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Abstract: In the framework of Gb-metric spaces, we introduce the concept of a generalized Ćirić-type
contraction and obtain several fixed-point theorems for this contraction. First, we present a significant
lemma, which is used to ensure that the Picard sequence is a Cauchy sequence. Using this lemma,
we establish three fixed-point theorems satisfying different conditions. Second, we construct new
examples to illustrate our results. As applications, we deduce the famous Ćirić fixed-point theorem
in terms of b-metric spaces using our results. In addition, we obtain Reich-type contraction fixed-
point theorems in such a space using the aforementioned lemma. Our results improve and complement
many recent findings. In particular, we substantially enlarge the range of the contraction constant in our
results. Finally, we consider the existence and uniqueness of solutions for integral equation applying
our new results.
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1. Introduction

In 1989, Bakhtin [1] presented a kind of generalized metric space, that was named b-metric space.
In 1998, Czerwik [2] reintroduced this notion from the constant s = 2 to a constant s ≥ 1. After
this pioneering work, many types of fixed-point theorems were presented by different authors (for
example, refer to [3–9]). In 2006, Mustafa and Sims [10] gave the notion of G-metric, a function
d : X × X × X → [0,∞) satisfying certain conditions. Based on G-metric spaces, a large number
of fixed-point theorems were proposed (for example, see [11–16]). In 2014, A. Aghajani et al. [17]
defined a new type of metric using the concepts of G-metric and b-metric, which was called Gb-metric.

On the other hand, in 1974, Ćirić [18] established the Ćirić-type fixed point theorem in metric
spaces. From then on, fixed-point results for many kinds of Ćirić-type contractions in metric and
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b-metric spaces have been studied (for example, see [19–23]). Also, in 2008, Mustafa et al. [11]
proved some fixed-point results for Reich-type and Ćirić-type contractions in complete G-metric
space. In 2017, A. H. Ansari et al. [24] proved a new approach for some common fixed-point results
in complete Gp-metric spaces defined by partial metric spaces and G-metric spaces. More recently,
in 2019, Min Liang et al. [25] established some new theorems for various cyclic contractions in
Gb-metric spaces. In 2019, Hassen Aydi et al. [26] investigated the unique fixed point of Ćirić-type
contractions with seven metrics in Gb-metric space with coefficient s ≥ 1, in which the range of
contraction constant is [0, 1

2s ). In 2021, Vishal Gupat et al. [27] investigated a kind of Reich-type
fixed-point theorem where the range of contraction constant is [0, 1

2s ) in Gb-metric space.
Inspired by the above literature, in this work, we introduce the generalized Ćirić-type contraction

in Gb-metric spaces and investigate some Ćirić-type and Reich-type fixed-point theorems. The
generalized Ćirić-type contraction introduced in this paper involves ten metrics, while previous
literature only considered, at most, seven metrics. Our new theorems can generalize and improve the
related results in [26,27]. In particular, the range of contraction constant is enlarged from [0, 1

2s )
to [0, 1

s ) for Ćirić-type contraction, and the range of contraction constant is extended from [0, 1
2s )

to [0, 1
max{2,s} ) for Reich-type fixed-point theorems. Moreover, a new example is given to illustrate our

results, where Gb-metric is discontinuous. Using our results, we can obtain the famous Ćirić
fixed-point theorem in metric spaces. Finally, we show the existence of a solution for the integral
equation formulated in Gb-metric spaces.

Throughout this paper, we denote by R,N0, and N the sets of real numbers, natural numbers, and
positive integer numbers, respectively.

2. Preliminaries

First, we recall some concepts that are going to be used later.
A. Aghajani et al. [17] defined a new notion of Gb-metric using the concepts of G-metric and

b-metric as follows.
Definition 2.1. [17] Let X be a nonempty set and s ≥ 1 a given real number. Suppose that a mapping
Gb: X × X × X → [0,∞) satisfies:

(Gb1) Gb(x, y, z) = 0 if x = y = z,
(Gb2) 0 < Gb(x, x, y); for all x, y ∈ X with x , y,
(Gb3) Gb(x, x, y) ≤ Gb(x, y, z), for all x, y, z ∈ X with z , y,
(Gb4) Gb(x, y, z) = Gb(x, z, y) = Gb(y, z, x) = ..., (symmetry in all three variables),
(Gb5) Gb(x, y, z) ≤ s(Gb(x, a, a) +Gb(a, y, z)), for all x, y, z, a ∈ X (rectangle inequality).
Then, the function Gb is called a generalized b-metric, and the pair (X,Gb) is a generalized b-metric

space or Gb-metric space with coefficient s.
We can construct an example of Gb-metric space by b-metric space.

Example 2.2. Let (X, d) be a b-metric space with s ≥ 1. Define Gb : X3 → [0,∞) by

Gb(x, y, z) = max{d(x, y), d(y, z), d(x, z)} for all x, y, z ∈ X.

Then, (X,Gb) is a Gb-metric space with identical coefficient s ≥ 1.
Proof. It is not difficult to check that Gb satisfies (Gb1)–(Gb4). Next, we prove that Gb satisfies the
condition (Gb5).
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In fact, for all x, y, z ∈ X, and s ≥ 1, we find

Gb(x, y, z) =max{d(x, y), d(y, z), d(x, z)}
≤max{s[d(x, a) + d(a, y)], s[d(x, a) + d(y, z)], s[d(x, a) + d(a, z)]}
=s[d(x, a) +max{d(a, y), d(y, z), d(a, z)}]
=s[Gb(x, a, a) +Gb(a, y, z)].

Thus Gb satisfies (Gb5), and then (X,Gb) is a Gb-metric space with identical coefficient s ≥ 1.
Definition 2.3. [17] Let (X,Gb) be a Gb-metric space. A sequence {xn} in X is said to be:

(1) Gb-Cauchy sequence, or simply Cauchy sequence if, for each ϵ > 0, there exists a positive
integer n0 such that, for all m, n, l ≥ n0, Gb(xn, xm, xl) < ϵ.

(2) Gb-convergent to a point x ∈ X if, for each ϵ > 0, there exists a positive integer n0 such that, for
all m, n ≥ n0, Gb(xn, xm, x) < ϵ.
Definition 2.4. [17] A Gb-metric space (X,Gb) is called Gb-complete, or simply complete, if every
Gb-Cauchy sequence is Gb-convergent in X.
Proposition 2.5. [17] Let (X,Gb) be a Gb-metric space, then the following are equivalent:

(1) the sequence {xn} is Gb-Cauchy.
(2) for any ϵ > 0, there exists n0 ∈ N such that G(xn, xm, xm) < ϵ, for all m, n ≥ n0.

Proposition 2.6. [17] Let (X,Gb) be a Gb-metric space, then the following are equivalent:
(1) {xn} is Gb-convergent to x.
(2) Gb(xn, xn, x)→ 0 as n→ ∞.
(3) Gb(xn, x, x)→ 0 as n→ ∞.
The following is a new example of a Gb-metric space, which is completely different from the known

examples in [25–27].
Example 2.7. Let X = [0,∞) and define

Gb(x, y, z) =

 |x − y| + |y − z| + |x − z|, xyz , 0,

2(|x − y| + |y − z| + |x − z|), xyz = 0.

Then the following holds:
(1) (X,Gb) is a Gb-metric space with coefficient s = 2.
(2) (X,Gb) is Gb-complete.
(3) Gb is discontinuous on X.

Proof. (1) It is not difficult to obtain that Gb satisfies (Gb1), (Gb2), (Gb4). Now, we verify that Gb

satisfies (Gb3), i.e., Gb(x, x, y) ≤ Gb(x, y, z), for all x, y, z ∈ X with z , y. We consider the following
two cases:
Case 1. Assume that xyz , 0, then

Gb(x, x, y) = 2|x − y| ≤ |x − y| + |y − z| + |x − z| = Gb(x, y, z).

Case 2. Suppose that xyz = 0, then at least one of x, y, and z must be 0.
If x = 0, y = 0, then we have Gb(x, x, y) = 0, and obviously, (Gb3) holds.
If x = 0, y , 0 or x , 0, y = 0, then

Gb(x, x, y) = 4|x − y| ≤ 2(|x − y| + |y − z| + |x − z|) = Gb(x, y, z).
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If x , 0, y , 0, then z = 0, and

Gb(x, x, y) = 2|x − y| ≤ 2(|x − y| + |y − z| + |x − z|) = Gb(x, y, z).

Hence, (Gb3) holds.
Next, we verify that Gb satisfies (Gb5), i.e., Gb(x, y, z) ⩽ 2(Gb(x, a, a)+Gb(a, y, z)), for all x, y, z, a ∈

X. We consider the following two cases:
Case 1. Assume that xyz , 0.

If a , 0, then we get

Gb(x, y, z) = |x − y| + |y − z| + |x − z| ≤ 2|x − a| + |a − y| + |y − z| + |a − z|

= Gb(x, a, a) +Gb(a, y, z) ≤ 2(Gb(x, a, a) +Gb(a, y, z)).

If a = 0, then we have that

Gb(x, a, a) = 4|x − a| = 4|x|,
Gb(a, y, z) = 2(|a − y| + |y − z| + |a − z|) = 2(|y| + |y − z| + |z|).

Hence,

Gb(x, y, z) = |x − y| + |y − z| + |x − z| ≤ |x| + |y| + |y − z| + |x| + |z|

≤ 4|x| + 2|y| + |y − z| + 2|z| ≤ 4|x| + 2|y| + 2|y − z| + 2|z|
= Gb(x, a, a) +Gb(a, y, z)) ≤ 2(Gb(x, a, a) +Gb(a, y, z)).

Case 2. Assume that xyz = 0.
If a = 0, then we know

Gb(x, y, z) = 2(|x − y| + |y − z| + |x − z|) ≤ 2|x| + 2|y| + 2|y − z| + 2|x| + 2|z|,
= 4|x| + 2(|y| + |y − z| + +|z|) = Gb(x, a, a) +Gb(a, y, z)
≤ 2(Gb(x, a, a) +Gb(a, y, z)).

If a , 0, and x , 0, then at least one of y and z must be 0. Hence, Gb(x, a, a) = 2|x − a|, Gb(a, y, z) =
2(|y − a| + |y − z| + |a − z|), and

Gb(x, y, z) = 2(|x − y| + |y − z| + |x − z|)
≤ 2(|x − a| + |y − a|) + 2|y − z| + 2(|x − a| + |a − z|)
= 2Gb(x, a, a) +Gb(a, y, z) ≤ 2(Gb(x, a, a) +Gb(a, y, z)).

If a , 0, and x = 0, then Gb(x, a, a) = 4|x − a|. If y , 0, and z , 0, then we know Gb(a, y, z) =
|a − y| + |y − z| + |a − z|, and

Gb(x, y, z) = 2(|x − y| + |y − z| + |x − z|)
≤ 2(|x − a| + |y − a|) + 2|y − z| + 2(|x − a| + |a − z|)
= Gb(x, a, a) + 2Gb(a, y, z) ≤ 2(Gb(x, a, a) +Gb(a, y, z)).
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If at least one of y and z must be 0, then Gb(a, y, z) = 2(|a − y| + |y − z| + |a − z|), and

Gb(x, y, z) = 2(|x − y| + |y − z| + |x − z|)
≤ 2(|x − a| + |y − a|) + 2|y − z| + 2(|x − a| + |a − z|)
= Gb(x, a, a) +Gb(a, y, z) ≤ 2(Gb(x, a, a) +Gb(a, y, z)).

Therefore, (X,Gb) is a Gb-metric space with coefficient s = 2.
(2) We prove that (X,Gb) is Gb-complete. Let {zn} ⊂ X be Gb-Cauchy sequence, i.e.,

lim
m,n→∞

Gb(zn, zm, zm) = 0, that is, |zn − zm| → 0 as m, n → ∞. Thus, {zn} is a Cauchy sequence in [0,∞).

Since [0,∞) with ordinary metric is complete, hence there exists z0 ∈ [0,∞) such that |zn − z0| → 0 as
n→ ∞, thus, Gb(zn, z0, z0)→ 0 as n→ ∞.

(3) We show that Gb is discontinuous on X. Indeed, let xn =
1
n , n ∈ N and a = 1, we have xn → 0 as

n→ ∞ and xn , 0 for any n ∈ N. Hence,

lim
n→∞

Gb(xn, xn, a) = lim
n→∞

2|1 −
1
n
| = 2 , 4 = Gb(0, 0, a).

3. Main results

Now we give the notion of generalized Ćirić-type contraction in Gb-metric spaces.
Definition 3.1. Let (X,Gb) be a Gb-metric space with coefficient s ≥ 1, T : X → X is a map. Then,
the map T is called a generalized Ćirić-type contraction, if there exists λ ∈ [0, 1) such that for all
x, y, z ∈ X,

Gb(T x,Ty,Tz) ≤ λmax{Gb(x, y, z),Gb(x,T x,T x),Gb(y,Ty,Ty),
Gb(z,Tz,Tz),Gb(x,Ty,Ty),Gb(y,Tz,Tz),Gb(z,T x,T x)
Gb(x,Tz,Tz),Gb(y,T x,T x),Gb(z,Ty,Ty)}. (3.1)

And λ is called the contraction constant of T .
The following lemma is crucial and will be used to prove our main results.

Lemma 3.2. Let (X,Gb) be a Gb-metric space with coefficient s ≥ 1. T : X → X is a map and z0 ∈ X.
Let {zn}n∈N0 be a sequence defined by zn = Tzn−1 = T nz0 for all n ∈ N. If T is a generalized Ćirić-type
contraction with contraction constant λ ∈ [0, 1), then {zn}n∈N0 is a Gb-Cauchy sequence.
Proof. Denote a set {(m, n) : m ∈ N0, n ∈ N and m < n} by D.

Define P : D→ [0,∞) by

P(m, n) = max{Gb(zi, z j, z j) : m ≤ i, j ≤ n}.

We will prove it in four steps.
Step 1. We prove that

P(m + 1, n) ≤ λP(m, n) for any (m, n) ∈ D with n > m + 1. (3.2)

Let (m, n) ∈ D with n > m + 1 be given. For any i, j ∈ [m + 1, n] and i, j ∈ N, since T is a generalized
Ćirić-type contraction with contraction constant λ ∈ [0, 1), we have that

Gb(zi, z j, z j) = Gb(Tzi−1,Tz j−1,Tz j−1)
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≤ λmax{Gb(zi−1, z j−1, z j−1),Gb(zi−1, zi, zi),Gb(z j−1, z j, z j),
Gb(z j−1, z j, z j),Gb(zi−1, z j, z j),Gb(z j−1, z j, z j),Gb(z j−1, zi, zi),
Gb(zi−1, z j, z j),Gb(z j−1, zi, zi),Gb(z j−1, z j, z j)}
≤ λP(m, n),

which deduces P(m + 1, n) ≤ λP(m, n) < P(m, n).
Step 2. We verify that

P(m, n) = max{Gb(zm, zp1 , zp1),Gb(zp2 , zm, zm) : m < p1, p2 ≤ n}. (3.3)

Let (m, n) ∈ D be given. If n − m = 1, then n = m + 1 and hence

P(m, n) = max{Gb(zm, zn, zn),Gb(zm, zm, zn)}
= max{Gb(zm, zp1 , zp1),Gb(zp2 , zm, zm) : m < p1, p2 ≤ n}.

We now suppose that n − m > 1, then n > m + 1. For any i, j ∈ [m + 1, n] and i, j ∈ N, by (3.2), we
obtain Gb(zi, z j, z j) ≤ P(m + 1, n) ≤ λP(m, n) < P(m, n). Thus,

P(m, n) = max{Gb(zm, zp1 , zp1),Gb(zp2 , zm, zm) : m < p1, p2 ≤ n}.

Step 3. We shall show that there exists M > 0 such that

P(0, n) ≤ M for all n ∈ N. (3.4)

Since 0 ≤ λ < 1, there exists q ∈ N such that λq < 1
s .

If P(0, n) ≤ P(0, q) for all n ∈ N, then the conclusion holds. Otherwise, if P(0, nq) > P(0, q) for
some nq ∈ N, by (3.3), we consider two cases:

On the one hand, there exists an integer p1 ≤ nq and p1 > q such that

P(0, nq) = Gb(z0, zp1 , zp1) ≤ sGb(z0, zq, zq) + sGb(zq, zp1 , zp1)
≤ sGb(z0, zq, zq) + sP(q, p1)
≤ sGb(z0, zq, zq) + sP(q, nq)
≤ sGb(z0, zq, zq) + sλP(q − 1, nq)
≤ ...

≤ sGb(z0, zq, zq) + sλqP(0, nq),

hence, we have P(0, nq) ≤ s
1−sλq Gb(z0, zq, zq).

On the other hand, there exists an integer p2 ≤ nq and p2 > q such that

P(0, nq) = Gb(z0, z0, zp2).

Using a similar technique, we have P(0, nq) ≤ s
1−sλq Gb(z0, z0, zq). Let

M =: max{P(0, q),
s

1 − sλq Gb(z0, zq, zq),
s

1 − sλq Gb(z0, z0, zq)}.
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Therefore, we have P(0, n) ≤ M for all n ∈ N.
Step 4. We shall prove that {zn} is a Gb-Cauchy sequence.

For any m, n ∈ N and m < n, by applying (3.2), we have

Gb(zm, zm, zn) ≤ P(m, n)
≤ λP(m − 1, n)
≤ ... ≤ λmP(0, n)
≤ λm · M. (3.5)

Therefore, by (3.5) and 0 ≤ λ < 1, we find that Gb(zm, zm, zn) → 0 as m, n → ∞, which shows that {zn}

is a Gb-Cauchy sequence.
The following corollary is an immediate consequence of Lemma 3.2.

Corollary 3.3. (see [26, Theorem 3]) Let (X,Gb) be a Gb-complete Gb-metric space with coefficient
s ≥ 1. Suppose the mapping T : X → X satisfies

Gb(T x,Ty,Tz) ≤ λGb(x, y, z)

for all x, y, z ∈ X, where λ ∈ [0, 1) is a given constant. Then, T has a unique fixed point (say u) in X
and, for x ∈ X, the Picard sequence {T nx}n∈N0 converges to u.
Proof. Obviously, T is a generalized Ćirić-type contraction with contraction constant λ ∈ [0, 1). Then,
by Lemma 3.2, for x ∈ X, we get that {T nx}n∈N0 is a Gb-Cauchy sequence. Since (X,Gb) is Gb-complete,
there exists u ∈ X satisfying T nx→ u(n→ ∞).

On the other hand, we find

Gb(T n+1x,Tu,Tu) = Gb(T (T nx),Tu,Tu) ≤ λGb((T nx, u, u)→ 0(n→ ∞).

So, T n+1x→ Tu(n→ ∞). Thus, u is a fixed point of T .
Next, we shall verify that u is the unique fixed point of T . If v is another fixed point of T , then

Gb(u, v, v) = Gb(Tu,Tv,Tv) ≤ λGb(u, v, v) < Gb(u, v, v). Thus, we conclude that u = v. Hence, T has a
unique fixed point (say u) in X. Obviously, the Picard sequence {T nx}n∈N0 converges to u.

Next, we establish and prove main results of this section.
Theorem 3.4. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. If T : X → X is
a generalized Ćirić-type contraction with contraction constant λ ∈ [0, 1

s ). Then there exists a unique
fixed point of T .
Proof. Let x0 ∈ X be an arbitrary point and {xn}n∈N be a sequence defined by xn = T xn−1 = T nx for all
n ∈ N.

Since T is a generalized Ćirić-type contraction and λ ∈ [0, 1
s ) ⊂ [0, 1), by Lemma 3.2, we get

that {xn}n∈N0 is a Gb-Cauchy sequence. Since (X,Gb) is Gb-complete, there exists v ∈ X satisfying
lim
n→∞

Gb(xn, v, v) = 0. Using (3.1), we have

Gb(xn+1,Tv,Tv) ≤ λmax{Gb(xn, v, v),Gb(xn, xn+1, xn+1),Gb(v,Tv,Tv),
Gb(v,Tv,Tv),Gb(xn,Tv,Tv),Gb(v,Tv,Tv),Gb(v, xn+1, xn+1),
Gb(xn,Tv,Tv),Gb(v, xn+1, xn+1),Gb(v,Tv,Tv0)}
= λmax{Gb(xn, v, v),Gb(xn, xn+1, xn+1),Gb(v,Tv,Tv), (3.6)
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Gb(xn,Tv,Tv),Gb(v, xn+1, xn+1)}.

Now we consider three cases:
Case 1. If

max{Gb(xn, v, v),Gb(xn, xn+1, xn+1),Gb(v,Tv,Tv),Gb(xn,Tv,Tv),Gb(v, xn+1, xn+1)}
= max{Gb(xn, v, v),Gb(xn, xn+1, xn+1),Gb(v, xn+1, xn+1)},

then by {xn} Gb-convergent to x and (3,6), we have that

lim
n→∞

Gb(xn+1,Tv,Tv) = 0.

Hence, Tv = v.
Case 2. If

max{Gb(xn, v, v),Gb(xn, xn+1,xn+1),Gb(v,Tv,Tv),Gb(xn,Tv,Tv),Gb(v, xn+1, xn+1)}
= Gb(v,Tv,Tv),

then using Definition 2.1 (Gb5), we obtain that

Gb(v,Tv,Tv) ≤ s[Gb(v, xn+1, xn+1) +Gb(xn+1,Tv,Tv)].

Applying (3.6) and λ ∈ [0, 1
s ), we have Gb(xn+1,Tv,Tv) ≤ λs

1−λsGb(v, xn+1, xn+1) , thus,

lim
n→∞

Gb(xn+1,Tv,Tv) = 0.

Hence, Tv = v.
Case 3. If

max{Gb(xn, v, v),Gb(xn, xn+1,xn+1),Gb(v,Tv,Tv),Gb(xn,Tv,Tv),Gb(v, xn+1, xn+1)}
= Gb(xn+1,Tv,Tv),

then as in the proof of case 2, we also get

lim
n→∞

Gb(xn+1,Tv,Tv) = 0.

Therefore, we have Tv = v.
Finally, we shall show that T has the unique fixed point v in X.
If u is another fixed point of T , then

Gb(u, v, v) = Gb(Tu,Tv,Tv) ≤ λmax{Gb(u, v, v),Gb(u,Tu,Tu),Gb(v,Tv,Tv),
Gb(v,Tv,Tv),Gb(u,Tv,Tv),Gb(v,Tv,Tv),Gb(v,Tu,Tu),
Gb(u,Tv,Tv),Gb(v,Tu,Tu),Gb(v,Tv,Tv)}
= λmax{Gb(u, v, v),Gb(v, u, u)}.
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Similarly, Gb(u, u, v) ≤ λmax{Gb(u, u, v),Gb(v, v, u)}. Thus,

max{Gb(u, u, v),Gb(v, v, u)} ≤ λmax{Gb(u, u, v),Gb(v, v, u)}.

We conclude that u = v. Hence, T has a unique fixed point in X. The proof is completed.
Note that T and Gb are not required to be continuous in the above theorem; now, we construct the

following example to illustrate Theorem 3.4.
Example 3.5. Let X = [0, 4] and define

Gb(x, y, z) =

 |x − y| + |y − z| + |x − z|, xyz , 0,

2(|x − y| + |y − z| + |x − z|), xyz = 0.

As in the proof of Example 2.7, we know that (X,Gb) is a Gb-complete Gb-metric space with coefficient
s = 2. Also, Gb is discontinuous. Now we consider T : X → X defined by

T x =


1
3 x, x , 4,

1, x = 4.

Then, the following holds:
(1) T is not continuous on X;
(2) T is a generalized Ćirić-type contraction with contraction constant λ = 1

3 <
1
s ;

(3) T has a unique fixed point in X.
Proof. (1) We shall prove that T is not continuous at x = 4. In fact, 4 − 1

n → 4 as n → ∞. However,
T (4 − 1

n )→ 4
3 , T4 = 1(n→ ∞). Hence, T is not continuous on X.

(2) We claim that Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z) for any x, y, z ∈ X, where

M(x, y, z) =max{Gb(x, y, z),Gb(x,T x,T x),Gb(y,Ty,Ty),
Gb(z,Tz,Tz),Gb(x,Ty,Ty),Gb(y,Tz,Tz),Gb(z,T x,T x)
Gb(x,Tz,Tz),Gb(y,T x,T x),Gb(z,Ty,Ty)} for any x, y, z ∈ X. (3.7)

We consider the following three cases.
Case 1. Suppose that x = 0.

If y, z ∈ [0, 4), then we have

Gb(T x,Ty,Tz) = Gb(
1
3

x,
1
3

y,
1
3

z) =
2
3

(|x − y| + |y − z| + |x − z|)

=
1
3

Gb(x, y, z) ≤
1
3

M(x, y, z).

If y = z = 4, then we have

Gb(T x,Ty,Tz) = Gb(0, 1, 1) = 4,Gb(x, y, z) = Gb(0, 4, 4) = 16.

Thus, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).
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If z = 4, y ∈ [0, 4) or y = 4, z ∈ [0, 4), without loss of generality, now we consider the former, i.e.,
z = 4, y ∈ [0, 4), then

Gb(T x,Ty,Tz) = Gb(0, 1,
1
3

z) = 2(1 +
1
3

z + |
1
3

z − 1|).

Suppose that z ∈ [3, 4), then

Gb(T x,Ty,Tz) = 2(1 +
1
3

z +
1
3

z − 1) =
4
3

z <
16
3
,

Gb(x, y, z) = Gb(0, 4, z) = 2(4 + |z − 4| + |z|) = 16.

Therefore,

Gb(T x,Ty,Tz) <
1
3

M(x, y, z).

Suppose that z ∈ [0, 3), then

Gb(T x,Ty,Tz) = 2(1 +
1
3

z + 1 −
1
3

z) = 4,Gb(x, y, z) = 16.

Therefore, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

Case 2. Suppose that x ∈ (0, 4).
If y, z ∈ (0, 4) then

Gb(T x,Ty,Tz) =
1
3

(|x − y| + |y − z| + |x − z|)

=
1
3

Gb(x, y, z) ≤
1
3

M(x, y, z).

If y = z = 4, then Gb(T x,Ty,Tz) = Gb( 1
3 x, 1, 1) = 2| 13 x − 1|. Suppose that x ∈ (0, 3), we get

Gb(T x,Ty,Tz) = 2(1 −
1
3

x) < 2,Gb(z,Tz,Tz) = Gb(4, 1, 1) = 6.

Consequently, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z). Suppose that x ∈ [3, 4), then

Gb(T x,Ty,Tz) = 2(
1
3

x − 1) < 2(
4
3
− 1) =

2
3
.

Therefore, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

If y = z = 0, then

Gb(T x,Ty,Tz) = Gb(
1
3

x, 0, 0) =
4
3

x,Gb(x, y, z) = Gb(x, 0, 0) = 4x.

Thus, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

If y ∈ (0, 4), z = 4, then we get

Gb(T x,Ty,Tz) = Gb(
1
3

x,
1
3

y, 1) =
1
3
|x − y| + |

1
3

x − 1| + |
1
3

y − 1|.
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Suppose that x ∈ (0, 3], y ∈ (0, 3]. Without loss of generality, now we assume x ≤ y, then

Gb(T x,Ty,Tz) =
1
3

(y − x) + 1 −
1
3

x + 1 −
1
3

y = 2 −
2
3

x < 2,

Gb(z,Tz,Tz) = Gb(4, 1, 1) = 6.

Thus, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

Suppose that x ∈ (0, 3), y ∈ [3, 4), then we get

Gb(T x,Ty,Tz) =
1
3

(y − x) + 1 −
1
3

x +
1
3

y − 1 =
2
3

(y − x) <
2
3

(4 − x) =
1
3

(8 − 2x),

Gb(x, y, z) = Gb(x, y, 4) = 4 − x + 4 − y + y − x = 8 − 2x.

Hence, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

Suppose that x ∈ [3, 4), y ∈ [3, 4). Without loss of generality, now we suppose x ≤ y, then we know

Gb(T x,Ty,Tz) =
1
3

(y − x) +
1
3

x − 1 +
1
3

y − 1 =
2
3

y − 2 <
2
3
× 4 − 2 =

2
3
,

Gb(z,Tz,Tz) = Gb(4, 1, 1) = 6.

Therefore, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

If y = 0, z = 4, then we have

Gb(T x,Ty,Tz) = Gb(
1
3

x, 0, 1) = 2(1 +
1
3

x + |
1
3

x − 1|).

Suppose that x ∈ (0, 3], then we have

Gb(T x,Ty,Tz) = 2(1 +
1
3

x + (1 −
1
3

x)) = 4,Gb(z,Ty,Ty) = Gb(4, 0, 0) = 16.

Hence, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z). Suppose that x ∈ (3, 4], then we have

Gb(T x,Ty,Tz) = 2(1 +
1
3

x +
1
3

x − 1) =
4
3

x ≤
16
3
,Gb(z,Ty,Ty) = Gb(4, 0, 0) = 16.

Therefore, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

If y = 0, z ∈ (0, 4), then we get

Gb(T x,Ty,Tz) = Gb(
1
3

x, 0,
1
3

z) = 2(
1
3

x +
1
3

z +
1
3
|x − z|) =

1
3

Gb(x, 0, z).

Thus, Gb(T x,Ty,Tz) ≤ 1
3 M(x, y, z).

Case 3. Suppose that x = 4.
If y ∈ (0, 4), then we prove that Gb(T x,Ty,Tz) ≤ 1

3 M(x, y, z) from a similar argument in Case 2.
If y = 0, then we conclude that Gb(T x,Ty,Tz) ≤ 1

3 M(x, y, z) as in the proof of Case 1.
If y = z = 4, then Gb(T x,Ty,Tz) = 0, apparently, Gb(T x,Ty,Tz) ≤ 1

3 M(x, y, z).
Therefore, we have that Gb(T x,Ty,Tz) ≤ 1

3 M(x, y, z) for any x, y, z ∈ X.
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(3) Clearly, x = 0 is the unique fixed point for T .
If T is continuous, we have the following theorem.

Theorem 3.6. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. Let T : X → X be
a mapping, and T is a generalized Ćirić-type contraction with contraction constant λ ∈ [0, 1). If T is
continuous, then there exists a unique fixed point of T .
Proof. Let x0 ∈ X be an arbitrary point and {xn}n∈N0 a sequence defined by xn = T xn−1 = T nx for all
n ∈ N. Then, by Lemma 3.2, we get that {xn}n∈N is a Gb-Cauchy sequence. Since (X,Gb) is complete,
there exists v ∈ X such that xn → v as n→ ∞.

Applying the continuity of T , we have v = lim
n→∞

zn = lim
n→∞

Tzn−1 = Tv. By the same method as
Theorem 3.3, we can obtain that v is the unique fixed point for T .

We give an example in which T is continuous to illustrate Theorem 3.6.
Example 3.7. We consider Gb-metric space in Example 2.7, let X = [0,∞) and define

Gb(x, y, z) =

 |x − y| + |y − z| + |x − z|, xyz , 0,

2(|x − y| + |y − z| + |x − z|), xyz = 0.

Let T : X → X be a map defined by T x = 2
3 x for any x ∈ X. Then, the following holds:

(1) T is a generalized Ćirić-type contraction with contraction constant λ = 2
3 >

1
s ;

(2) T is continuous on X;
(3) T has a unique fixed point in X.

Proof. (1) We will prove that Gb(T x,Ty,Tz) ≤ 2
3 M(x, y, z) for any x, y, z ∈ X, with the definition of

M(x, y, z) in (3.7). We consider the following two cases:
Case 1. If xyz , 0, then T x · Ty · Tz , 0.

Gb(T x,Ty,Tz) = Gb(
2
3

x,
2
3

y,
2
3

z)

=
2
3

(|x − y| + |y − z| + |x − z|)

=
2
3

Gb(x, y, z) ≤
2
3

M(x, y, z).

Case 2. If xyz = 0, then T x · Ty · Tz = 0.

Gb(T x,Ty,Tz) = Gb(
2
3

x,
2
3

y,
2
3

z)

=
4
3

(|x − y| + |y − z| + |x − z|)

=
2
3

Gb(x, y, z) ≤
2
3

M(x, y, z).

The proof is completed.
(2) For any x ∈ X and sequence {xn} ⊂ X converging to x, we shall prove that {T xn} converges to

T x. We consider the following two cases:
Case 1. Assume that x > 0, by Gb(xn, x, x) → 0 as n → ∞, then there exists a positive integer n0 such
that xn > 0 for any integer n ≥ n0. Thus
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lim
n→∞

Gb(T xn,T x,T x) = lim
n→∞

4
3
|xn − x| =

2
3

lim
n→∞

Gb(xn, x, x) = 0

Case 2. If x = 0, then

lim
n→∞

Gb(T xn,T x,T x) = lim
n→∞

8
3
|xn − x| =

2
3

lim
n→∞

Gb(xn, x, x) = 0.

From the above two cases, we show that T is continuous on X;
(3) Clearly, x = 0 is the unique fixed point for T .
If Gb is continuous, then we have the following result.

Theorem 3.8. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. T : X → X is a
generalized Ćirić-type contraction with contraction constant λ ∈ [0, 1). If Gb is continuous, then there
exists a unique fixed point of T .
Proof. Let x0 ∈ X be an arbitrary point and {xn}n∈N be a sequence defined by xn = T xn−1 = T nx for all
n ∈ N. Then, by Lemma 3.2, we get that {xn}n∈N0 is a Gb-Cauchy sequence. Since (X,Gb) is complete,
there exists v ∈ X such that xn → v as n→ ∞.

Applying the continuity of Gb, taking the limit as n tends to ∞ on both sides of (3.6), we have that
Gb(v,Tv,Tv) ≤ λmax Gb(v,Tv,Tv), hence, Tv = v.

By the same method as Theorem 3.3, we can obtain that v is the unique fixed point for T .
Using Theorems 3.4, we can obtain Ćirić fixed-point theorems in b-metric space.

Corollary 3.9. (see [19, Theorem 3]) Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X
be a map such that for some λ ∈ [0, 1

s ) and all x, y ∈ X

d(T x,Ty) ≤ λmax{d(x, y), d(x,T x), d(y,Ty), d(x,Ty), d(y,T x)}.

Then, T has a unique fixed point.
Proof. Let Gb(x, y, z) =max{d(x, y), d(y, z), d(x, z)}, for all x, y, z ∈ X. From Example 2.4, we know that
(X,Gb) is a Gb-metric space. Furthermore, it is obvious that (X,Gb) is Gb-complete due to completeness
of (X, d). Hence,

Gb(T x,Ty,Tz) = max{d(T x,Ty), d(Ty,Tz), d(T x,Tz)}
≤ λmax{d(x, y), d(x,T x), d(y,Ty), d(x,Ty), d(y,T x), d(y, z), d(y,Ty),

d(z,Tz), d(y,Tz), d(z,Ty), d(x, z), d(x,T x), d(z,Tz), d(x,Tz), d(z,T x)}
= λmax{Gb(x, y, z),Gb(x,T x,T x),Gb(y,Ty,Ty),

Gb(z,Tz,Tz),Gb(x,Ty,Ty),Gb(y,Tz,Tz),Gb(z,T x,T x),
Gb(x,Tz,Tz),Gb(y,T x,T x),Gb(z,Ty,Ty)}

for all x, y, z ∈ X. Thus, T is a generalized Ćirić-type contraction with contraction constant λ ∈ [0, 1).
By Theorem 3.4, T has a unique fixed point in (X,Gb).

Therefore, T has a unique fixed point in (X, d).
Remark 3.10. Let s = 1 in Corollary 3.9; we can obtain the famous fixed-point theorem (so-called
Ćirić fixed-point theorem [18]) in the setting of metric spaces.

Using Theorem 3.6, we can obtain the following result in b-metric space as in the proof of
Corollary 3.9.
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Corollary 3.11. (see [19, Theorem 3]) Let (X, d) be a complete b-metric space with s ≥ 1. Let
T : X → X be a map and T be continuous such that for some λ ∈ [0, 1) and all x, y ∈ X

d(T x,Ty) ≤ λmax{d(x, y), d(x,T x), d(y,Ty), d(x,Ty), d(y,T x)}.

Then, T has a unique fixed point.
The following corollary can be immediately deduced from Theorem 3.4, and the range of

contraction constant in Theorem 8 in [26] is enlarged from [0, 1
2s ) to [0, 1

s ).
Corollary 3.12. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. T : X → X is a
map. If there exists λ ∈ [0, 1

s ) such that

Gb(T x,Ty,Tz) ≤ λmax{Gb(x, y, z),Gb(x,T x,T x),Gb(y,Ty,Ty),
Gb(z,Tz,Tz),Gb(x,Ty,Ty),Gb(y,Tz,Tz),Gb(z,T x,T x)} (3.8)

for all x, y, z ∈ X, then there exists a unique fixed point of T .
Remark 3.13. It is not difficult to prove that mapping T in Example 3.5 satisfies (3.8). The contraction
constant of T is λ = 1

3 . However, the contraction constant λ does not satisfy the range of contraction
constant in Theorem 8 in [26]. That is, λ = 1

3 < [0, 1
2s ) = [0, 1

4 ). Also, by calculating the corresponding
values of x = 3, y = 0, z = 4, we can know the above fact. Our results are used widely.

Theorem 3.4 can also deduce the following two corollaries, which are results in [27].
Corollary 3.14. (see [27, Theorem 3.3]) Let (X,Gb) be a Gb-complete Gb-metric space with coefficient
s ≥ 1. T : X → X is a map. If there exists λ ∈ [0, 1

s ) such that

Gb(T x,Ty,Tz) ≤ λmax{Gb(x,T x,T x),Gb(y,Ty,Ty),Gb(z,Tz,Tz)}

for all x, y, z ∈ X, then there exists a unique fixed point of T .
Corollary 3.15. (see [27, Theorem 3.5]) Let (X,Gb) be a Gb-complete Gb-metric space with coefficient
s ≥ 1. T : X → X is a map. If there exists λ ∈ [0, 1

s ) such that

Gb(T x,Ty,Tz) ≤ λmax{Gb(x,Ty,Ty),Gb(y,T x,T x),Gb(y,Ty,Ty)}

for all x, y, z ∈ X, then there exists a unique fixed point of T .
Applying the same method of Theorems 3.4 and 3.6, we have the following results.

Theorem 3.16. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. T : X → X is a
map. If there exists λ ∈ [0, 1

s ) such that

Gb(T x,Ty,Tz) ≤ λmax{Gb(x, y, z),Gb(x, x,T x),Gb(y, y,Ty),
Gb(z, z,Tz),Gb(x, x,Ty),Gb(y, y,Tz),Gb(z, z,T x),
Gb(x, x,Tz),Gb(y, y,T x),Gb(z, z,Ty)}

for all x, y, z ∈ X, then there exists a unique fixed point of T .
Theorem 3.17. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. T : X → X is a
map and T is continuous. If there exists λ ∈ [0, 1) such that

Gb(T x,Ty,Tz) ≤ λmax{Gb(x, y, z),Gb(x, x,T x),Gb(y, y,Ty),
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Gb(z, z,Tz),Gb(x, x,Ty),Gb(y, y,Tz),Gb(z, z,T x),
Gb(x, x,Tz),Gb(y, y,T x),Gb(z, z,Ty)}

for all x, y, z ∈ X, then there exists a unique fixed point of T .
The following corollaries are immediate consequences of Theorems 3.16 and 3.17.

Corollary 3.18. (see [27, Theorem 3.3]) Let (X,Gb) be a Gb-complete Gb-metric space with coefficient
s ≥ 1. T : X → X is a map. If there exists λ ∈ [0, 1

s ) such that

Gb(T x,Ty,Tz) ≤ λmax{Gb(x, x,T x),Gb(y, y,T x),Gb(z, z,Tz))}

for all x, y, z ∈ X, then there exists a unique fixed point of T .
Corollary 3.19. (see [27, Theorem 3.5]) Let (X,Gb) be a Gb-complete Gb-metric space with coefficient
s ≥ 1. T : X → X is a map. If there exists λ ∈ [0, 1

s ) such that

Gb(T x,Ty,Tz) ≤ λmax{Gb(x, x,Ty),Gb(y, y,T x),Gb(y, y,Ty))}

for all x, y, z ∈ X, then there exists a unique fixed point of T .
In Gb-metric spaces, Reich-type contraction fixed-point theorems have been studied in [26,27].

Using Lemma 3.2, we can obtain the following Reich-type fixed-point results in the context of Gb-
metric spaces.
Theorem 3.20. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. The mapping
T : X → X satisfies the following conditions:

Gb(T x,Ty,Tz) ≤ a1Gb(x, y, z) + a2Gb(x,T x,T x) + a3Gb(y,Ty,Ty)
+ a4Gb(z,Tz,Tz) + a5Gb(x,Ty,Ty) + a6Gb(y,Tz,Tz) + a7Gb(z,T x,T x)
+ a8Gb(x,Tz,Tz) + a9Gb(y,T x,T x) + a10Gb(z,Ty,Ty)

for all x, y, z ∈ X, where 0 ≤
∑10

i=1 ai < 10 and s(a3 + a4 + a5 + a6 + a8 + a10) < 1. Then, there exists a
unique fixed point of T .
Proof. Since 0 ≤

∑10
i=1 ai < 1, then T is a generalized Ćirić-type contraction and contraction constant

λ ∈ [0, 1). By Lemma 3.2, for x ∈ X, we get that {T nx}n∈N0 is a Gb-Cauchy sequence. Because (X,Gb)
is Gb-complete, there exists u ∈ X satisfying T nx→ u(n→ ∞). Next, we will prove u is a fixed point.

Gb(xn+1, f u, f u)
≤ a1Gb(xn, u, u) + a2Gb(xn, xn+1, xn+1) + a3Gb(u, f u, f u)
+ a4Gb(u, f u, f u) + a5Gb(xn, f u, f u) + a6Gb(u, f u, f u) + a7Gb(u, xn+1, xn+1)
+ a8Gb(xn, f u, f u) + a9Gb(u, xn+1, xn+1) + a10Gb(u, f u, f u)
= a1Gb(xn, u, u) + a2Gb(xn, xn+1, xn+1) + (a3 + a4 + a6 + a10)Gb(u, f u, f u)
+ (a5 + a8)Gb(xn, f u, f u) + a7Gb(u, xn+1, xn+1) + a9Gb(u, xn+1, xn+1)
≤ a1Gb(xn, u, u) + a2Gb(xn, xn+1, xn+1)
+ (a3 + a4 + a6 + a10)s[Gb(u, xn+1, xn+1) +Gb(xn+1, f u, f u)]
+ (a5 + a8)s[Gb(xn, xn+1, xn+1) +Gb(xn+1, f u, f u)]
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+ a7Gb(u, xn+1, xn+1) + a9Gb(u, xn+1, xn+1).

Therefore,

[1 − s(a3 + a4 + a6 + a10) − s(a5 + a8)]Gb(xn+1, f u, f u) ≤ a1Gb(xn, u, u)
+ a2Gb(xn, xn+1, xn+1) + (a3 + a4 + a6 + a10)s[Gb(u, xn+1, xn+1)
+ (a5 + a8)s[Gb(xn, xn+1, xn+1 + (a7 + a9)Gb(u, xn+1, xn+1).

As n→ ∞, we know [1− s(a3 + a4 + a6 + a10)− s(a5 + a8)]Gb(xn+1, f u, f u) ≤ 0. Since s(a3 + a4 + a5 +

a6 + a8 + a10) < 1, so xn+1 → f u, thus, u = f u.
Finally, we shall show that T has the unique fixed point u in X. If v is another fixed point of T , then

Gb(u, v, v) = Gb( f u, f v, f v) ≤ a1Gb(u, v, v) + a2Gb(u, f u, f u) + a3Gb(v, f v, f v)
+ a4Gb(v, f v, f v) + a5Gb(u, f v, f v) + a6Gb(v, f v, f v) + a7Gb(v, f u, f u)
+ a8Gb(u, f v, f v) + a9Gb(v, f u, f u) + a10Gb(v, f v, f v)
= (a1 + a5 + a8)Gb(u, v, v) + a7 + a9)Gb(u, u, v)
≤ (a1 + a5 + a8 + a7 + a9) max{Gb(u, v, v),Gb(u, u, v)}
≤ (a1 + a5 + a6 + a7 + a8 + a9 + a10) max{Gb(u, v, v),Gb(u, u, v)}.

Similarly, we get

Gb(u, u, v) ≤ (a1 + a5 + a6 + a7 + a8 + a9 + a10) max{Gb(u, v, v),Gb(u, u, v)}.

Hence,

max{Gb(u, v, v),Gb(u, u, v)} ≤ (a1 + a5 + a6 + a7

+ a8 + a9 + a10) max{Gb(u, v, v),Gb(u, u, v)}.

Thus, max{Gb(u, v, v),Gb(u, u, v)} = 0, we have u = v.
By Theorem 3.20 the following results immediately follows.

Corollary 3.21. (refer to [26, Theorem 7]) Let (X,Gb) be a Gb-complete Gb-metric space with
coefficient s ≥ 1. The mapping T : X → X satisfies the following conditions:

Gb(T x,Ty,Tz) ≤ a1Gb(x, y, z) + a2Gb(x,T x,T x) + a3Gb(y,Ty,Ty)
+ a4Gb(z,Tz,Tz) + a5Gb(x,Ty,Ty) + a6Gb(y,Tz,Tz) + a7Gb(z,T x,T x)

for all x, y, z ∈ X, where 0 ≤
∑7

i=1 ai < 1 and s(a3 + a4 + a5 + a6) < 1. Then, there exists a unique fixed
point of T .
Remark 3.22. Corollary 3.22 generalizes Theorem 7 in [26], and the contraction condition is relaxed
from 0 ≤ a1 + a2 + a3 + a4 + 2sa5 + a6 + a7 < 1 to a1 + a2 + a3 + a4 + a5 + a6 + a7 < 1.
Corollary 3.23. (refer to [27, Theorem 3.1]) Let (X,Gb) be a Gb-complete Gb-metric space with
coefficient s ≥ 1. The mapping T : X → X satisfies the following conditions:

Gb(T x,Ty,Tz) ≤ a1Gb(x, y, z) + a2Gb(x,T x,T x) + a3Gb(y,Ty,Ty) + a4Gb(z,Tz,Tz),
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for all x, y, z ∈ X, where 0 ≤
∑4

i=1 ai < 1 and s(a3 + a4) < 1. Then, there exists a unique fixed point
of T .
Proof. Take a8 = a9 = a10 = 0 in Theorem 3.20.
Corollary 3.24. (refer to [27, Theorem 3.9]) Let (X,Gb) be a Gb-complete Gb-metric space with
coefficient s ≥ 1. The mapping T : X → X satisfies the following conditions:

Gb(T x,Ty,Ty) ≤ λ(Gb(x,Ty,Ty) +Gb(y,T x,T x))

for all x, y, z ∈ X, where 0 ≤ λ < 1
max{2,s} . Then, there exists a unique fixed point of T .

Proof. The assertion follows if we take a1 = a2 = a3 = a4 = a7 = a8 = a10 = 0, a5 = a9 = λ and z = y
in Theorem 3.20.
Remark 3.25. Corollary 3.24 improves Theorem 3.9 in [27], and the range of contraction constant is
relaxed from [0, 1

2s ) to [0, 1
max{2,s} ).

Corollary 3.26. (refer to [26, Corollary 2]) Let (X,Gb) be a Gb-complete Gb-metric space with
coefficient s ≥ 1 and mapping T : X → X . If there exists 0 ≤ λ < 1

2s such that

Gb(T x,Ty,Tz) ≤ λ(Gb(x,Ty,Ty) +Gb(y,Tz,Tz) +Gb(z,T x,T x)),

for all x, y, z ∈ X, then there exists a unique fixed point of T .
Proof. Take a5 = a6 = a7 = λ and a1 = a2 = a3 = a4 = a8 = a9 = a10 = 0 in Theorem 3.20.
Remark 3.27. Corollary 3.26 generalizes Corollary 2 in [26]. The range of contraction constant is
extended from [0, 1

2s+1 ) to [0, 1
2s ).

By the same method of Theorem 3.20, we have the following theorem.
Theorem 3.28. Let (X,Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1. The mapping
T : X → X satisfies the following conditions:

Gb(T x,Ty,Tz) ≤ a1Gb(x, y, z) + a2Gb(x, x,T x) + a3Gb(y, y,Ty)
+ a4Gb(z, z,Tz) + a5Gb(x, x,Ty) + a6Gb(y, y,Tz) + a7Gb(z, z,T x)
+ a8Gb(x, x,Tz) + a9Gb(y, y,T x) + a10Gb(z, z,Ty)

for all x, y, z ∈ X, where 0 ≤
∑10

i=1 ai < 10 and s(a3 + a4 + a5 + a6 + a8 + a10) < 1. Then, there exists a
unique fixed point of T .
Corollary 3.29. (refer to [27, Theorem 3.1]) Let (X,Gb) be a Gb-complete Gb-metric space with
coefficient s ≥ 1. The mapping T : X → X satisfies the following conditions:

Gb(T x,Ty,Tz) ≤ a1Gb(x, y, z) + a2Gb(x, x,T x) + a3Gb(y, y,Ty) + a4Gb(z, z,Tz),

for all x, y, z ∈ X, where 0 ≤
∑4

i=1 ai < 1 and s(a3 + a4) < 1. Then, there exists a unique fixed point
of T .
Corollary 3.30. (refer to [27, Theorem 3.9]) Let (X,Gb) be a Gb-complete Gb-metric space with
coefficient s ≥ 1. The mapping T : X → X satisfies the following conditions:

Gb(T x,Ty,Ty) ≤ λ(Gb(x, x,Ty) +Gb(y, y,T x)),

for all x, y, z ∈ X, 0 ≤ λ < 1
max{2,s} . Then there exists a unique fixed point of T .

Proof. The assertion follows if we take a1 = a2 = a3 = a4 = a7 = a8 = a10 = 0, a5 = a9 = λ and z = y
in Theorem 3.28.
Remark 3.31. Corollary 3.30 improves Theorem 3.9 in [27], and the range of contraction constant is
enlarged from [0, 1

2s ) to [0, 1
max{2,s} ).
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4. Application to existence of solutions to the integral equation

In this section, by using Theorem 3.8, we discuss the existence of solutions of the following integral
equations:

x(t) = h(t) + µ
∫ b

a
G(t, v) f (v, x(v))dv, (4.1)

where h : [a, b]→ R, G : [a, b] × [a, b]→ R, f : [a, b] × R→ R are continuous functions.
Let X = C[a, b], and define d : X × X → [0,∞) by d(x, y) = ∥x − y∥2 for all x, y ∈ X, where

∥x − y∥ = max
a≤t≤b
|x(t) − y(t)|. Apparently, (X, d) is a complete b-metric space with coefficient s = 2.

Let Gb(x, y, z) = max{d(x, y), d(y, z), d(x, z)} for all x, y, z ∈ X, then (X,Gb) is a Gb-metric space
with identical constant s = 2 by Example 2.2, and Gb is continuous.

Consider the self-mapping T : X → X defined by

T x(t) = h(t) + µ
∫ b

a
G(t, v) f (v, x(v))dv,

Clearly, x(t) is a solution of (4.1) if and only if x is a fixed point of T . Suppose the following conditions
are satisfied:

(1) µ2 < 1;
(2) max

a≤t≤b

∫ b

a
G2(t, v)dv ≤ 1

b−a ;

(3) max
a≤t≤b
| f (t, x) − f (t, y)|2 ≤ d(x, y). Hence, we have

|T x − Ty|2 =µ2|

∫ b

a
G(t, v)[ f (v, x(v)) − f (v, y(v))dv]|2

≤µ2|[
∫ b

a
G2(t, v)dv]

1
2 · [
∫ b

a
| f (v, x(v)) − f (v, y(v)|2dv]

1
2 |2

=µ2
∫ b

a
G2(t, v)dv ·

∫ b

a
| f (v, x(v)) − f (v, y(v)|2dv

≤µ2 1
b − a

· (b − a)d(x, y) = µ2d(x, y),

then, we get d(T x,Ty) ≤ µ2d(x, y), for all x, y ∈ X. Similarly, d(Ty,Tz) ≤ µ2d(y, z) and d(T x,Tz) ≤
µ2d(x, z), for all x, y, z ∈ X.

Therefore, Gb(T x,Ty,Tz) ≤ µ2Gb(x, y, z) ≤ µ2M(x, y, z), for all x, y, z ∈ X. The conditions of
Theorem 3.8 are satisfied, so T has a unique fixed point in X, and then (4.1) has a unique solution
x(t) ∈ X.

5. Conclusions

In this paper, we present the notion of generalized Ćirić-type contraction in Gb-metric space. Using
a significant lemma, we derive a generalized Ćirić-type fixed-point theorem. Satisfyingly, we can
deduce the famous Ćirić fixed-point theorem in metric space using our results. Moreover, we construct

AIMS Mathematics Volume 9, Issue 8, 22393–22413.
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new and interesting examples to illustrate our results. In addition, we also obtain several Ćirić and
Reich-types fixed-point theorems. As an application, we show the existence of a solution to the integral
equation in Gb-metric space.
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