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Abstract: In this paper, we aim to study the stability and convergence of a finite difference scheme for
solving the two-dimensional nonlinear multi-term time fractional subdiffusion equation with weakly
singular solutions. We apply the L1 scheme to discretize the multi-term temporal Caputo derivatives,
a standard central difference method in space, and a backward formula to approximate the nonlinear
term on the uniform mesh, respectively. Stability and pointwise-in-time error estimates are obtained
for the fully discrete scheme. The global convergence order is @, and the local convergence order is 1
in the temporal direction. The theoretical analysis is verified by some numerical results.
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1. Introduction

The following two-dimensional nonlinear multi-term time-fractional subdiffusion equations with
initial and boundary conditions are considered in this paper:

Diu=Au+ f(u), (x,y) €Q, 0<t<T, (1.1)
u(x,y,0) = g(x,y), (x,y) € €, (1.2)
ulx,y,t)=0, (x,y) €0Q, 0<t<T, (1.3)

where Q = (0, L;) X (0, L,) with the boundary Q, f € C!(R), and g is a continuous function in Q. The
operator D in (1.1) is defined by

J
Df:Zb,Df’, O<a;<ay 1 <---<a <1, and b; > 0,
=1
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where D;" denotes the Caputo derivative with respect to 7, i.e.,

1 ! o OU(x,y, 8)
D= —— | (= gy 220
P F(l—a/l)fo(t S P

In order to describe the physical process better, some scholars use multi-term time fractional dif-
ferential equations for modeling, such as the behavior of viscoelastic fluids [1, 2], the dispersion of
pollutants [3], and magnetic resonance imaging [4]. The finite difference method [5-8], the finite vol-
ume method [9, 10], the fractional predictor-corrector method [11], the finite element method [12],
the collocation method [13, 14], and the spectral method [15] have been developed for solving the
multi-term time fractional equations. The work [16] proposed a fast linearized finite difference method
for the nonlinear multi-term time-fractional wave equation using SOE approximation. Recently, a lot
of work about the time fractional nonlinear subdiffusion equation has been published. For example,
the paper [17] considered a Newton linearized Galerkin finite element method to solve the problem
with non-smooth solutions in the time direction and provided an optimal error estimate by using the
discrete fractional Gronwall-type inequality on the graded meshes. The paper [18] provided an effi-
cient systematic framework for solving nonlinear fractional partial differential equations on unbounded
domains and obtained an error estimate. Jiang et al. [19] proposed an efficient ADI scheme for the non-
linear subdiffusion equation with a weakly singular solution and obtained the pointwise-in-time error
estimate. Li et al. [20] proposed a new tool, the refined discrete fractional-type Gronwall inequality,
which is used to derive a sharp pointwise-in-time error estimate of the L.1 scheme for the problem.
However, as far as the authors know, at present there is no work dedicated to the pointwise-in-time er-
ror estimate of the L1 scheme for the nonlinear multi-term time-fractional subdiffusion equation with
weakly singular solutions. The present work is designed to fill this gap. Following [21,22], in the
remainder of our paper, we make the following assumption:

Assumption 1.1. For all (x,y,t) € Q x (0, T], we assume the solution satisfies

d'u(x, y, 1)

<C 1=0,1,2,3,4,5 1= p+q, 1.4
axrayt | = ptq (1.4)
Fu(x,y,
'J%%LESCU+ﬂ“Lk=QLZ (1.5)

where C is a positive constant. C in this paper represents a constant independent of time and space
step, and C in different positions represents different values.

This paper consists of the following sections. In Section 2, we construct a fully discrete scheme for
the problem (1.1)—(1.3). In Section 3, some lemmas are introduced that will be used in the subsequent
analysis. In Section 4, convergence and stability of the fully discrete scheme proposed in Section 2 are
given, and we obtain the sharp pointwise-in-time error estimate. In Section 5, the theoretical analysis
is verified by four numerical examples.

2. Fully discrete scheme

Let M,, M,, and N be three positive integers. Divide space and time uniformly into M; X M, and
N parts, respectively. Let {#,|t, = nt, 0 < n < N} be a uniform partition of [0, 7] with the time step
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v =T/N. Let hy = Li/M, and h, = L,/M, be the spatial steps. So spatial grid points consist of
x; = ihy and y; = jh,, wherei = 0,1,--- ,M; and j = 0,1,---, M,. The spatial grid is represented
by Q" = {(x;,ypli =0,1,--- ,M,j=0,1,--- , M}. Let Q, = Q" N Q, and 0Q;, = Q" N Q. Defining
u; i = u(x;,yj,t,), the previous equations (1.1)—(1.3) at the grid point (xi, Vs tn) can be transformed into

J
Dl = Sl + 82l + ful;h) + Z bi(r) + R+ (P, (6 y) € 0<1, < T, 2.1)
=1
up ;= g(xi,y7)s (%)) € Qy, (2.2)
w; =0, (x,y,) €0, 0<1,<T, (2.3)

where the notations in (2.1) will be given afterwards.
Applying an L1 formula for the multi-term time Caputo derivatives, i.e., set

n—1
. N _ Ju . .n ;.0 o7} 17} n—k
Dty = dyui ;= dy'uj ;= Z (= di iy
k=1
o _ Tk - (=1)') imlici i ¥ b it vi
where d,' = an . For simplicity, defining d;, = }’ b,d,’, it yields that
I=1
J n—1
. 0 —k
Do}y = Y b = dudly = did; = > (di = dy )l (2.4)
=1 k=1

A standard second-order approximation is used to discretize Au;';:

no . s2.n 2 .n
Aui’j ~ 6xul-’j + 6yui’j,

u'’ —2u;’j+u’.’

2. n i+1,j i-1,j
o‘u . =
X7, ”
J h12
n _ n n
5 Mg —2ui
oul. = X
yUij 2
hy

To approximate the nonlinear term f(u} ), we utilize the backward formula, expressed as
-1 -
f(u7,) = f(u:l, )+ (r)?J
In (2.1), (r)y}; and R} are truncation errors, i.e.,

no_ oy, ¥, N
(rl)i,j—DT U ; D, Ui js

no_ n _ (s2.n 2 n
Ri’j = Aui’j (6xui’j + 6),ui’j).

Leaving out the truncation errors in (2.1) and replacing u}; by U}’ , the fully discrete scheme is obtained:

DeUY, = 83U + 62U + fUSY), (6, y) €y, 0< 1, < T, 2.5)
Uf,- =8(xi, ), (xi,y;) € Qp, (2.6)
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3. Preliminary lemmas

Lemma 3.1. For (x;,y;) € &, 1 <n < N, it holds that

< Crto !,

@,

Proof. Due to the continuity of f” and the boundedness of u, f'({) is bounded, where ¢ is between uy;
and u;'. We obtain

n n—1
l/lw - ul’] ) .

@

= ey - rugh| <

Then we estimate the truncation error in two cases ( [19], page 6). Note the condition (1.5).
Case A:n>2

| < clur, -
ou(ihy, jhy,t)
e

< Cr(l +&m7h

<Cr(l+1'] :

SCﬂ1+ﬁ‘5

< Cthz"_l,

n nl‘

=Ct (tn—l < f < tn)

1=¢

where we have used #,,_; ~ ¢, for n > 2 in the penultimate inequality.
Case B:n=1

h ih

op) c| [ 2, \
< f” 6u(zh1,]h2,s)

0 6S

1]
< cf (1 + s Nds
0

1
=C(t+ —1")
a)

<Ct™ = CTt‘l"_l.

The proof is completed. O

Lemma 3.2. For (x;,y;) € Q;, 1 <n < N, we have R < C(h2 + hz)
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Proof. According to the Taylor expansion, we can see that

7
Ri,j x*i,j yoiLj

= ‘Auzj — (82" + &*u" ))

= | Gt s ) = 8207 + (g (i s 1) = 52

< h_% 04M(X, yj’ tn) h_g (9414()@', Y, tn)
R S R P R N
< C(ht + hy),
where X1 < f] < Xi+ls and Vji-1 < é:z <Yj+l- O

J .
Lemma 3.3. [23, Lemma 6] 'Z bl(rl)?j < Cp~mini2-arartll o (x,y)) €Qp 1 <n<N.
I=1 ’

Define the positive stability multipliers 6y = u, 6, = u >, (di — di+1)6,-1, Where u = dl‘l.
k=1

Lemma 3.4. ( [24], Lemma 5.1) 6, is a monotonically decreasing sequence with respect to n. For
n=0,1,---,N,

6, <b'TQ - a)r™(n+ )",
Notation. 6, here has the following relationship with o in Literature [24]: 6, = o7§.
Lemma 3.5. ( [24], Lemma 5.2, Corollary 5.1) Forn =1,2,--- , N,

1 a—f

o _ o n a- 1 n
270 <HITQ =) (5) -+ G) .

=

where 3 > 0 and

Kﬂ’n =

L+ 552, forp#1,
1 +Inn, forB=1.

If there exists a, which satisfies 0 < @ < a; < 1, we have

Zn:j_ﬁe _ ¢ for B =0,
= S C’Kﬁ,n‘rtﬁl_l forB>1,

where constant C depends on a and T.

Lemma 3.6. ( [25], Lemma 5.1) If {y,,} is a non-negative sequence, and it satisfies y, < ait,"" +aot,” +

n—1
bt . tz_‘}yj, 1 <n<N,wegety, <Clat," +axt,™), 1 <n< N, where0 <n,m <1, aj,as,b >0,

=1
0 < a < 1 and N is a positive integer.

Suppose g’ is an arbitrary mesh function; we define an integral operator B¢, which satisfies B%(g") =
0, B¥(g") = Y 6,-;¢',forn=1,2,--- ,N.

=1

Lemma 3.7. ( [23], Lemma 2) For any mesh function {U’ }3\’: o the following formula holds.

B*(D*U™) = U"-U°, forn=1,2,---,N.
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4. Convergence and stability analysis

Theorem 4.1. If U” is the solution of (2.5)—(2.7) at point (x;,y;, t,), and suppose ‘Ulo ol = = || U"|e, it
holds that
vzl <|us, ZH" ([ FWiD|. rorn=o. @.1)
Proof. From (2.5), it is easy to see that U} satisfies
Z bid""
ur, . +U”" ur. . +U". J &
l+1jh2 i-1,j tj+1 i,j—1 n Z bl(dzll d(y/)Un k+1 +d UO +f(U
1 =1 k=2
Based on (2.7) and the fact that d," | > d}', we have
(Z b tat —) )UZO i
20" 20" &
10, J0 lo Jo e Q n—k+1 n 1
- hz +Z b d : _d l) Ulojo+ +d i0,.Jo ‘f(Ulojo
1 =1 k=2
Then, we obtain
J n
<Z bd) U | < ) > byt = diy [ Uikt + US| + | i)
=1 k=2
which, according to the definition of DY, is equivalent to the following expression:
prlus,| <|rwib] 1<nsw. (4.2)
By applying the integral operator to both sides of the above formula, we obtain
BY(D? UL ) < BY | f(UE D).
Due to Lemma 3.7 and the above definition of B, (4.1) holds for n > 1. Obviously, (4.1) also holds
forn =0. ]

Theorem 4.2. Suppose that u is the solution of (1.1)—(1.3) and satisfies Assumption 1.1, and that U is
the solution of (2.5)—(2.7). There exist positive constants Ty and hyg. When T < 19 and hy, hy < hy, it
holds for m > 0 that

" — Ul < C(xt% ™" + hi + h3). (4.3)
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Proof. For m = 0, (4.3) holds obviously. Assuming that (4.3) holds form = 0,1,2---n—-1(n > 1),
then for sufficiently small 7, iy, h,, and 1 < k < n, we obtain

o0 (o] o0
< ||uk‘1|| +1.
(o]

Let us discuss whether the inequality (4.3) holds when m = n. Let ¢}, = u}’, — U[", for 0 < m < n.
Subtracting (2.5)—(2.7) from (2.1)—(2.3), we obtain

Dlel. = &2 + 82l + (R + Z bir)s + R+ (P (5, y) € 0< 1, < T,
=1

6(-)-:0 (xi,y)) € Qy,
’”-—O (x,y)) €0, 01, <T,

where (Rf);’fj = f(ul’.t’j‘l) - f(UZ’j‘l). Considering the continuity of f”, the boundedness of uTJ.‘l and
U Tj‘l, we have

((Rf)” ’f(um Y- U 1)‘ < c) 4.4)

Let ‘elo i ‘ = |le"||- Using Lemmas 3.1-3.3 and inequality (4.4), similar to (4.2), it can be obtained
that for 1 <m <n,

DY |efn i | < Cy et | + Cym ™t 4 Cy(ht + h3) + Cyty ™. (4.5)

Applying the definition of BY again, and Lemmas 3.4 and 3.5, we can further obtain

CIZQM)

+Cs Z Ouic (B3 + 12) + Cyr™ Z Oick 1!

+C, Z 0, & f~ min{2-a1.1+a1)

k=1

lO Jo

m—1

—clzemkl

+ C3C(h} + ) + Cyt™ Z Ok

k=1

+ C2 Z 0 kk—mmZ ay,l+ay}
m—

lO Jo

m—1

< Ciby TR -y Y (m—km!
k=1
+ CoCky, Tt + CC (W + 13)

ap—1 2a1-1 2a1—1
+ OB - an) [(1 - i) (ﬂ) gL (ﬂ) 1 }

a 2 a2t o \2

m—1
<C (T“l Dim—kmt ek i (] + h§)>

k=1

10 Jo

Electronic Research Archive Volume 33, Issue 3, 1476-1489.



1483

where o1 = min{2 — a1, a; + 1}. From Lemma 3.6, we have

<Crt ™+ 2+ 1), forl <m<n. (4.6)

10 Jo

In summary, the inequality (4.3) holds for m = n, which finishes the mathematical induction. The
proof is complete. O

Remark 4.1. The global maximum error of the numerical solution is

max |[u" — U"|l, < C(x™ + hi + h3).
1<n<N

When t, is away from 0, the local maximum error is
" — U\l < C(r + hi + h3).

Theorem 4.3. The fully discrete scheme (2.5)—(2.7) is stable with respect to the initial value. If U l”J
satisfies the following equations,

Z bDU 0!, = 20! + 8200 + f(O15Y), (xiy) €y 0< 1, < T, (4.7)
07, = 8(xiy)p), (xi,y)) € (4.8)
U! =0, (xi,y) €0Q, 0<1, < T, (4.9)
and ||g — 8l is sufficiently small, then
"l < C||e°||.., forn >0, (4.10)

where é?,j = Ufj - lA]Zj.
Proof. Subtracting (4.7)—(4.9) from (2.5)—(2.7) and according to Theorem 4.1, we have

é?o Jo Z On-k ’f(Ull; Jlo) - f(UlI:) ]10
where elo i = [|e"||c. (4.10) holds for n = 0 obviously. Suppose that (4.10) holds when n =
0,1,2,--+,m = 1(n > 1), we have ||U"|| . < Il'llo + Ul < C[|&°|, + 10"l < 1 +1IU"]l on

the condition that | é‘)”m is small, for r < m — 1. According to (4.3), U} is bounded. Then, combining
the continuity of f” and the boundedness of U l’ ., it holds that

~Am

€, Jo <

é

Z gm k ’f(Utli) jlo) - f(UlO Jo

+C29mk

~k—1
€io, Jo

10 Jo
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Due to Lemma 3.6, we have

1"l < C||e°

(o)

Therefore, the mathematical induction ends, and the proof is complete. O
5. Numerical experiments

Example 5.1. We first consider the following two-term time-fractional nonlinear subdiffusion equation
with by = by = 1.

D" u+D%u = Au+u(l —u®) + h(x,y,1), (x,y)) €Q, 0<t <T, (5.1)
u(x,y,0) = g(x,y), (x,y) € Q, (5.2)
ulx,y,t)=0, (x,y) €0Q, 0<t<T, (5.3)

where h(x,y,t) and g(x,y) are up to the exact solution. We set the exact solution to t*' sin(nx)sin(my),
which satisfies Assumption 1.1. We consider the spatial domain Q = (0,1) X (0,1) and set T = 1.

Above all, we compute the convergence order in spatial direction. We set N = 1000 so that the
influence of errors in temporal direction can be ignored compared with errors in spatial direction. The
maximum errors at t, = 1 and rates, when a; = 0.4 and a; = 0.3, are presented in Table 5.1. Numerical
results show that the spatial accuracy is O(h? +h%). For studying temporal convergence rates, we define
global errors E; and local errors E; by

Ec = max ||U" — ||, Er = ||UN - uN” .
1<n<N o

Global errors and rates in Table 5.2 show that the global temporal convergence order is ;. When #, is
far away from O, results are shown in Table 5.3, and we get the local temporal accuracy O(7). All in
all, numerical results are consistent with the theoretical analysis in Remark 4.1.

Table 5.1. maximum errors at z, = 1 and spatial convergence rates for Example 5.1.

M =M, 4 8 16 32 64
E 45780e-02 1.1335¢-02 2.8363e-03 7.1957¢-04 1.9089¢-04
rate 2.0140 1.9987 1.9788 1.9144 &

Table 5.2. global maximum errors and temporal convergence rates for Example 5.1.

e . ap =03, =0.1 a; =05a,=03 a; =07, a, =0.5
N=Mi =M, Eg rate Eg rate Eg rate
128 1.6333e-02 0.1690 1.0008e-02 0.3361 5.2012e-03 0.8184
256 1.4528e-02 0.1931 7.9278e-03 0.3660 2.9494e-03 0.6130
512 1.2708e-02 0.1926 6.1514e-03 0.3744 1.9284e-03 0.6260
1024 1.1120e-02 0.2038 4.7453e-03 0.4003 1.2496e-03 0.6518
2048 9.6547e-03 * 3.5956e-03 * 7.9532e-04 *
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Table 5.3. local maximum errors at #, = 1 and temporal convergence rates for Example 5.1.

a; =03,a, =0.1 a; =05,a,=03 a; =07,a,=0.5

_ a2 — a2
N'= My =M, E; rate E; rate E; rate
128 5.0943e-03 0.8339 5.1615e-03 0.8359 5.2012e-03 0.8374
256 2.8579e-03 1.0536 2.8916e-03 1.0534 2.9109e-03 1.0531
512 1.3768e-03 0.9473 1.3933e-03 0.9477 1.4028e-03 0.9480
1024 7.1403e-04 1.0464 7.2235e-04 1.0460 7.2716e-04 1.0456
2048 3.4571e-04 * 3.4984e-04 * 3.5227e-04 *

Example 5.2. Secondly, we consider a two-dimensional three-term time-fractional nonlinear subdif-
fusion equation with by = b, = b; = 1.

D" u+D%u+D%u = Au+u(l —u®) + h(x,y,1), (x,y) €Q, 0<t<T, (5.4)
u(x,y,0) = g(x,y), (x,y) € Q, (5.5)
ulx,y,t)=0, (x,y) €0Q, 0<t<T, (5.6)

where Q = (0,1) X (0,1) and T = 1. We calculate h(x,y,t) and g(x,y) based on the exact solution
1" sin(rx)sin(my).
Numerical results are shown in Tables 5.4 and 5.5, which verify the theoretical analysis as well.

Table 5.4. global maximum errors and temporal convergence rates for Example 5.2.

g = 0.3,(1’2 = 02, a3 = 0.1 g = 0.5,0,’2 = 04, a3 = 0.3 a) = 0.7,(}’2 = 06, an = 0.5

_ a2 — a2

N=M=M, E; rate Eg rate E; rate
128 1.7505e-02 0.1822 1.0842e-02 0.3657 4.9545e-03 0.7240
256 1.5428e-02 0.2052 8.4150e-03 0.3942 2.9994e-03 0.6375
512 1.3382e-02 0.2040 6.4030e-03  0.4000 1.9282e-03 0.6436
1024 1.1618e-02 0.2159 4.8524e-03 0.4227 1.2342e-03 0.6639
2048 1.0003e-02 * 3.6200e-03 * 7.7897e-04 *

Table 5.5. local maximum errors at ¢, = 1 and temporal convergence rates for Example 5.2.

N = M2 _ M2 ) = 0.3,0’2 = 02, a3 = 0.1 ) = 0.5,0’2 = 04, a3 = 0.3 a) = 0.7,&2 = 06, ap = 0.5
1 2 rate E; rate E; rate

128 4.8786e-03 0.8333 4.9371e-03 0.8351 4.9545e-03 0.8362

256 2.7380e-03 1.0534 2.7675e-03 1.0532 2.7751e-03 1.0529

512 1.3193e-03 0.9470 1.3337e-03 0.9474 1.3376e-03 0.9476

1024 6.8430e-04 1.0463 6.9158e-04 1.0460 6.9355e-04 1.0455

2048 3.3134e-04 * 3.3495e-04 * 3.3600e-04 *

Example 5.3. Thirdly, we investigate the scenario in which the nonlinear term is represented by f(u) =
sin(u), which satisfies Lipschitz condition. The corresponding equation is formulated as follows:

D!'u+ D;?u + DPu = Au + sin(u) + h(x,y,1), (x,y) € Q, 0<t<T, (5.7)
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u(x,y,0) = g(x,y), (x,y) € Q, (5.8)
ulx,y,t)=0, (x,y) €0Q, 0<t<T, (5.9

where Q = (0,1) X (0,1) and T = 1. Similarly, we derive h(x,y,t) and g(x,y) based on the exact
solution

1" sin(zx)sin(my).

The corresponding numerical results are presented in Tables 5.6 and 5.7. The global convergence
order is a1, and the local convergence order is 1 in the temporal direction.

Table 5.6. global maximum errors and temporal convergence rates for Example 5.3.

N = M2 _ M2 g = 0.3,(1’2 = 02, a3 = 0.1 g = 0.5,0,’2 = 04, a3 = 0.3 ) = 0.7,0,’2 = 06, p = 0.5
1 2 Eg rate Eg rate Eg rate

128 1.7753e-02 0.1908 1.0852e-02 0.3664 4.8924e-03 0.7058

256 1.5554e-02 0.2101 8.4178e-03 0.3945 2.9995e-03 0.6375

1024 1.1650e-02 0.2175 4.8527e-03 0.4227 1.2342e-03  0.6639

2048 1.0019e-02 * 3.6201e-03 * 7.7897e-04 *

Table 5.7. local maximum errors at ¢, = 1 and temporal convergence rates for Example 5.3.

N = Mlz _ M2 ) = 0.3,0’2 = 02, a3 = 0.1 ) = O.5,CL’2 = 04, a3 = 0.3 a) = 0.7,([2 = 06, ap = 0.5

2 E; rate E; rate E; rate
128 5.0640e-03 0.8278 4.9983e-03 0.8256 4.8924e-03 0.8229
256 2.8530e-03 1.0552 2.8204e-03 1.0557 2.7656e-03 1.0561
512 1.3730e-03 0.9454 1.3568e-03 0.9449 1.3301e-03 0.9441
1024 7.1295e-04 1.0478 7.0484e-04 1.0484 6.9132e-04 1.0489
2048 3.4485e-04 * 3.4079e-04 * 3.3415e-04 *

Example 5.4. Finally, we consider a two-dimensional two-term time-fractional nonlinear subdiffusion
equation with by = b, = 1, whose exact solution is unknown.

D¥u+D"u=Au+ul —u), (x,y)€Q, 0<t<T, (5.10)
1

u(x,y,0) = Qsin(ﬂx)sin(ﬂy), (x,y) € Q, (5.11)

u(x,y,t) =0, (x,y) €0Q, 0<t<T, (5.12)

where Q = (0,1) X (0,1)and T = 1.

The two-mesh method [26] is applied to compute errors and convergence rates. We take M, = M, =
60. E; is redefined by

= o= w2

in which W" is the numerical solution of Example 5.4 with 7 = T/2N. The local errors are shown in
Table 5.8. The local temporal convergence rate O(7) is consistent with Remark 4.1.
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Table 5.8. local maximum errors at #, = 1 and temporal convergence rates for Example 5.4.

a; =03,a, =0.1 a; =05,a,=03 a; =0.7,a, =0.5
E; rate E; rate E; rate

32 6.8318e-05 1.0203 1.2027e-04 1.0285 1.4785e-04 1.0455
64  3.3682e-05 1.0103 5.8957e-05 1.0154 7.1633e-05 1.0270
128 1.6722e-05 1.0053 2.9166e-05 1.0086 3.5152e-05 1.0173
256 8.3302e-06 1.0027 1.4496e-05 1.0050 1.7367e-05 1.0117
512 4.1572e-06 * 7.2231e-06 * 8.6132e-06 *

N
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