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1. Introduction

The aim of this paper is to derive a caloric smoothing estimate of the fractional Gauss-Weierstrass
semigroup in Morrey smoothness spaces of Besov and Triebel-Lizorkin type. More precisely, we are
interested in the inequality

‖Wα
t ω |ρ-As+d

p,q (Rn)‖ ≤ Ct−
d

2α ‖ω |ρ-As
p,q(Rn)‖, (1.1)

where 0 < t ≤ 1, d ≥ 0. Here, ρ-As
p,q(Rn) denotes the so-called ρ -clan of Morrey smoothness spaces

where A = B stands for spaces of Besov type and A = F for spaces of Triebel-Lizorkin type. These
spaces were introduced in [10] and provide a unified approach to several types of Morrey(-Campanato)
spaces, global and hybrid spaces; see Subsection 2.2 below. Estimates of type (1.1) play a significant
role in the analysis of evolution equations such as (nonlinear) heat, Burgers or Navier-Stokes equations.
Due to these applications, we restrict our consideration to Banach spaces, hence, to s ∈ R, 1 ≤ p <

∞, and 1 ≤ q ≤ ∞. Moreover, we focus on −n < ρ < 0; see explanations in Remark 3. Further, Wα
t
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denotes the fractional Gauss-Weierstrass semigroup, formally defined as

Wα
t ω(x) = (e−t|ξ|2αω̂)∨(x), ω ∈ ρ-As

p,q(Rn), α > 0, (1.2)

where ∧ and ∨ stand for the Fourier transform and its inverse, respectively. Estimate (1.1) extends
known results with respect to considered function spaces and gives an alternative proof concerning
α compared with former results. Concerning the global spaces As

p,q(Rn), A ∈ {B, F}, we refer to [1]
for α ∈ N based on the ideas for α = 1 developed in [25]. The case α > 0 has been considered
in [11, 13]. An alternative proof was presented in [4] using characterizations of the spaces in terms of
fractional Gauss-Weierstrass semigroups. For local spaces LrAs

p,q(Rn), we refer again to [25] and for
hybrid spaces LrAs

p,q(Rn) to [26] (both consider α = 1). As mentioned above, the definition of Wα
t in

terms of a convolution is rather formal due to the fact that the fractional heat kernel is not smooth in
ξ = 0. More precisely, e−|ξ|

2α
does not belong to the Schwartz space of rapidly decreasing functions but

still has a sufficiently fast polynomial decay; see [17] Lemmas 1 and 2. Our proof of (1.1) combines
the results presented in [1, 17] using characterizations by means of wavelets and molecules adapted to
Morrey smoothness spaces. The paper is structured as follows. Section 2 provides necessary notation,
definitions of global function spaces, a Fourier analytic approach to Morrey smoothness spaces and
their characterization in terms of wavelets and molecules. Moreover, we recall useful embeddings and
coincidences of related spaces. Our main result is contained in Theorem 1 in Section 3. We start
by introducing the fractional Gauss-Weierstrass semigroup and provide estimates of their fractional
derivatives which turn out to be our main tool besides decomposition techniques of ρ-As

p,q(Rn)-spaces.
Finally, Section 4 sketches some application.

2. Preliminaries

2.1. Notation and basic definitions

Let Rn be the Euclidean n - space with n ∈ NwhereN indicates the collection of all natural numbers,
N0 = N ∪ {0}. Put R = R1, whereas C is the complex plane. S (Rn) denotes the Schwartz space of all
complex-valued infinitely differentiable rapidly decreasing functions on Rn and S ′(Rn) its dual, the
space of all tempered distributions. Furthermore, let Lp(Rn) with 0 < p < ∞ be the standard complex
quasi-Banach space with respect to the Lebesgue measure in Rn, quasi-normed by

‖ f |Lp(Rn)‖ =

(∫
Rn
| f (x)|pdx

)1/p

with the natural modification if p = ∞. Similarly, we define Lloc
p (Rn) which consists of all f whose

restriction to bounded Lebesgue measurable sets M ⊂ Rn belongs to Lp(M). As usual, Z is the
collection of all integers and Zn defines the set of all lattice points m = (m1, . . . ,mn), mi ∈ Z. If
φ ∈ S (Rn), then

φ̂(ξ) = (F φ)(ξ) = (2π)−n/2
∫
Rn

e−ixξφ(x)dx, ξ ∈ Rn, (2.1)

denotes the Fourier transform of φ. F −1φ and φ∨ stand for the inverse Fourier transform, given by the
righthand side of (2.1) with i in place of −i, and xξ stands for the scalar product in Rn. F and F −1 are
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extended in the usual way to S ′(Rn). Let φ0 ∈ S (Rn) with

φ0(x) = 1 if |x| ≤ 1 and φ0(x) = 0 if |x| ≥ 3/2

and let

φ j(x) = φ0(2− jx) − φ0(2− j+1x), x ∈ Rn, j ∈ N.

Then ∑
j∈N0

φ j(x) = 1, x ∈ Rn,

i.e., {φ j} forms a dyadic resolution of unity. Recall that (φ j f̂ )∨ is an entire analytic function and makes
sense point-wise for any f ∈ S ′(Rn). All function spaces, which we consider here, are subspaces of
S ′(Rn). Let

QJ,M = 2−J M + 2−J(0, 1)n, J ∈ Z, M ∈ Zn, (2.2)

be the dyadic cube in Rn (where (0, 1)n denotes the open cube with side length 1) with side length 2−J

parallel to the coordinate axes and 2−J M as the lower left corner. For a cube Q, we denote by dQ with
d > 0 the cube concentric with Q and its side length multiplied by d. |Ω| denotes the Lebesgue measure
of the Lebesgue measurable set Ω ⊂ Rn. We write a+ := max(0, a) for a ∈ R.

Finally, we write

a ∼ b (equivalence)

if there exist two positive constants c1, c2 > 0 such that c1 a ≤ b ≤ c2 a. Sometimes we use the symbol
“.” instead of “≤”. The meaning of a . b is given by: There exists a positive constant C such that
a ≤ Cb.

Definition 1. Let φ = {φ j}
∞
j=0 be the above dyadic resolution of unity.

(i) Let 0 < p, q ≤ ∞, s ∈ R. We define the Besov spaces Bs
p,q(Rn) as the collection of all f ∈ S ′(Rn)

such that

‖ f |Bs
p,q(Rn)‖φ =

( ∞∑
j=0

2 jsq‖(φ j f̂ )∨|Lp(Rn)‖q
)1/q

is finite (with the usual modification if q = ∞).
(ii) Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R. We define the Triebel-Lizorkin spaces F s

p,q(Rn) as the
collection of all f ∈ S ′(Rn) such that

‖ f |F s
p,q(Rn)‖φ =

∥∥∥∥( ∞∑
j=0

2 jsq|(φ j f̂ )∨(·)|q
)1/q∣∣∣∣Lp(Rn)

∥∥∥∥
is finite (with the usual modification if q = ∞).
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(iii) Let 0 < q < ∞ and s ∈ R. We define the spaces F s
∞,q(Rn) as the collection of all f ∈ S ′(Rn) such

that
‖ f |F s

∞,q(Rn)‖φ = sup
J∈Z, M∈Zn

2Jn/q
( ∫
QJ,M

∑
j≥J+

2 jsq
∣∣∣(φ j f̂ )∨(x)

∣∣∣q dx
)1/q

is finite.

Remark 1. These are the classical (global) spaces As
p,q(Rn), where A stands either for B or F. In

what follows, we will write As
p,q(Rn) if an assertion applies both to B- and F- spaces. The above

definition coincides with [28, Definition 1.1]. A detailed study of these spaces, including their history
and properties, can be found in [21–23]. They are independent (in the sense of equivalent quasi-norms)
of the chosen resolution of unity. Therefore, we will omit the subscript φ in the sequel.

2.2. Morrey smoothness spaces

Next, we introduce Morrey smoothness spaces following closely the new approach presented
in [10]. We present two different possibilities to characterize these types of spaces. We start with
the Fourier analytic approach followed by characterizations of the spaces by means of wavelets and
molecules. This is one of the main tools for proving estimate (1.1). We recall the necessary definitions
and assertions as far as we need them for our considerations. Standard references with respect to
wavelets are, e.g., [6, 14, 30]. For molecules, we refer, e.g., to [20], [8, Section 12], [9, Section 5].

2.2.1. Fourier analytic approach

Recall that Lloc
p (Rn) consists of all f whose restriction to bounded Lebesgue measurable sets M ⊂ Rn

belongs to Lp(M), 1 ≤ p ≤ ∞.

Definition 2. Let n ∈ N, 0 < p < ∞ and −n ≤ ρ ≤ 0. Then, Λ
ρ
p(Rn) collects all f ∈ Lloc

p (Rn) such that

‖ f |Λρ
p(Rn)‖ = sup

J∈Z, M∈Zn
2

J
p (n+ρ)

‖ f |Lp(QJ,M)‖

is finite.

Remark 2. Note that we have the coincidence

Λ−n
p (Rn) = Lp(Rn)

in the sense of equivalent (quasi-)norms.
Let 0 < p ≤ u < ∞. The Morrey spaceMu

p(Rn) collects all f ∈ Lloc
p (Rn) such that

‖ f |Mu
p(Rn)‖ = sup

J∈Z, M∈Zn
2Jn( 1

p−
1
u )
‖ f |Lp(QJ,M)‖ (2.3)

is finite. Compared with Definition 2, one has

Λρ
p(Rn) =Mu

p(Rn) with 0 < p ≤ u < ∞, uρ + np = 0 . (2.4)

Definition 3. Let n ∈ N, s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞.
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(i) Let −n ≤ ρ ≤ 0. Then, ΛρBs
p,q(Rn) is the collection of all f ∈ S ′(Rn) such that

‖ f |ΛρBs
p,q(Rn)‖ = sup

J∈Z,M∈Zn
2

J
p (n+ρ)

( ∑
j≥J+

2 jsq‖(φ j f̂ )∨|Lp(QJ,M)‖q
)1/q

(2.5)

is finite and ΛρF s
p,q(Rn) is the collection of all f ∈ S ′(Rn) such that

‖ f |ΛρF s
p,q(Rn)‖ = sup

J∈Z,M∈Zn
2

J
p (n+ρ)

‖

( ∑
j≥J+

2 jsq
∣∣∣(φ j f̂ )∨(·)

∣∣∣q)1/q∣∣∣Lp(QJ,M)‖ (2.6)

is finite (usual modification if q = ∞).
(ii) Let −n ≤ ρ < 0. Then, ΛρBs

p,q(Rn) is the collection of all f ∈ S ′(Rn) such that

‖ f |ΛρBs
p,q(Rn)‖ =

( ∞∑
j=0

2 jsq‖(φ j f̂ )∨|Λρ
p(Rn)‖q

)1/q

(2.7)

is finite (usual modification if q = ∞). The space ΛρF s
p,q(Rn) is the collection of all f ∈ S ′(Rn)

such that

‖ f |ΛρF s
p,q(Rn)‖ = ‖

( ∞∑
j=0

2 jsq|(φ j f̂ )∨(·)|q
)1/q

|Λρ
p(Rn)‖ (2.8)

is finite (usual modification if q = ∞).

Remark 3. Let s ∈ R and A ∈ {B, F}.

(i) The spaces introduced in Definition 3 coincide with the well-known global spaces As
p,q(Rn) when

ρ = −n. Thus,

Λ−nAs
p,q(Rn) = Λ−nAs

p,q(Rn) = As
p,q(Rn), (2.9)

see [10, Remarks 2.7 and 2.9].
Moreover, if ρ = 0, we have the coincidence

Λ0F s
p,q(Rn) = F s

∞,q(Rn)

(see [10, Proposition 2.12 (iii)]).
(ii) The Besov-Morrey spaces N s

u,p,q(Rn), s ∈ R, 0 < q ≤ ∞ and 0 < p ≤ u < ∞ were introduced by
Kozono and Yamazaki in [12]. The Triebel-Lizorkin Morrey spaces Es

u,p,q(Rn) go back to Tang
and Xu in [29]. They coincide with the above scales ΛρAs

p,q(Rn) as follows:

ΛρBs
p,q(Rn) = N s

u,p,q(Rn), uρ + np = 0, −n ≤ ρ < 0 (2.10)
ΛρF s

p,q(Rn) = Es
u,p,q(Rn), uρ + np = 0, −n ≤ ρ < 0. (2.11)

For more details; see [10, Remark 2.7] and the references given there.
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(iii) The spaces in Definition 3, part (i), are reformulations of corresponding Morrey smoothness
spaces As,τ

p,q(Rn) (see [10, Remark 2.9]). It holds

ΛρAs
p,q(Rn) = As,τ

p,q(Rn), s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, (2.12)

where

τ =
1
p

(
1 +

ρ

n

)
, −n ≤ ρ ≤ 0.

(iv) Note that the spaces defined in Definition 3, part (i), coincide for all admitted parameters with the
hybrid spaces as introduced by Triebel in [26]. We have

LrAs
p,q(Rn) = ΛρAs

p,q(Rn), −n ≤ ρ ≤ 0, 0 < p < ∞, r =
ρ

p
, (2.13)

and 0 < q ≤ ∞ (see [10, Remark 2.9]).
(v) Moreover, it holds

ΛρF s
p,q(Rn) = ΛρF s

p,q(Rn), s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, −n ≤ ρ < 0. (2.14)

We refer to [10, formula (2.45), p. 1309]) and the references given there to [19, Theorem 1.1 (ii)],
and [18, Theorem 6.35, p. 794]. The situation is different if A = B. We have the strict embedding

ΛρBs
p,q(Rn) ↪→ ΛρBs

p,q(Rn) (2.15)

if 0 < q < ∞ and

ΛρBs
p,∞((Rn)) = ΛρBs

p,∞((Rn)) (2.16)

(see [10, Theorem 2.21,(iv)]).
In other words, one has only one ΛρF = ΛρF scale but two ΛρB and ΛρB scales.

(vi) Furthermore, spaces ΛρBs
p,q(Rn) can be obtained by means of real interpolation. More precisely,

let n < ρ < 0, 0 < p < ∞ and 0 < q1, q2 ≤ ∞. Then it holds

ΛρBs
p,q(Rn) =

(
ΛρF s1

p,q1
(Rn), ΛρF s2

p,q2
(Rn)

)
θ,q

(2.17)

if

∞ < s1 < s2 < ∞, s = (1 − θ)s1 + θs2, and 0 < θ < 1

(see [10, Proposition 3.3 and Remark 3.4]).

Following [10, Definition 2.15], for −n ≤ ρ < 0 the so-called ρ-clan ρ-As
p,q(Rn) stands for the three

families

ΛρBs
p,q(Rn), ΛρBs

p,q(Rn) and ΛρF s
p,q(Rn) = ΛρF s

p,q(Rn) (2.18)

with

s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞.
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2.2.2. Lifts and embeddings

We summarize shortly some properties of ρ-As
p,q(Rn) - spaces. Here, we adapt parameters p, q, and

ρ to our later needs.

Proposition 1. (see [10, Theorem 5.3])
Let s ∈ R, 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and −n < ρ < 0. Then

ΛρAs
p,q(Rn) ↪→ L∞(Rn) if, and only if, s >

|ρ|

p
(2.19)

A ∈ {B, F}, and

ΛρBs
p,q(Rn) ↪→ L∞(Rn) if, and only if, s >

|ρ|

p
. (2.20)

Let σ be a real number. The operator Iσ given by

Iσ f = F −1(1 + |x|2)−σ/2F f (2.21)

is a one-to-one map onto itself both in S (Rn) and S ′(Rn). Furthermore, Iσ is a lift for the spaces As
p,q(Rn)

with s ∈ R, 0 < p, q ≤ ∞. Thus, we have

IσAs
p,q(Rn) = As+σ

p,q (Rn) (2.22)

in the sense of equivalent quasi-norms. We recall the corresponding results for Morrey smoothness
spaces.

Proposition 2. (see [10, Theorem 3.8])
Let s, σ ∈ R, 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and −n < ρ < 0. Then Iσ maps ΛρAs

p,q(Rn) isomorphically onto
ΛρAs+σ

p,q (Rn) and ΛρAs
p,q(Rn) isomorphically onto ΛρAs+σ

p,q (Rn), where A ∈ {B, F}. Further,

IσΛρAs
p,q(Rn) = ΛρAs+σ

p,q (Rn), A ∈ {B, F}, (2.23)
IσΛρAs

p,q(Rn) = ΛρAs+σ
p,q (Rn), A ∈ {B, F}. (2.24)

Remark 4. We have the following properties.

(i) It holds

I−1
σ = I−σ for σ ∈ R.

(ii) Let σ1 and σ2 be real numbers. Then

Iσ1 · Iσ2 = Iσ1+σ2 .
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2.2.3. Representation by means of wavelets

We recall the necessary definitions and assertions as far as we need them for our considerations.
Standard references with respect to wavelets are, e.g., [6, 14, 30]. Throughout the following sections,
we restrict parameters p, q and ρ as indicated above to 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and −n < ρ < 0. Let
Cu(R), u ∈ N denote the space of all complex-valued u - times continuously differentiable functions
with bounded derivatives in R. Let

ψF ∈ Cu(R), ψM ∈ Cu(R), u ∈ N, (2.25)

be real compactly supported Daubechies wavelets with ψ̂F(0) = (2π)−1/2 and∫
R

xvψM(x)dx = 0 for all v ∈ {0, . . . , u − 1}. (2.26)

ψF is called the scaling function (father wavelet) and ψM is the so-called associated wavelet (mother
wavelet). We extend these wavelets from R to Rn by the usual multi-resolution procedure. Let either

G = (G1, . . . ,Gn) ∈ G0 = {F, M}n, (2.27)

which means that the components Gr of G where r ∈ {1, . . . , n} are either F or M or let

G = (G1, . . . ,Gn) ∈ G j = {F, M}n∗, j ∈ N. (2.28)

Here, ∗ indicates that at least one of the components of G must be an M. In the sequel, we denote such
a set G j with G∗. Let

Ψ
j
G,m(x) =

n∏
r=1

ψGr (2
jxr − mr), G ∈ G j, m ∈ Zn, (2.29)

(where mr denote the components of m), x ∈ Rn, now with j ∈ N0. We always assume that ψF and ψM

have an L2-norm 1. Then, for any u ∈ N,

Ψ = {2 jn/2Ψ
j
G,m : j ∈ N0, G ∈ G j, m ∈ Zn} (2.30)

is an orthonormal basis in L2(Rn) and

f =

∞∑
j=0

∑
G∈G j

∑
m∈Zn

λ j,G
m 2− jn/2 Ψ

j
G,m =:

∑
j,G,m

λ j,G
m 2− jn/2 Ψ

j
G,m

with

λ j,G
m = λ j,G

m ( f ) = 2 jn
∫
Rn

f (x)Ψ j
G,m(x)dx = 2 jn

〈
f ,Ψ j

G,m

〉
is the corresponding expansion, where 2− jn/2Ψ

j
G,m are uniformly bounded functions with respect to j

and m. For more detailed explanations, cf. [22, 23] and [24, Subsection 1.2.1].
Let χ j,m, j ∈ N0, m ∈ Zn be the characteristic function of the usual dyadic cubes Q j,m as defined in (2.2).
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Definition 4. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R and −n < ρ < 0. Let

λ := {λ j,G
m ∈ C : j ∈ N0, G ∈ G j, m ∈ Zn}. (2.31)

(i) Then

Λρbs
p,q = {λ : ‖λ|Λρbs

p,q‖ < ∞}

with

‖λ|Λρbs
p,q‖ = sup

J∈Z,M∈Zn
2

J
p (n+ρ)

( ∞∑
j≥J+

2 j(s− n
p )q

( ∑
m:Q j,m⊂QJ,M

G∈G j

|λ j,G
m |

p

) q
p
) 1

q

.

(ii) Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R and −n < ρ < 0. Let

λ := {λ j,G
m ∈ C : j ∈ N0, G ∈ G j, m ∈ Zn}. (2.32)

Then

Λρ f s
p,q = {λ : ‖λ|Λρ f s

p,q‖ < ∞} = Λρ f s
p,q,

where

‖λ|Λρ f s
p,q‖ = sup

J∈Z,M∈Zn
2

J
p (n+ρ)

∥∥∥∥( ∞∑
j≥J+

2 jsq
∑

m:Q j,m⊂QJ,M

G∈G j

|λ j,G
m χ j,m(·)|q

) 1
q
|Lp(Rn)

∥∥∥∥,
(usual modification if q = ∞).

Remark 5. Part (i) is covered by [28, Definition 1.13] with a reference to [26, 3.26]. Concerning
part (ii), we refer to [26, Definition 3.24] which is already adapted to our notation.

We shall use the notation as
p,q with a = b or a = f . Based on [26, Theorem 3.26] and Remark 3

part (iv), we have the following wavelet characterization of ΛρAs
p,q(Rn).

Proposition 3. Let s ∈ R , 1 ≤ p < ∞, 1 ≤, q ≤ ∞, and −n < ρ < 0. Let Ψ be the wavelet system (2.30)
based on (2.25)–(2.29), where u > max(s,−s).

Let f ∈ S ′(Rn). Then f ∈ ΛρAs
p,q(Rn) if, and only if, it can be represented as

f =
∑

j∈N0,G∈G j

m∈Zn

λ j,G
m 2− jn/2 Ψ

j
G,m, λ ∈ Λρas

p,q, (2.33)

where a = b if A = B and a = f if A = F. The series converges unconditionally in S ′(Rn). The
representation (2.33) is unique,

λ j,G
m = λ j,G

m ( f ) = 2 jn/2
〈

f ,Ψ j
G,m

〉
(2.34)

and

I : f 7→ {λ j,G
m ( f )} (2.35)

is an isomorphic map of ρ-As
p,q(Rn) onto Λρas

p,q. Hence,

‖ f |ΛρAs
p,q(Rn)‖ ∼ ‖λ( f )|Λρas

p,q‖. (2.36)

Remark 6. For a detailed discussion of how to understand the dual pairing
〈

f ,Ψ j
G,m

〉
in (2.34) we refer

to [26, Thm 3.26] and the references given there.
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2.2.4. Representation by means of molecules

Next, we introduce molecular decompositions of the spaces ΛρAs
p,q(Rn). We recall first the definition

of molecules related to Q j,m according to [25, Section 2.4.2]. Molecular decompositions have been
considered, for instance, in [8, 9, 20]. We refer also to [32, Chapter 3] where one finds, in particular,
corresponding representations for the spaces As,τ

p,q(Rn) briefly mentioned in Remark 3 part (iii).

Definition 5. Let K ∈ N0, N ∈ N and L > N + n − 1. Let j be a natural number and m ∈ Zn. The L∞−
functions b j,m : Rn 7→ C are called (K,N, L)− molecules, related to Q j,m, if∣∣∣Dζb j,m(x, t)

∣∣∣ ≤ c2 j|ζ |
(
1 + 2 j|x − 2− jm|

)−L
, |ζ | ≤ K, (2.37)

and ∫
Rn

xβb j,m(x)dx = 0, |β| < N. (2.38)

We introduce corresponding sequence spaces.

Definition 6. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R and −n < ρ < 0. Let

µ = {µ j
m : j ∈ N0,m ∈ Zn}. (2.39)

Then

Λρb
s
p,q = {µ : ‖µ|Λρb

s
p,q‖ < ∞}

with

‖µ|Λρb
s
p,q‖ = sup

J∈Z,M∈Zn
2

J
p (n+ρ)

 ∞∑
j≥J+

2 j(s− n
p )q

 ∑
m:Q j,m⊂QJ,M

|µ j
m|

p


q
p


1
q

(2.40)

and

Λρ f
s
p,q = {µ : ‖µ|Λρ f

s
p,q‖ < ∞}

with

‖µ|Λρ f
s
p,q‖ = sup

J∈Z,M∈Zn
2

J
p (n+ρ)

∥∥∥∥( ∑
j≥J+

2 jsq
∑

m: Q j,m⊂QJ,M

|µ j
mχ j,m(·)|q

)1/q
|Lp

∥∥∥∥, (2.41)

(usual modification if q = ∞).

The following molecular characterization of ΛρAs
p,q(Rn) is already adapted to our needs based

on [25, Proposition 2.35].

Proposition 4. 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ≥ 0 and −n < ρ < 0. Let K ∈ N0, N = 1 and L ∈ R with

K > s and L > N. (2.42)
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Let f ∈ S ′(Rn). Then f ∈ ΛρAs
p,q(Rn) if, and only if, it can be represented as

f =
∑
j∈N0

∑
m∈Zn

µ j
mb j,m, µ ∈ Λρas

p,q, (2.43)

where b j,m are (K,N, L)-molecules, unconditional convergence being in S ′(Rn). Additionally,

‖ f |ΛρAs
p,q(Rn)‖ ∼ inf ‖µ|Λρas

p,q‖, (2.44)

where the infimum is taken over all admissible representations (2.43).

3. Caloric smoothing

In this section we prove the smoothing property

‖Wα
t ω|ρ-As+d

p,q (Rn)‖ ≤ Ct−
d

2α ‖ω|ρ-As
p,q(Rn)‖ 0 < t ≤ 1, d ≥ 0. (3.1)

where

A ∈ {B, F},−n < ρ < 0, s ∈ R, 1 ≤ p < ∞, and 1 ≤ q ≤ ∞.

Note that in view of Remark 3, part (i), the case ρ = −n is already covered by the papers [4, 13]. At
first, we prove (3.1) for the ΛρAs

p,q(Rn)-spaces. The corresponding result for ΛρAs
p,q(Rn) follows then

from Remark 3 parts (v) and (vi).

3.1. Fractional Gauss-Weierstrass semigroup

We start with some observations concerning fractional heat kernels. Consider the function

ϕ(ξ) := e−|ξ|
2α
, ξ ∈ R, α > 0. (3.2)

Clearly, the function ϕ is not smooth in ξ = 0 if α < N. To define the Gauss-Weierstrass semigroup in
a proper way, consider first

Gα(x) :=
(
e−|ξ|

2α)∨
(x), x ∈ Rn, α > 0. (3.3)

Moreover, we need the fractional Laplacian, formally given by

(−∆)σω = (|ξ|2σ ω̂)∨, σ > 0, (3.4)

for ω in an appropriate function space. We define

Gα,σ(x) := (−∆)σ/2 Gα =
(
|ξ|σe−|ξ|

2α)∨
(x), x ∈ Rn, α > 0, σ > 0. (3.5)

The following two estimates can be found in [17, Lemmas 1 and 2].

Lemma 1. The kernel function Gα satisfies the point-wise estimate∣∣∣Gα(x)
∣∣∣ ≤ c (1 + |x|)−n−2α , x ∈ Rn, (3.6)

for α > 0. Consequently, one has

Gα ∈ Lp(Rn) for all 1 ≤ p ≤ ∞. (3.7)
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Lemma 2. The kernel function Gα,σ has the point-wise estimate∣∣∣Gα,σ(x)
∣∣∣ ≤ c (1 + |x|)−n−σ , x ∈ Rn (3.8)

for α, σ > 0. Consequently, one has

Gα,σ ∈ Lp(Rn) for all 1 ≤ p ≤ ∞. (3.9)

These lemmas show that Gα and Gα,σ provide a sufficiently fast polynomial decay which will be of
great use later in the proof of Proposition 5. Now, we consider the fractional heat kernel given by

Gα
t (x) = (2π)−n/2

(
e−t|ξ|2α

)∨
(x), x ∈ Rn, t > 0, α > 0. (3.10)

Obviously, it holds

Gα
t (x) = (2π)−n/2t−n/2α Gα(t−1/2αx). (3.11)

Note that Gα,σ
t has the same scaling properties as Gα

t , namely,

Gα,σ
t (x) = (2π)−n/2 t−σ/2α t−n/2α Gα(t−1/2αx), (3.12)

see [17, p. 6].

Based on Propositions 1 and 2 and Lemma 1, we define the fractional Gauss-Weierstrass semigroup
Wα

t as follows.

Definition 7. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and −n < ρ < 0. Let ω ∈ ρ-As
p,q(Rn) and Gα

t be as above.

(1) We define

Wα
t ω(x) := (Gα

t ∗ ω)(x) if s > |ρ|

p . (3.13)

(2) Let σ ∈ R such that s + σ > |ρ|

p . Then we define

Wα
t ω := I−σ

[
Wα

t (Iσω)
]

if s ≤ |ρ|p . (3.14)

Note that the definition in part (ii) is independent of σ. According to Proposition 2, Iσω is smooth
enough to justify the application of Wα

t in the sense of part (i) .

3.2. Preparations

Let ω ∈ ΛρAs
p,q(Rn) with A ∈ {B, F}. Under the conditions of Proposition 3, we can represent

ω =
∑
j,G,m

λ j,G
m 2− jn/2Ψ

j
G,m, λ ∈ Λρas

p,q, a ∈ {b, f }, (3.15)

with coefficients

λ j,G
m = λ j,G

m (ω) = 2 jn/2
〈
ω,Ψ

j
G,m

〉
(3.16)
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in the interpretation of (2.34). We are interested in a similar decomposition of Wα
t ω in terms of

molecules.
Let

b j
G,m(x, t) := 2− jn/2Wα

t Ψ
j
G,m(x) =

∫
Rn

Gα
t (x − y)2− jn/2Ψ

j
G,m(y)dy

=
1

(2π)n/2

∫
Rn

(
e−t|ξ|2α

)∨
(x − y)

n∏
l=1

ψGl(2
jyl − ml)dy, (3.17)

based on (2.29), where ψF , ψM ∈ Cu(R) are the Daubechies wavelets as in (2.25) and (2.26). According
to the case α = 1, cf. [25, Subsection 2.4.2], the functions b j

G,m(x, t) are called α-caloric wavelets.
As already mentioned, we show that after a slight modification, they are molecules in the sense of
Definition 5 for appropriately chosen parameters N, K, L. We put

b j
G,m(x, t)d := c 2 jdtd/2αb j

G,m(x, t), j ∈ N0, G ∈ G∗, m ∈ Z. (3.18)

Proposition 5. Let α > 0, d ≥ 0 and
(
b j

G,m
)

d have the meaning of (3.18). Let u ∈ N such that

u > d ·
n + 2α

2α
. (3.19)

Then, there exists L > n such that
(
b j

G,m
)

d are (u, 1, L)-molecules according to Definition 5 for some
c > 0 and any fixed t with 2 jt1/2α ≥ 1.

Proof. Step 1: We prove the vanishing moment conditions for b j
G,m(x, t)d first. Let β be a lattice point

on Nn
0 such that |β| < u. We have∫

Rn
xβb j

G,m(x, t)d dx ∼

∫
Rn

xβb j
G,m(x, t)dx

=

∫
Rn

xβ
∫
Rn

Gα
t (x − y)Ψ j

G,m(y)dy dx

=

∫
Rn

(∫
Rn

xβGα
t (x − y)dx

)
Ψ

j
G,m(y)dy

=

∫
Rn

(∫
Rn

(y + z)βGα
t (z)dz

)
Ψ

j
G,m(y)dy

=

∫
Rn

Gα
t (z)

 n∏
l=1

∫
R

(yl + zl)βlψGl(2
jyl − ml)dyl

 dz

= 0. (3.20)

In (3.20), we used the fact that because of G ∈ G∗, there exists l ∈ {1, · · · , n} such that Gl = M. Hence,
using the moment condition (2.26) and 0 ≤ βl < u, at least one of the factors is equal to zero, which
can be seen by elementary calculations.
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Step 2: Now, we prove that there exists an L > 0 satisfying (2.42) such that∣∣∣Dζb j
G,m(x, t)d

∣∣∣ ≤ C 2 j|ζ |
(
1 + 2 j|x − 2− jm|

)−L
|ζ | ≤ u. (3.21)

Due to (3.17) we may assume m = 0. Let |ζ | = 0 and consider

b j
G,0(x, t) =

∫
Rn

Gα
t (x − y)

n∏
r=1

ψGr (2
jyr)dy,

j ∈ N0, G ∈ G∗ and 2 jt1/2α ≥ 1. We rewrite

b j
G,0(x, t) =

∫
Rn

t−n/2αGα
( x − y

t1/2α

) n∏
r=1

ψGr (2
jyr)dy,

where Gα is defined as in (3.3). Apparently, it holds

b j
G,0(t1/2αx, t) =

∫
Rn

Gα(x − y)
n∏

r=1

ψGr (2
jt1/2αyr)dy. (3.22)

We expand Gα in a Taylor polynomial about the origin with a remainder term of order u (which is
possible according to Lemma 2) and substitute it into (3.22). Because of the moment conditions, terms
of order less than u vanish such that we have the estimate

b j
G,0(t1/2αx, t) .

∫
Rn

1
β!

∑
|β|=u

|(DβGα)(x − ξ) yβ
n∏

r=1

ψGr (2
jt1/2αyr)|dy

.

∫
Rn

∑
|β|=u

|yβ|

∣∣∣∣∣∣∣
n∏

r=1

ψGr (2
jt1/2αyr)

∣∣∣∣∣∣∣ dy (3.23)

.

∫
Rn

|y|u
∣∣∣∣∣∣∣

n∏
r=1

ψGr (2
jt1/2αyr)

∣∣∣∣∣∣∣ dy,

where we used the boundedness of the derivatives of Gα in (3.23). The integrand in (3.23) is zero
outside a ball of radius c 2− jt−1/2α centered at the origin. Hence, we obtain∣∣∣b j

G,0(t1/2αx, t)
∣∣∣ ≤ C

∫
|y|≤c 2− jt−1/2α

|y|udu ≤ C
(
2− jt−1/2α

)u+n
(3.24)

for all x ∈ Rn. On the other hand, it follows from (3.22) and Lemma 1 that

∣∣∣b j
G,0(t1/2αx, t)

∣∣∣ ≤ C1

∫
|y|≤c2− jt−1/2α

∣∣∣∣∣Gα(x − y)
n∏

r=1

ψGr (2
jt1/2αyr)

∣∣∣∣∣dy

≤ C2

∫
|y|≤c2− jt−1/2α

1
1 + (|x − y|)n+2αdy (3.25)
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≤ C2
1

(1 + |x|)n+2α

∫
|y|≤c2− jt−1/2α

(1 + |y|)n+2α dy.

Since 2 jt1/2α and |y| ≤ c2− jt−1/2α, we have 1 + |y| ≤ c.
Thus, ∣∣∣b j

G,0(t1/2αx, t)
∣∣∣ ≤ C3

1
(1 + |x|)n+2α

∫
|y|≤c2− jt−1/2α

dy

.
1

(1 + |x|)n+2α

(
2− jt−1/2α

)n
. (3.26)

Let 0 < ε < 1. Combining (3.24) and (3.26), we have∣∣∣b j
G,0(t1/2αx, t)

∣∣∣ =
∣∣∣b j

G,0(t1/2αx, t)
∣∣∣ε ∣∣∣b j

G,0(t1/2αx, t)
∣∣∣1−ε

≤
cε,α

(1 + |x|)(n+2α)ε

(
2− jt−1/2α

)εn (
2− jt−1/2α

)(n+u)(1−ε)
(3.27)

= C′
1

(1 + |x|)(n+2α)ε

(
2− jt−1/2α

)n+(1−ε)u
.

Since 2 jt1/2α ≥ 1, it holds

1
(1 + |x|)(n+2α)ε ≤

(
2 jt1/2α

)(n+2α)ε(
1 + 2 jt1/2α|x|

)(n+2α)ε .

Hence,

∣∣∣b j
G,0(t1/2αx, t)

∣∣∣ . (
2 jt1/2α

)(n+2α)ε(
1 + 2 jt1/2α|x|

)(n+2α)ε

(
2− jt−1/2α

)(1−ε)u+n

∼

(
2− jt−1/2α

)−(n+2α)ε(
1 + 2 jt1/2α|x|

)(n+2α)ε

(
2− jt−1/2α

)(1−ε)u+n

.
1(

1 + 2 jt1/2α|x|
)(n+2α)ε

(
2− jt−1/2α

)(1−ε)(u+n)−2αε
. (3.28)

Replacing t1/2αx by x in (3.28) yields the estimate∣∣∣b j
G,0(x, t)

∣∣∣ ≤ C′
1

(1 + 2 j|x|)(n+2α)ε

(
2− jt−1/2α

)(1−ε)(u+n)−2αε
. (3.29)

We define g(ε) := (1− ε)(u + n)− 2αε = u + n− ε(u + n + 2α) with 0 < ε < 1. Obviously, the graph of
g is a strictly decreasing straight line. Because of u > 0, it holds that

0 <
n

n + 2α
<

u + n
u + n + 2α

. (3.30)

Hence,

0 = g
( u + n
u + n + 2α

)
< g

( n
n + 2α

)
=

( 2α
n + 2α

)
u. (3.31)
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According to (3.19), we have

g
( u + n
u + n + 2α

)
= 0 ≤ d < g

( n
n + 2α

)
.

Hence, there exists a uniquely determined ε ∈ (0, 1), more precisely,

n
n + 2α

< ε ≤
u + n

u + n + 2α
< 1,

such that g(ε) = d. For this choice of ε, we put L :=
(
n + 2α

)
ε > n. Inserting this in (3.29) leads finally

to the estimate ∣∣∣b j
G,0(x, t)

∣∣∣ ≤ C′
(
2− jt−1/2α

)d 1

(1 + 2 j|x|)L . (3.32)

Step 3: Let now 1 ≤ |ζ | ≤ u. Recall that

b j
G,0(t1/2αx, t) = 2− j n

2
(
Gα

t ∗ Ψ
j
G,0

)
(t1/2αx).

The derivatives Dζ
x can be shifted to Ψ

j
G,0 and we get

Dζ
x

(
b j

G,0(t1/2αx, t)
)

= t|ζ |/2αDζ
xb

j
G,0(t1/2αx, t)

≤ t|ζ |/2α
∫
Rn

Gα
t (t1/2αx − y)Dζ

y

 n∏
r=1

ψGr (2
jyr)

 dy

∼ t|ζ |/2α2 j|ζ |
∫
Rn

Gα
t (t1/2αx − y)

Dζ
n∏

r=1

ψGr

 (2 jyr)dy.

Note that
(
Dζ ∏n

r=1 ψGr

)
(2 jyr) fulfills the vanishing moment condition for |ζ | ≤ u, which can be seen

by iterative integration by parts. Thus, we obtain, using the same arguments as in the case ζ = 0,

∣∣∣Dζ
xb

j
G,0(x, t)

∣∣∣ ≤ C′
(
2− jt−1/2α

)d

(
2 jt1/2α

)|ζ |
(1 + 2 j|x|)L , |ζ | ≤ u. (3.33)

To be in correlation with the Definition 5, the choice of N = 1 leads directly to N ≤ u. The condition
on L as discussed in Step 2 remains unchanged. We conclude from (3.32) and (3.33) that b j

G,m(·; t)d are
(u,N, L)-molecules according to Definition 5. �

Remark 7. Note that throughout the previous proof, we assumed m = 0. This is due to the fact that
the case m , 0 can be transformed to m = 0 by applying a change of variable.

3.3. Main result

In this section, we prove the estimate (1.1) which is the key estimate to derive existence and
uniqueness results for several nonlinear heat and Navier-Stokes equations.

AIMS Mathematics Volume 9, Issue 11, 31962–31984.



31978

Theorem 1. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R, α > 0, d ≥ 0 and −n < ρ < 0. Then there exists a
constant C > 0 such that

‖Wα
t ω|ρ-As+d

p,q (Rn)‖ ≤ C t−
d

2α ‖ω|ρ-As
p,q(Rn)‖ (3.34)

for all 0 < t ≤ 1 and for all ω ∈ ρ-As
p,q(Rn).

Proof. Step 1: We assume first s > |ρ|

p . Let ω ∈ ΛρAs
p,q(Rn). Then by Proposition 3 we have the wavelet

representation

ω =

∞∑
j=0

∑
G∈G j

∑
m∈Zn

λ j,G
m 2− jn/2 Ψ

j
G,m (3.35)

with (λ j,G
m ) ∈ Λρas

p,q, where we choose sufficiently smooth wavelets Ψ
j
G,m. More precisely, we assume

for u ∈ N, according to (2.25) and (3.19), respectively, that

u > max
(
s + d, d ·

n + 2α
2α

)
. (3.36)

Let k ∈ N. We split (3.35) as follows:

ω =
∑
j≤k

∑
G∈G j

∑
m∈Zn

λ j,G
m 2− jn/2 Ψ

j
G,m︸                             ︷︷                             ︸

ω0
k

+
∑
j>k

∑
G∈G j

∑
m∈Zn

λ j,G
m 2− jn/2 Ψ

j
G,m︸                             ︷︷                             ︸

ωk

= ω0
k + ωk.

Applying the Gauss-Weierstrass semigroup on the previous representation yields

Wα
t ω = Wα

t ω
0
k + Wα

t ωk. (3.37)

We consider the second summand on the righthand side of (3.37) and assume 2−2αk < t ≤ 2−2α(k−1).
Since j > k, it follows 2 jt1/2α ≥ 2 j−k ≥ 1. Applying Proposition 5, we want to derive a molecular
representation of Wα

t ωk. We have

Wα
t ωk =

∑
j>k

∑
G∈G j

∑
m∈Zn

λ j,G
m 2− jn/2Wα

t Ψ
j
G,m

=
∑
j>k

∑
G∈G j

∑
m∈Zn

(
c−1 2− jdt−d/2αλ j,G

m

)
·
(
c 2 jd td/2α 2− jn/2Wα

t Ψ
j
G,m

)
=

∑
j>k

∑
G∈G j

∑
m∈Zn

c−1 2− jd t−d/2αλ j,G
m b j

G,m(·, t)d

=
∑
j>k

∑
G∈G j

∑
m∈Zn

µ j,G
m b j

G,m(·, t)d,

where µ j,G
m = c−12− jdt−d/2αλ

j,G
m and b j

G,m(·, t)d has the meaning of (3.18). We set

b j,m =


∑

G∈G j

µ
j,G
m

µ
j
m

b j
G,m(·, t)d, if j > k,

0, otherwise,
(3.38)
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and µ j
m = 0, if j = 0, . . . , k. For j > k, the choice of {µ j

m} j,m ∈ Λρas+d
p,q depends on a = b or a = f

(according to Definition 6). It follows from Proposition 5 that {b j,m} j,m with j ∈ N and m ∈ Zn are
(u, 1, L)-molecules in the sense of Definition 5, where L > n has the meaning as in Step 2, Proposition 5.
In order to show that Wα

t ωk ∈ ΛρAs+d
p,q (Rn) and that

‖Wα
t ωk|Λ

ρAs+d
p,q (Rn)‖ ≤ C t−

d
2α ‖ω|ΛρAs

p,q(Rn)‖, (3.39)

we use Proposition 4 with N = 1,K = u, L as above and s + d in place of s. It remains to be shown the
estimate

‖µ∗‖Λρas+d
p,q ‖ ≤ C t−

d
2α ‖λ|Λρas

p,q‖, (3.40)

where µ∗ = {µ
j
m : j ∈ N0, m ∈ Zn} and

µ j
m =


0, if j = 0, · · · , k and m ∈ Zn,(∑

G∈G j |µ
j,G
m |

p
) 1

p
, if j > k,m ∈ Zn and a = b,(∑

G∈G j |µ
j,G
m |

q
) 1

q
, if j > k,m ∈ Zn and a = f .

(3.41)

If a = b, we have

‖µ∗|Λρb
s+d
p,q ‖

= sup
J∈Z,M∈Zn

2
J
p (n+ρ)


∞∑

j≥J+

j>k

2 j(s+d− n
p )q

 ∑
m:Q j,m⊂QJ,M

|µ j
m|

p


q
p


1
q

= sup
J∈Z,M∈Zn

2
J
p (n+ρ)


∞∑

j≥J+

j>k

2 j(s+d− n
p )q

 ∑
m:Q j,m⊂QJ,M

∑
G∈G j

|µ j,G
m |

p


q
p


1
q

. t−d/2α sup
J∈Z,M∈Zn

2
J
p (n+ρ)


∞∑

j≥J+

j>k

2 j(s− n
p )q

∑
G∈G j

 ∑
m:Q j,m⊂QJ,M

|λ j,G
m |

p


q
p


1
q

.

Thus,

‖µ∗|Λρb
s+d
p,q ‖ . t−d/2α‖λ|Λρbs

p,q‖. (3.42)

If a=f, we have

‖µ∗|Λρ f
s+d
p,q ‖

= sup
J∈Z,M∈Zn

2
J
p (n+ρ)

∥∥∥∥∥( ∑
j≥J+, j>k

m:Q j,m⊂QJ,M

2 j(s+d)q|µ j
mχ j,m(·)|q

)1/q

|Lp(Rn)
∥∥∥∥∥
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= sup
J∈Z,M∈Zn

2
J
p (n+ρ)

∥∥∥∥∥( ∑
j≥J+, j>k

m:Q j,m⊂QJ,M

2 j(s+d)q
∣∣∣∣∣
∑

G∈G j

|µ j,G
m |

q


1
q

χ j,m(·)
∣∣∣∣∣q)1/q

|Lp(Rn)
∥∥∥∥∥

= sup
J∈Z,M∈Zn

2
J
p (n+ρ)

∥∥∥∥∥( ∑
j≥max(J+, k)
m:Q j,m⊂QJ,M

∑
G∈G j

2 j(s+d)q|µ j,G
m χ j,m(·)|q

)1/q

|Lp(Rn)
∥∥∥∥∥

= c−1t−d/2α sup
J∈Z,M∈Zn

2
J
p (n+ρ)

∥∥∥∥∥( ∑
j≥max(J+, k)

G∈G j

m:Q j,m⊂QJ,M

2 jsq|λ j,G
m χ j,m(·)|q

)1/q

|Lp(Rn)
∥∥∥∥∥.

Thus,

‖µ∗|Λρ f
s+d
p,q ‖ . t−d/2α‖λ|Λρ f s

p,q‖. (3.43)

Estimates (3.42) and (3.43) imply (3.40) and thus, (3.39).
Now, we consider the first term on the righthand side of (3.37), i.e., j ≤ k and assume A = B. Then,

‖ω0
k |Λ

ρBs+d
p,q (Rn)‖

. sup
J∈Z,M∈Zn

2
J
p (n+ρ)

 ∑
J+≤ j≤k

2 jdq2 j(s− n
p )q

∑
G∈G j

 ∑
m:Q j,m⊂QJ,M

|λ j,G
m |

p


q
p


1
q

.

Since j ≤ k, we have 2 jd ≤ 2kd. This leads to

‖ω0
k |Λ

ρBs+d
p,q (Rn)‖

. 2kd sup
J∈Z,M∈Zn

2
J
p (n+ρ)

 ∑
J+≤ j≤k

2 j(s− n
p )q

∑
G∈G j

 ∑
m:Q j,m⊂QJ,M

|λ j,G
m |

p


q
p


1
q

. 2kd‖λ|Λρbs
p,q‖. (3.44)

Reasoning in the same way but now with the F-spaces and the Λρ f s
p,q sequences, we also obtain

‖ω0
k |Λ

ρF s+d
p,q (Rn)‖ ≤ 2kd‖λ|Λρ f s

p,q‖. (3.45)

Hence, it follows from (3.44) and (3.45) that

‖ω0
k |Λ

ρAs+d
p,q (Rn)‖ ≤ 2kd‖λ|Λρas

p,q‖ ∼ 2kd‖ω0
k |Λ

ρAs
p,q(Rn)‖. (3.46)

We assumed at the very beginning that s > |ρ|

p . Hence, s + d > |ρ|

p and

(Wα
t ω

0
k)(x) = (Gα

t ∗ ω
0
k)(x) =

∫
Rn

Gα
t (y)ω0

k(x − y)dy

is well-defined.
Applying Minkowski’s inequality and the translation invariance of the spaces, we can estimate

‖Wα
t ω

0
k |Λ

ρAs+d
p,q (Rn)‖ ≤

∫
Rn
|Gα

t (y)|dy‖ω0
k(· − y)|ΛρAs+d

p,q (Rn)‖
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≤ C‖ω0
k |Λ

ρAs+d
p,q (Rn)‖,

where the constant is independent of t. Together with (3.44) and (3.45), we achieve

‖Wα
t ω

0
k |ρ-As+d

p,q (Rn)‖ ≤ C2kd‖λ|Λρas
p,q‖.

Since 2−k2α < t ≤ 2−2α(k−1), we have the equivalence t−d/2α ∼ 2kd. Together with the wavelet
characterization of ω, this leads to the estimate

‖Wα
t ω

0
k |Λ

ρAs+d
p,q (Rn)‖ ≤ C t−d/2α‖ω|ΛρAs

p,q(Rn)‖, (3.47)

where 0 < t ≤ 1 and s > |ρ|

p , d ≥ 0.
Step 2: Let s ≤ |ρ|p .

We choose σ > 0 such that s + σ > |ρ|

p . Let ω ∈ ΛρAs
p,q(Rn). Recall from part (ii) of Definition 7 that

Wα
t ω := I−σ

[
Wα

t (Iσω)
]
,

where Iσω ∈ ΛρAs+σ
p,q . Let d ≥ 0.

Then,

‖Wα
t ω|Λ

ρAs+d
p,q (Rn)‖ = ‖I−σ

[
Wα

t (Iσω)
]
|ΛρAs+d

p,q (Rn)‖
∼ ‖Wα

t (Iσω)|ΛρAs+σ+d
p,q (Rn)‖

. t−d/2α‖Iσω|ΛρAs+σ
p,q (Rn)‖

∼ t−d/2α‖ω|ΛρAs
p,q(Rn)‖.

Finally, the corresponding result for the spaces ΛρAs
p,q(Rn) follows by real interpolation according to

Remark 3, part (vi). This completes the proof of (3.34). �

3.4. Final remarks

Let us give a short outlook in view of possible applications. As mentioned in the introduction,
estimates of type (1.1) play a significant role in the analysis of (fractional) evolution equations
e.g., heat, Navier-Stokes, quasi-geostrophic, Keller-Segel or Burger’s equations. We refer to the
approach developed and elaborated in the monographs [25–27] which is related to the classical Gauss-
Weierstrass semigroup (i.e., α = 1 in (1.1)). Refined mathematical models, for example, in physics
and chemotaxis, suggest and require us to replace the Laplacian by the fractional Laplacian (−∆)α

in related (nonlinear) evolution equations. As far as the study of corresponding Cauchy problems is
concerned, let us mention, for example, the papers [5, 7, 15–17, 31]. For example, let us consider the
Cauchy problem

∂tu(x, t) + (−∆)αu(x, t) = f (u(x, t)), x ∈ Rn, 0 < t < T , (3.48)
u(x, 0) = u0(x), x ∈ Rn, (3.49)

where 0 < T ≤ ∞, 2 ≤ n ∈ N, α > 0 and

f (u(x, t)) := Du2(x, t) =

n∑
i=1

∂

∂xi
u2(x, t)
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stands for the nonlinear term. It serves as a scalar model case for fractional Navier-Stokes equations.
For further types of nonlinear terms, we refer to the abovementioned papers. The standard approach
to prove the existence and uniqueness of mild solutions is to consider the related fixed point problem
Tu0u = u, where the operator Tu0 is defined as

Tu0u(x, t) := Wα
t u0(x) +

∫ t

0
Wα

t−τ f (u(x, τ)) dτ, x ∈ Rn, 0 < t < T, (3.50)

in appropriate function spaces. We are interested in vector-valued weighted Lebesgue spaces

Lv((0,T ), b, X) :=
{

u : (0,T )→ X,
∫ T

0
tbv ‖u(·, t)|X‖v dt < ∞

}
,

as solution spaces. Here, 1 ≤ v < ∞ (usual modification if v = ∞), b ∈ R, 0 < T ≤ ∞, and X is an
appropriately chosen Banach space according to given initial data. For initial data belonging to Besov
or Triebel-Lizorkin spaces As0

p,q(Rn), this has been investigated in the hyper-dissipative case α ∈ N
in [1–3] as well as in [4] in the case of fractional α, where X = As

p,q(Rn). Here, parameters s, b, and v
depend on α, p, s0 and the dimension n.

4. Conclusions

The smoothing property (1.1) paves the way to deal with Cauchy problems of the above type for
initial data belonging to Morrey smoothness spaces ρ-As0

p,q(Rn). As far as the case α = 1 is concerned,
partial results can be found in [26, Chapters 4 and 5] for hybrid spaces ΛρAs0

p,q(Rn) (see also Remark 3,
part (iv)). We intend to consider the general case of fractional α and certain classes of nonlinear terms f
in (3.48) in forthcoming papers.
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7643-7582-5

24. H. Triebel, Function spaces and wavelets on domains, Zürich: European Math. Soc. Publishing
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