of the Cauchy problem for the a Kawahara-Korteweg-de-Vries
equation

ou + w@iu + v@iu + 10 u* + A0, + d(x)u = 0,

was established for analytic initial data u,. Besides, based on the obtained local result, together with
an analytic approximate conservation law, we prove that the global solutions exist. Furthermore, the
analytic radius has a fixed positive lower bound uniformly for all time.
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1. Introduction and function spaces

The initial-boundary value problem

O+ adu + Oyt + gu)o,u =0 (1.1)
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includes the Korteweg-de-Vries equation when g(u) = u and the modified Korteweg-de Vries equation
if g(u) = Fu?, which describes the propagation of one-dimensional nonlinear waves in media with
dispersion and without dissipation. Similar models have previously been considered [9, 16, 19, 21].
In [21], the authors considered the problem for the equation

Ot + O + Oyt + g(u)0u + b(x)u = 0. (1.2)

It is assumed that the function b is non-negative in the space L?(0,L). It was also shown that
problem (1.2) has a solution in a suitable space. In [19], similar results for problem (1.2) were obtained
with stronger conditions being satisfied on b in [21]. In [16], it was shown that in the case g(u) = u*,
problem (1.2) has a solution in an appropriate space under some conditions for the initial and boundary
data. In [9], authors considered questions on the existence and uniqueness of solutions and their decay
at large times for the initial boundary value problem in the case of more general cases. In [10], it
was analyzed whether the condition of smallness of the initial data for the Korteweg-de-Vries equation
and the modified Korteweg-de-Vries equation with initial boundary conditions is necessary for the
solutions to decrease to zero for large times. To answer this question, the authors found conditions
under which these problems have stationary solutions u = u(x).

On the other hand, the Cauchy problem for the Kawahara equation is given by

Ot — O yxxxt + DO + ud u = f(t, x). (1.3)

Equation (1.3) was first derived in article [15] to describe long nonlinear waves in media with weak
dispersion and was later called the Kawahara equation. It should be noted that in various physical
models, the coefficient b can be positive, negative, or zero, see [13, 18]. The Kawahara equation is a
generalization of the Korteweg-de-Vries equation

Ot + Oyt + udu = f,

to the case of a higher-order dispersion relation. The study of the Kawahara equation largely follows
the study of the Korteweg-de-Vries equation, but has some special features. Equation (1.3) (for f = 0)
has two conservation laws

fuzdx =C, f((axxu)2 + b(0,u)dx — lu3)dx =C.
R R 3

It was on the basis of these equalities that, in article [23], the result was obtained on the existence and
uniqueness of a time-global solution to problem (1.3). A similar result was also established in [5].
From the article [11], the result on the existence of a global solution to the Kawahara equation for an
irregular initial function was obtained, see [2—4,8,12]. Let x € R and 7 > 0; in this article, we consider
a Cauchy problem for a Kawahara-Korteweg-de-Vries equation in analytic spaces

5 3 2 3 _
{ Ot + wOu + vou + uou” + A0,u” =0, (1.4)

u(x,t = 0) = up(x).

Here, the coeflicients w # 0, v, 4, and y are real constants. From a physical point of view, the
Kawahara-Korteweg-de- Vries-type equation models magnetic-acoustic-waves in plasma and nonlinear
water wave propagation in the long-wavelength region. In the absence of the last term in our model, it
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becomes a higher-order nonlinear dispersive equation. When it comes to low regularity for the higher-
order nonlinear dispersive equation, our strategy mainly relies on the standard contraction mapping
principle, an approximate conservation law in the modified Gevrey space H”!, linear estimates, and
bilinear estimates; see [25,26].

The Kawahara-Korteweg-de-Vries equation with a damping term is considered as

(1.5)

o + w@iu + V@iu + uou? + A0, + d(x)u = 0,
I/l(x, = 0) = MO(X),

and d(x) is the damping term.
We need to state assumptions on the damping term d(x).

(A1) 36 > 0 such that
d(x)>6>0, forall xeR,

this is to ensure the damping effect.
(A2) dM,, M, > 0 such that

10700y < MyML(j1),  forall jeN,

for the analyticity.

A closely related work [17] established a uniformly positive lower bound of analytic radius for the KdV
equation with a damping term |D|*u. Although the damping effect is proposed in different setting, the
result is the same. Note that the damping |D|u is stronger than D(x)u for high frequencies |g| > 1 but
weaker for low frequencies || < 1. Moreover, uniform positive lower bound still holds if the damping
is replaced by log-damping (log|D|)u, or more generally h(D)u, where h(D) is a Fourier multiplier;
see [1].

Notation: We first introduce some notations and function spaces used in this article. We state the
following operator

A? = cosh(p|D)), (1.6)
Au (¢,1) = cosh(plZ i (£, 1), (1.7)
A =0, [(Nu)? - N, (1.8)

© =3, [(A"u)® - A%, (1.9)

T = [DA%u — A (du)]. (1.10)

Here
V(x,t) = cosh(p|D))u(x, 1),

where u(x, t) is the solution to (1.5). Thus
u(x, t) = sech(p|D|)V(x, t).

A class of analytic functions suitable for our analysis is the analytic class G°(R), which will be given
by

G'R) = {f € L’(R); 1flgo = fReXP(Zplfl)lﬂ(f(f))lzdf < 00}- (1.11)
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In what follows, a nice choice of the analytic function space for our arguments is the modified analytic
space LP(R), p > 0, given by the norm

LPR) = {f € LR 11w = f cosh* (ol DIFL(f(O))IPdL < oo}. (1.12)
R

As a consequence of exp(p|{|) ~ cosh(p|{]), the norms || - || and || - || are equivalent.

2 2
LP(R) G*(R)

Remark 1.1. If p = 0, the space L°(R) is reduced to L*(R).

We will need to recall the embedding property of analytic space. For all 0 < p” < p, we have
L'®R) c LF'(R), (1.13)

1.e.,
1Nl < Coprllfllge-

Let us consider the space that is a hybrid between the known analytic space and the space of Fourier
restriction. For b € R and p > 0, we define the spaces Y, ,(R?) to be the Banach space equipped with

[ fR cos*(olD(L + I + QD IF (. )L,

where ¢(¢) = wl® — v . For p = 0, Y, ,(R?) coincides with the space Y,(R?)

Il o, = f (L +In+ O P didn.
R
For T > 0, the spaces J/pT’b(RZ) denote the restricted analytic spaces given by
lllyr ey = inf {IVly, 2 : v = won (0,T) X RJ. (1.14)

We will show in the next lemma that Y, p,b(Rz) is continuously embedded in C ([0, T], L°(R)), where
b>1/2.

1
Lemma 1.1. Let b > 3 and p > 0, Then, for all u € yp,b(Rz) we have

lulr, = sup [lu(, Dll ey Sp llully, ,@2)-
€10,

2. Basic estimates

2.1. Linear estimates

By using the Duhamel’s formula, the solution of (1.5) is given by
t
u(x,t) = S(Huo(x) — f St —1)(Ni(x,7) + No(x, T) + +d(x)u(x, 7))dT,
0
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and the unit operator related to the corresponding linear equation is
1 —i S5_ 73
S() = Fle " COF,

where the nonlinear terms N;, N, are given by ud.(u?), 10,(u?), respectively.
Using a cut-off function @ € C7(R), where @ = 1 in [—%, %], suppw C [—1,1] and w7 (¢) = w(%) to
localize it in a time variable. Let us define the operator ®u by

O(u)(x,t) = @1 (S (Hug(x) — @ (r) f St —1)(Ni(x,7) + Na(x, T) + dD(x)u(x, 7))dT. 2.1
0

We have to solve ®(u) = u for estimating (2.1) in the next lemma.

Lemma 2.1. [20] Let p > 0 and % < b <1, we have

l@1(DS Duo(Olly,,@2) Sw Ul ). (2.2)
f
0 f SE-oNEDd| o ING DIy e 2.3)
0 yp,b(Rz)
If L <b <V <1, then for any T > 0, we have
lwr(ON(x, Dlly,,  ®2) Ser T PIN(x, Ny, @) (2.4)

Lemma 2.2. [22] If—% <b< % then for every interval I C [0,T]

I rully,, <b lullyr,,
where x| denotes the characteristic function of I.

Lemma 2.3. [24] For all p > 0, we have
|L¥[o,a](l)e_Zé(T_t)“”yp,lfb < ||M||y£b. (2.5)
Lemma 2.4. [24] Forallp > 0,d € A’(R),u € LP(R), we have
DU o) S 1RO 70 @) e Ol o ) - (2.6)
Forall T € (0,1],b" <0,b > 0, we have
IPCOuCx, Dllyr S DOl lulx, Hllyr, 2.7)

2.2. Trilinear and bilinear estimate

The following result provides the basic trilinear and bilinear estimation needed to prove the
Theorems 3.1 and 4.1. The following lemma shows the required linear estimation.

Theorem 2.1. [14] Let b, > 3 be close enough to 3 and by > 3. Then

2
(9x l_[ u;
i=1
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Remark 2.1. Setting
&m = A+ + gD w,m), i=1,2,

the estimate of Theorem 2.1 can be rewritten as

||3x(uluz)||yb/l,l(R2)

) ¢
- H(1 + I+ ¢QODH! el L3,®)
=C £ f (L1, m)ux(C = &, —m)dddn,
L+l + o@D Jpe 7 ’ 2,@)
—C 4 f AR D) A -tn—-m)
(I + I+ Ot Jgo (1 + Iy + ¢(DD? (1 + |7 =11 + §(& = L)Y

-uy({ = &1,m = m)dérdny

2 (R2
Ly ®)

Sbyb, ”fl”Lénlle“LG(Rz)'

Lemma 2.5. Let p > 0 and b, > % be close enough to % and by > % Then

2
8x l—[ Uu;
i=1

2
Sby b, H lleeilly . R2)-
yp,b'l—l(Rz) 1 i PP

(2.9)

(2.10)
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Proof. By considering the operator A” in (1.7), we have

110, (1t M2)||yp,b,l_l(R2>

= || cosh(olZ (1 + 17 + GO0 (wru2)(L, 1)

2 2
L o (R*)

~ |[cosh(plZD(1 + I + GONYI '8, (uruz)(C, 1)

2 (R2
L(J’(R )

= {|(1 + I7 + $(ON)"1~"¢ cosh(pldNF . (sech(pID Vi (x, )sech(pl D) Va(x, 1))

L}JI(RZ)
S L+ 7+ @D LZ '{/1;(5 -{L,n— Ul)@(?l,ﬂl)dfldﬂl .
< || + 17 + SN NLIF (cosh(plDuy cosh(plDDuz)(L, 1)

2 (R2
LM(R )

~ [|IDI(APu; AP uy)

Yy 1 (R?)

where

cosh(plZ]) (sech(pldiDsech(pld = £1])) < 2,

and
VP(x,1) = cosh(p|D)u(x,1),i = 1,2,

with u being the solution to (1.5). Thus
ui(x, 1) = sech(p|D|)Vi(x, 1).
Now, by using Theorem 2.1, we get

IIDIA?uy APu)llxy -1r2y - Sy 18 Uiy, 2y 1| AU My, m2)

=l w ||yp,b1(R2)|| ) ||yp,bl(R2) .

The next result states the needed trilinear estimate.

Lemma 2.6. [[4] Let b > %and% <b-1< 17—0. Then

axﬁui

i=1

Yy 1(R?)

3
Sbp! l_[ | wi lly,®2) -
i=1
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Remark 2.2. Setting
gi&,m = (1 + I+ ¢OD w&m, i=1,2,3,

the estimate of Theorem 2.6 can be rewritten as

10 (uyuou3)||y,, _ (=2)

uruxt3(4, m)

WWméww1

2 (R2
L(J](R )

- CH (1+ 1y +§¢({)|)b'—1 L4 w1 (&1, a8, m)uz(§ — &1 = Lo, — 1y — m2)ddrdlddny,

2 (R2
LM(R )

_ CH 4 g1(&1,m) 82(&,m2)
(L + 1+ ¢OD " Jps (1 + I+ ¢QOD" (1 + 2 + $(L)N)

B -b-bn-m—m)
A+p=—m—m+d =4 =0

d{dddndn,

2 (R2
Leq®9)

S 1181 ||L§J](R2) llg| |L§’U(R2) llgs |L§’”(R2)'

Lemma 2.7. Letp >0, b > %and% <b -1< 17—0. Then

0y

1

3
u;
=1

3
Sbp! l_[ || u; ||y,),;,(R2) .
i=1

\yp,b'—l (RZ)
Proof. The proof is similar to that of Lemma 2.5. O
2.3. Energy estimates
Lemma 2.8. Given b = % + €, such that forall T > 0 and u € Mp,b(Rz), we have

bto.r1 (VAL ) < P2l oo 2.11)

01Oy, 2y < Pl g - (2.12)

Proof. By symmetry, we may assume |{j| > |{5| > --- > |{,|. By Lemma 3 in [7],

p
<2 > o4l lodd

j#k=1
< P20 4Gl

p
1 — cosh(pl|Z]) 1—[ sech (pl{jl)

J=1

(2.13)

Taking the Fourier transform we have

2
F (A u? - A?|(0) = j; » [1 — cosh(pl¢)) | | sech (pl¢l)
=61+ j=1

2
[ 17 (¢))dgidz,
j=1

AIMS Mathematics Volume 9, Issue 8, 22414-22434.



22422

and

3
ﬂ[(Aﬂuf _ Aﬂu3](§) - f 1 — cosh(p|Z]) l_[ sech (p|§j|)

{=81+0+83 [ =1

3

[ 17 (¢))dcidtaass.
j=1

Now, set w, = 7' (IV?]). Then, applying (2.13)

7 vur - Al < p2rp? L Ll Ve @[V @] dziass

= p*27p° f 111l Wy, (6 W, (&) ddrddy
=01+

= 27 (1w,) ) .

and

T (huy’ - n|@)| < p2rp? f 411l [V @0| [ @] [P @) derdiadey

{=0O+0+03

= p*27p’ f 111l W, (6 W, (82) W, (¢3) ddrdrdis
{=0+0H+03

= P27 (1D, <, ) O

Therefore, using Plancherel identity, Holder inequality, and Sobolev embedding, we obtain

Wi0.r1()Al S p? H(lDIWP)Z Yy,

<o [wills,
~ P IVAIL,
and

0.11()8 S p° H(|D|Wp)2 W"Hybf_l

3
<0*|wolly,
~ P IVEIly, -
O
Lemma 2.9. ( [24]) Let d € A with py > 0. Then, for all 0 < p < py we have
N2y < 2§||d”ﬂ/’0(R)||”||£ﬁ(R) + 2|IDl| ooy lloell 2 ry- (2.14)
0

3. Local well-posedness

Based on the above estimations, using the contraction argument, we prove the local well-posedness.
Without the damping term, Coclite and Ruvo [6] established the well-posedness of the classical
solutions of (1.4). We are going to extend this result and prove the local well-posedness in £* of
the Cauchy problem (1.4) with a weakly damping in (1.5).

AIMS Mathematics Volume 9, Issue 8, 22414-22434.
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Theorem 3.1. (Local well-posedness in L*(R)) Let p > 0 and uy € LP. Then, b > % which is

near enough to % and T > 0 depending only on p, s, and uy, such that (1.5) is locally well-posed in
C ([0, T], LP(R)). Besides, the solution u satisfies

U@l < cllully,, < 2Clluollz, t €[0,T], (3.1

where c
T = 0 (3.2)

10
(1 + []pllae(w) + ||u0||2Lp(R) + llutol o)) 7=

for certain constants
co = (16C327 > max{|ul, AN 7+ >0, a>1, C>O0.

3.1. Existence of solution

Let B be a closed ball. The standard Banach contraction maping of the functions y(,,p,s,,,(Rz) inB
will be used to prove the local well-posedness in the analytic Gevrey spaces. For this end, we will need
the integral operator

Qu)(x,1) = @ (DS (Duy(x) — @ (1) fo t St = )d@)u(x, 7))
+ Ou(uu*(x,7) + A’ (x, 7)))dr, (3.3)
to deal with the nonlinear estimates. Additionally, we introduce a cut-off in
,u@xuz, 20,8, (x),

and consider

Q(u)(x, 1) = @ (DS (Duo(x) — @1 (7) f St = T)(@or (1)d(x)ulx, 7)
0

(3.4)
+ 0 (uwor (DU (x, T) + dwor (D (x, 7)))dT.

Since @, = 1 on support of wr, the Eq (3.4) is identical with (3.3).

Lemma 3.1. Letp > 0 and b > % Then, for all uy € LP(R) and 0 < T < 1, with some constant C > 0,
we have

1Dy, w2 < Cliugll ez + C max{|ul, |A}2T)" ™ (3.5)

2 3
(0l llaly, 2y + 1l oy + I, o))
and
b'—b
1D(w) — PW)lly, 2 < Cmax{lul,|AQT) (3.6)
2 2
X”b +u +v-+uv+u-+ V”ypvh(ﬂ@)”l/{ — v”yp,h(Rz)'
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Proof. To begin by the estimate (3.5), it follows

||‘I’(u)||y,,,,,(R2)

< w1 (DS Ouolly, ,z2)

+Hw1(t) fo S (1 = T)(wr(D)d(X)u(t) + ax(,uzUZT(T)uz(T) + Adwor (T (7)))dr o)

< Clluoll e, + € maxtlul, LAl (00w + 0,66 + )

Y,p-1(R?)

< Clluollprgzey + € max{lul, |/1|}(2T)b"beu + 0,02 + 1)

*yp,b’fl(Rz)

+lull}, | 52

< Clluoll g2y + C max{jul, [A}2T)” _b(||b||ﬂﬂ(R)||M||y,,¢b(R2) + ||eal| ()

2
Yo p(R?)

Next, for (3.6), we have

1P) = Py, ,z2)

= ”w] () f S(t — T)wrr (1) (b(u —V) + ,ué?x(u2 V) + 20, (u® — v3)) (t)dr
0 Yo p([R?)

< € max(lul, || @or(r)oG = v) + 0, (@2 = v) + @ =)

yp,b’—l (R2)

< € max{lul, IANRTY o = v) + 0., (@ =) + (u® = v?))

Y1 (B2)

= Cmax(u ANRTY |8, (o =) + @+ =)+ 2+ 2 ) =w)||,

= C max{[ul, |ANQTY |0, (@ + (@ +v) + @ +1* + uv))(u = v))

Yo 1(R?)

< Cmax{lul, [ABRTYP|Io + u? + v + uv + u + vlly, @2l = Vly,, =)
Then, the proof is now completed.
It will be shown that the map @ : B(0,r) — B(0, r) is a contraction, where
B(0.7) = {u € Y, p(®R2):llully, 2 < r} with r = 2C]uoll pey-
Proposition 3.1. Let p > 0 and b > 3. Then, for all uy € L°(R), such that

T = €0

10
(1 + ol + ||M0||20>(R> + llutol| o)) 72

then, the map @ is a contraction on the ball B(0, r) to B(0, r).

(3.7)

AIMS Mathematics Volume 9, Issue 8, 22414-22434.
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Proof. By Lemma 3.1, Vu € B(0, r), we have

1Dy, 2 < Clluoll g2 + € max{lul, 11T
(Il el cocey + el o+ Ml o)
®) ®) Y,5(R2) Y b(R2)

< 2 + Cmax{ll, R P (Dllweyr + 1 + 7).

N~

If we take
’ 1
co = (16C°2" " max{|ul, |12}) 7=,

then, for 7" given as in (3.7), we get

T < ! —
(4C max{[ul, 10127 (|l iz + 1 + )7

and hence
|| D(u) ||yp’b(R2)S r, YueB(@,r).

Then, @ : B(0, r) — B(0, r) is a contraction, since
| D(u) — q)(V)”yp,;,(Rh

< Cmax{lul, |ACT! b + u?> + V2 + uv + u + Vily, )l = vily, @2
< C max{lul, [ABRT)Y  (Ipllawey + 37 +2r) llu = vily, 2

< Cmax{lul. QT 3 (Ibllw + 2+ r) e = vl )

3
< 1 lu—vlly,,® -
This completes the proof. m|

3.2. The uniqueness
We shall prove the uniqueness of the solution in C([0, T'], L°(R)).

Lemma 3.2. Let u and v be two solutions of (1.5) in C([0, T], LP(R)) with u(-,t = 0) = v(-,t = 0) in
LP(R), where p > 0. Then, u = v.

Proof. Putting w = u — v, we see that w solves
ow + waiw + v@iw + 0w + udw(u + v) + 0w + v + uv) = 0, (3.8)
with w(-,# = 0) = 0. By multiplication of (3.8) with w and after integration with respect to x, we find

wow + wwaiw + Vwaiw + dw + uwd, w(u +v) + W w(u® +v* + uv) = 0.

AIMS Mathematics Volume 9, Issue 8, 22414-22434.
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Then, by simple calculation, we get

1d, 1

S

d
o7 szdxszwatwdx

= f dwdx — f wo w(u + v)dx
R R

-1 fR wowu? + v + uv)dx,

f wdwdx = f wdwdx = 0.
R R

d
Ellw(t)lliz(R) :—2fbw2dx—,ufw6xw(u+v)dx
R

R

since

By (3.9), we have

- fR wowu? + v + uv)dx,
=2 f dw(t)dx — 2u f wo, [fw]dx
R R

=22 f wad, [gw] dx,
R

where f = u + v and g = u? + v* + uv. With integration by parts, we have

—2fbw2dx—,uf6xfw2dx
R R

A f dgwdx.
R

d

Then,

d 2
'E’”W(t’ .)”LZ(R)

< max{ful, [P ze®) + 10y fllz=qo0,r1xr) + 1058z 0.71xm)IIW ()]

(3.9)

(3.10)

Since u,v € C([0, T], £LP(R)) we have that u and v are continuous in ¢ on the compact set [0, 7] and are

LP(R) in x. Thus, we can conclude that

max{lul, [A}IPllzom®) + 10xfllL=o.r1xr) + 10:8llL0.11xR)) < € < 0.

Therefore, from (3.10) and (3.11), we obtain the differential inequality

S C”W(t)”iZ(R)’ re [09 T]

d 2
O,
Then,
O, < WOy, £ € 10, T,

Since IIW(O)IIiz(R) =0, from (3.12) we find that w(r) = 0,0 <t < T oru = v.

(3.11)

(3.12)

O
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3.3. Continuous dependence of the initial data

The next lemma will be useful.

Lemma 3.3. Letp > 0 and b > % Then, for all uy,vy € LP(R), if u and v are two solutions to (1.5)
corresponding to initial data uy and v,. We have

|I/t - VlT,p < 4C0C||uo — VO”LP(R)- (313)

Proof. We have by Lemma 1.1

sup |lu(-, 1) —v(:, Dllerw)
t€[0,T]

Collu = vlly, =2
Coll@(u) — PW)lly, ,&2)-

lu —Vir,

IA

Taking u,v € B(0, r) and

T < : —,
(4C max{lul, |[A2" P (Pllaew) + r* + )7
we have
D) — q)(V)”yp,,,(RZ) < Cllug = voll oy + %Hu - V||yp,,,(R2)-
Thus
|P(u) — PW)lly, &2 < 4Clluo — voll rw).
then

lu —vir, < 4CoCllug — voll gow).-

This completes the proof of Theorem 3.1.
4. Lower bound for radius of spatial analyticity

We need to state the property of the space LP(R). For p > 0, it is not hard to show that if the
function f € L(R), then it is the restriction to the real line of a holomorphic function f(x + iy) in the
strip

S,={x+iyeC,lyl <p}h

The p > 0 is the uniform radius of spatial analyticity for f.
The next Paley-Wiener theorem provides an alternative description of L*.

Paley-Wiener Theorem. The function f € £* if and only if f(x) is the restriction to the real line
of a holomorphic function f(x + iy) in the strip

S,={x+iyeC,lyl <p},
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and satisfies the bound

sup [|f(x + iy)ll2 < oo.
l<p

From the point of view of Paley-Wiener theory, it is natural to take the initial data in £°(R) and get
a better understanding of the behavior of the solution as we try to scale it globally in time. It means
that given uy, € L*(R) for some initial radius p > 0, we want to estimate the behavior of the radius of
analyticity p(T) as time T grows.

In Section 3, we proved the local well-posedness in L°(R) with p > 0, i.e., the local solution is
analytic in x. Now, we use the obtained local result together with a Gevrey approximate conservation
law to be extended for all time. Furthermore, we obtain explicit lower bounds on the radius of spatial
analyticity r(f) at any time ¢ > 0, which is given by r(¢) > ct~!, where ¢ > 0, based on an approximate
conservation law in the modified Gevrey space; see [27].

Theorem 4.1. Assume that (Al), (A2) hold and uy € L*° for some py > 0. Then, the initial value
problem (1.5) has a global solution u(t) € LF® with

o) = p; >0, moreover |u(t)||pn < Ce_%, forallt >0,

where py depends on ||u(t)|| gr0, po, D(x) and C depends only on d(x), |[u(t)|| 0.

The method used here for proving lower bounds on the radius of analyticity was introduced in [22]
in the context of the 1D Dirac-Klein-Gordon equations. It was also applied to the non-periodic KdV
equation in [7]. Ming Wang [24] found that, for the damped KdV equation, the analytic radius has a
fixed positive lower bound uniformly for all time.

4.1. Approximate conservation law
Recall that J
— f u*(x, dx + 2 f d(xX)u*(x, H)dx = 0. 4.1)

If d(x) > 6 > 0 on R, then by Gronwall inequality, we deduce from (4.1) that
lu@)ll7. < e lluoll7.. (4.2)

We will establish an approximate conservation law for a solution to (1.5) based on the conservation
L*(R) norm of solutions.

Theorem 4.2. Let 0 < T < T; < 1, Ty be as in Theorem 3.1, Ab = % + €, such that Yp > 0 and any
solution u € yﬁb(Rz) to the problem (1.5) on [0, T], we have

2 -20T 2 2 3 2 4
”u(T)”Lp(R) <e ”u()”Lp(R) +Cip ”uO”Lp(R) + Cyp ||u0||£p(R)

2
+ C3plIdll o rylluoll oy + Calldllrolletoll 2w lloll o r)-

Proof. Let VP(t,x) = cosh(p|D|)u(t, x). Since u is real-valued, we also have V¥ real-valued; applying
the exponential cosh(p|D|) to Eq (1.5), it is easily seen that we obtain
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O,VF + wO VP + v VP + uNP(0,u*) + ANP (D) + AP (du) = 0,

which is equivalent to

O VP + W VP + v VP + 2uVPO. VP + 3A(VP)20, VP + dVP
= ud,(VP)? = Au?) + 10,((V*)? — A°u®) + DA u — AP (du).

We use A, ® and I', and obtain
OVF + W VP + v VP + 2uVPa, VP + 3A(VF)0, VP + dVP = uA + A0 +T. (4.3)

Multiplying (4.3) by V¥ and integrating in space, we obtain

f VPO VPdx + w f VPO VPdx + v f VPO VPdx + 2u f (VFY?0,VPdx+
R R R R

31 f (VP39 VPdx + f VPOVPdx = f VPAdx + A f VFOdx + f VPTdx.
R R R R R

The integration by parts is justified, since we may assume that V#(¢, x) decays to zero as |x| — oo, and
the same holds for all spatial derivatives. Thus, (4.4) can be rewritten as

4.4)

1d

2
L f (VYdx + 2 f O(PVEPVA)dx + ~ f 0,0, V29, Vydx + L f 0,(VPY dax+
2d1 J, 2 ). 2 3

R R
(4.5)
31
= | 0.(vV/)*dx + f d(X)(VP)dx = u f VPAdx + A f VF@dx + f VFTdx,
R

4 R R R R

and the second, third, forth, and fifth terms on the left side vanish

1d
—— f (VP)2dx + f d(X)(VP)(x, t)dx = f VPAdx + A f VF@dx + f VPTdx.
2dt J R R R R

Since d(x) > ¢ > 0 for all x € R, we get

d
—f(Vp)2dx+25f(Vp)2(x,t)dxS2/,tfVpAdx+2/lpr®dx+2prFdx.
dt Jg R R R R

Applying Gronwall lemma , we have

()l < e lu(0)II7, + 2I,UI’ f i xiori(ne > TPVPA dxdﬂ‘
R

+ 2|4

L X oD T IVPe dXdU‘

T
+2‘ f f Xio.r (e VT dxdn‘
0 R
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< e NG + 11+ I + 15

Recalling that V¥ is real-valued, it follows from Plancherel’s identity and Cauchy-Schwarz
inequality that

7, =2yl f (o1 (De TPV, (0. (OANE, mdLdn
R2

= 2yl f (011 (e PT-DVPYL, ) (x oA, mdLdn|.
R2

Then, Holder’s inequality yields

1, < 2|u|”<1 11+ SN (o7 FT-DVEYE, 1)

2 (R2
LM(R )

(4.6)

x“(l 0+ $OD oA )

2 (R2
LM(R )

< 2ellPeroniOe TV, o leonOA]ly, g

and

I, =2 f (o (e TPV ) eon OO, nydLdn
RZ

_ o f Con(JEBT-DVOYZ D)o OONE. mddn).
RZ

Then, Holder’s inequality yields

I, < 2|A|'|(1 1+ HOD o @BT-DVONE, 1)

2 (R2
Ly ®9)

(1 + 17+ SN (0n®)(&s 1) (4.7)

X

L?),](Rz)
< 2|/1||LY[07T1(')6_26(T_")Vp”ylfb(RZ)lLV[O7T](')®||yH(R2)’

we have both -1 <b—1 < 1 and 1 < 1-b < 1. Therefore, one can use Lemmas 2.3 and 2.2 to obtain
—26(T - _ —26(T -
||X[0,T](')€ ( ")V'O”ylfb(Rz) = ”X[O,T](')e ( ")M”yp’lfh(Rz)
< ||u )
” ||y£lih(R2)
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since we have 1 — b < b, we can conclude from it and Lemma 2.8 that

2 3 2 4
Ly + 1y s pollully | gy + 7 llully | g2

by using the condition (3.1) we conclude that
I, +1,% pzlluO”}[p(R) + p2||M0||4Lp(R)-

2
15 < Gaplllavowylluoll pogy + CalldllLo)lluoll 2y 1ol 0wy

Therefore, we conclude that

2 -20T 2
(Dl < e MOl + L1+ 1o+ 15
-20T 2 3 4
<e ”uO”Lp + CIPK”I/‘OHDJ(R) + CZPQHMOHLP(R)

2
+ Capldllavomlluoll o gy + Calldlleomylluollr2ewyllutol] gow)-

4.2. Global existence and analytic radius lower bound

According to assumption (A2), we have [|d]|#®) < oo, and we can assume that uy € L*(R) with
po < M; . Then, we show that d(x) € A”(R). According to Theorem 3.1, there exists a unique
solution

C(0,T], L2(R)),
of the initial value problem (1.5) with life span

T = €0

—
(1 + [pllae(w) + ||M0||23,(R) + llutol o)) 72

Moreover, by Theorem 4.2, we have the estimate

2 -26T 2 3 4
”I/‘(T)”L/)(R) <e ”uOlle(R) + ClpK”uO”Lp(R) + C2PQ||MO||L/>(R)

2
+ Capldllavomlluoll gy + Calldllroylluollr2rylluoll oo w).-

Now, using the inequality

1 — =27

2 2
2 ||u0||£p(R) + CSlluO”LZ(R)’

C4lIl| ooy llutol 2wy llol| gory <

we deduce that

-20T

2 2 3 4
||M(T)||£p(R) < 3 ”uO”Lp(R) + CIPKHMOHLp(R) + CZPQHMOHL/J(R)
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2 2
+ C3plPllaeomlluoll e my + Cslluolly 2 g)-

Now choose

| — 2T ( | — 2T ) ( | — 2T )1}

6C3Ioll v \6Culluoll ) " \6Calluoly g,/ )

p =p1 =min {po,

so that

_ 2T

2
Cip luoll oy + Cop°llutoll oy + Capldll o) < >

Then,
2 2 2
”u(T)”Lm(R) = ”uO”Lpl(R) + C5||M0||L2(R).
Now, the solution on [nT, (n + 1)T] proceeds as above

n

2 2 —2(i—-1)6T 2
TPy ey < Metolp ey + Cs Y € gl V2 1.

i=1
we find that
2 2 2
||u(t)||_£Pl(R) < ||u0||_£P1(R) + C6||u0||L2(R)a Vi=0

where Cg > 0 is independent of k. Thanks to (4.11), we have
(Ol rrry < C7, V=0

Recalling the exponential decay [[u()|l?, < e™>”|luoll7,, we deduce from (4.12) that

1 1 st 1
Ol 1, < WO 0 1Oy < NCre T ol Vit 0.

This completes the proof of Theorem 4.1.

5. Conclusions

(4.8)

4.9)

(4.10)

4.11)

(4.12)

The local well-posedness for the Kawahara-Korteweg-de-Vries equation with a weakly
damping (1.5) in modified analytic space L°(R), p > 0 defined in (1.12) with ||[f|*L°(R) ~ |IfI*G°(R)
is discussed. The local well-posedness is showed by using the Banach contraction mapping principle
together with the bilinear and trilinear estimates in the space of Fourier restriction Y, ,(R?). The local

result with the approximate conservation law

d
— f u?(x, dx + 2 f d(xX)u’(x, Hdx,
dt Jr R

is extended to be global in time. Besides, the analytic radius lower bound is proved.
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