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Abstract: In this manuscript, the following chemotaxis system has been considered:

v, = V- (@dW)Vv — o(V)Vw; + y(v)Vw,) +av - bV, xeQ, t>0,
0=Aw; +av" — Bwy, xeQ, t>0,

0 = Aw, + Y — dw,, xeQ, t>0,

where Q is a bounded smooth domain of R"*(n > 1), the parameters a, b, @,,v,0,v1,v2 > 0,k > 1,
and nonnegative functions ¢(0) = (0 + )", ¢(0) = xo(o + 1)?! and y(0) = £o(o + 1) forp > 0
with m, 6,1 € R and y, ¢ > 0. In the present work, we improve the boundedness criteria established
in previous work and further show that under the corresponding critical cases, namely, assume that
0+ vy, =max{l+y,,k} >m+ % + 1 withm > —%,n > 3, if one of the following conditions holds:

_ _ . [(k=1-m)n=2]Qay—yé) _ 2ax[(k=1-m)n-2] _ 4.
(a) When9+71 —l+’)/2 =K, if0>1/>1and 20= 1)+ —mm —b, orl>60> landm —b,

_ . 2ax[(k—1-m)n—-2] _
(b) when 0+ vy, =k >1+17,,if 0 > 1 and —2((1/;(_1’;+(K—”]l—nm)n =b,

then the system still possesses at least a global classical solution, which is bounded in Q X (0, o).
Additionally, we have also explored the long time behavior of the classical solution mentioned above.

Keywords: chemotaxis system; critical parameter conditions; boundedness; long time behavior

1. Introduction

Recently, the following partial differential chemotaxis system has been considered in [1]:

{ v, = V- (@dW)Vv —o(V)Vw; + y(v)Vw,) +av - bV, xeQ, t>0, (L1)

0=Aw; +av" —Bw,0 = Aw, + YV — dwy, xeQ, >0,
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under the boundary conditions of g—; =Stk = B—VZ on 9Q, where Q is a bounded smooth domain of
R*(n > 1), and v is a normal vector of dQ. Here, v stands for the density of cell population, w; and w,
represent the concentration of two different chemical signals secreted by cell population, and parameters

a,b,a,B,v,06,y1,v2 > 0,k > 1. In the system (1.1), the diffusion functions are assumed to satisfy

$) = (0 + 1)", ¢(0) = xolo + 1) and Y(o) = éo(0 + ", (1.2)

for all o > 0 with m,0,] € R and y,& > 0. Suppose that 6 + y; = max{l + y,,k} > m + % + 1. It

has been proven in [1] that if one of the following conditions holds, then the system (1.1) is globally
classically solvable
(2) when 0+7y1 = [+ = k,if 0 > 1 > 1 and LS008 < )y or [ > 6 > 1 and 52052 < b,
(b) when 0+ vy, =1+ vy, >k, if 0 > [ > 1 and 2ay < ¥¢;

_ . 2ax[(k—1-m)n—2]
(c)When9+yl—K>l+y2,1f921andm b

In the present work, we shall further prove that such conclusions still hold under corresponding
critical parameter conditions. Meanwhile, we will analyze the long time behavior of such solutions.
Before stating our main conclusions, we shall review some known results regarding this aspect.

Chemotaxis is a universal phenomenon in the real environment, which refers to a reaction of seeking
benefits and avoiding harm under the stimulation of chemical substances. The first mathematical model
to describe such phenomenon was given by Keller and Segel [2] with the following form:

V[:AV—XV'(VVW), XEQ, t>0’
™™, = Aw—w+v, xeQ, t>0, (1.3)
v(x,0) = vo(x), Tw(x, 0) = Twp(x), x € €,

where the function v(x, f) stands for the cell density, and the function w(x, ) denotes the concentration
of signal substance produced by cell population. The constants 7 € {0, 1} and y > 0. Afterwards,
many meaningful results have been studied for system (1.3), such as the global classical solvability
of system and the blow-up analysis of classical solutions. When considering that the system (1.3) is
a fully parabolic partial system, the conclusions in [3] showed that the classical solutions is globally
bounded in one dimensional space. For n = 2, the results in [4] imply that if there exists suitable v,
satisfying fQ vodx < ‘;—”, then classical solutions of the system would be globally bounded; otherwise,

if fQ vodx > ‘L—”, the classical solutions of system system (1.3) would be unbounded in finite time [5].
In the case of n > 3, Winkler [6] proved that the blow-up solution will occur in finite or infinite time
for some suitable initial data vy with fQ vo > 0. If the second equation was taken with the form of
w, = Aw —w + g(v), where 0 < g(v) < Kv* with K,a > 0, Liu and Tao [7] concluded the global
boundedness of the classical solutions provided that 0 < a < % Moreover, if the second equation was
taken with the form of 0 = Aw — & [ v + v with « > 0, Winkler [8] proved that if the number « > 2,
then the classical solutions would be unbounded in finite time in radial setting; otherwise, if k < % the
solutions remain bounded in © X (0, c0).
Afterwards, a more general chemotaxis model was considered with the form

(1.4)

v, =V-(DW)VV) =V - (SOWVw)+ f(v), xe€Q, t>0,
W, = Aw—w+v, xeQ, t>0,
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where D(v) and S (v) are positive functions, which represent the diffusion intensity and chemoattractant
intensity, respectively. Here, f(v) is the logistic term to characterize the proliferation and death of
cells. With regard to system (1.4), the existing results imply that there would be colorful dynamic
behaviors by taking different forms of D(v), S (v), and f(v). Forr = 1, let D(v) = 1 and S (v) = v, and if
f(v) < a—bv* with a, b > 0, Winkler [9] obtained the global existence and boundedness of the solutions
in a convex domain. Later on, Cao [10] concluded a similar property when removing the convexity
of the domain. Moreover, the convergence of the solutions was also developed therein. For 7 = 0, let
D) =1,5(v) = xv, and f(v) < v(a — bv) with a, b, y > 0, Tello and Winkler [11] established global
classical solvability of the system provided that the parameters satisfy * 2y < b. For T = 1, assume
that D(v) and S (v) are some nonlinear functions of v. Previous results indlcate that global boundedness
or blow-up can be determined by the value of 5M) For instance, Winkler [12] showed that if the ratio

D()*
f)g; grows faster than v> as v — oo, there will be finite-time or infinite-time blow-up solutions to the

system. Tao and Winkler [13] further revealed that such condition is optimal, which means that if z((V;
grows slower than v?, the solution would be globally bounded in a classical sense. In addition, some
other interesting models related to (1.4), such as chemotaxis-Stokes (see [14]), chemotaxis models with
density-suppressed motility (see [15]), and reaction-diffusion equation with a forcing term (see [16]),
have been explored and many colorful dynamical behaviors can be found therein.

The Keller-Segel system can be viewed as an attraction-only or repulsion-only chemotaxis system
with one kind of signal substance produced by cell. In the real environment, the cell population
may simultaneously secrete multiple chemical signals, including attractants and repellents, which will
affect the directional movement of cell population. Thus, the more complex chemotaxis (also called

attraction-repulsion system [17]) system in the following is considered:
Vi =Av—xV - -(WVw) +EV- (W) + f(v), x€Q, t>0,
0 =Aw; —{w; + 1, xeQ, t>0, (1.5)
0=Awy — 0wy, + o, xeQ, t>0,

where y, &,n,, 0,0 > 0. Similar to Keller-Segel model, there are also colourful dynamic behaviors in
system (1.5) and its variants. For instance, when f(v) < v(o — tv) with g,¢ > 0, for any nonnegative
vo(x) € Co(ﬁ), Zhang and Li [18] proved the global classical solvability if the parameters satisfy one
of the three conditions: (a) ny — o¢é < t; or (b) n < 2; or (c)”n;z(n)( — 0¢) < with n > 3. For general
logistic term f(v) < v(o — vv¥), if the second and the third equations were taken with the forms of
0 = Aw; —nqw; + OV* and 0 = Aw, — ow, + @V, respectively, with o,1,k,1, s > 0, Hong et al. [19]
proved the global solvability of the system (1.5) under the condition that k < max{/, s, %} in the classical
sense. Moreover, when k = max{/, s} > %, the same properties can be also obtained if the parameters
satisfy one of the three conditions (a) k = [ = s, k”_z(n)( gé) <uor(b)k=1>s,n—0é&<0;
or(c) k=5 > 1% 277)( < t. Based on [19] , Zhou et al. [20] further showed that the boundedness
results still hold under the corresponding critical cases (a) k = [ = s, &= 2(17)( &) = (; or (b)
k=1>sny—0&=0,nk(nk-2)<4,0<k=101<1withn > 2;0r(c)k— s>l ko 27])(—L The long
time behavior of solutions was also studied therein. In addition, some interesting Varlants of system (1.5)
involving nonlinear indirect mechanism of signals can be found in [21,22].

Inspired by the contributions mentioned above, the present paper aims to further explore the global
classical solvability and the long time behavior of the system (1.1) under the corresponding critical
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cases in [1]. More precisely, we state our conclusions as follows.

Theorem 1.1. Let vy € CO(Q) be nonnegative. Suppose that Q is a bounded smooth domain of R*(n > 1),
and parameters m,1,0 € R, a, x, &, a,B,7,90,v1, Y2 > 0,k > 1. Assume that 0 + y; = max{l + y,, «} >
m + % + 1 withm > —%, n > 3. If one of the following conditions holds, then the system (1.1) has a
global and bounded classical solution

_ _ [(xk=1-m)n=2]Qaxy—y&) _ 2ax[(k=1-mn-2] _ 4.
(a) when9+y1 —l+’)/2 =K, lfQZlZ 1 and =D+ l—mm =b,orl>0> landm = b;

2ax[(k=1-m)n-2] _ b

(b) When0+’)/1:K>l+)/2,l:](‘021al’ldm—

The main idea to prove Theorem 1.1 comes from [23]. Such idea enables us to deal with a generalized
attraction-repulsion system under some critical parameter cases, which is different from the method
developed in [19] to handle the sub-critical parameter cases (see Lemma 3.3 in [1]). In a sense, the
boundedness criteria in the present work can also be regarded as an extension of [20]. Due to considering
the influence of diffusion functions ¢, ¢, and ¥, the techniques used in this paper are more generalized
than that in [20, 23] (for instance, please see the definition of A(p) in (3.3) and Lemmas 3.4-3.6), which
are more complicated involving a large amount of calculations.

Remark 1.2. Here, it should be pointed out that the critical parameter conditions in Theorem 1.1 only
correspond to the cases where the equality signs hold in the boundedness conditions in [1], which may
be not the borderline cases distinguishing the boundedness and blow-up of solutions. However, it seems
that we may use the same methods as in this paper to explore the borderline cases for boundedness if
we could get them.

Furthermore, a conclusion on the long time behavior of the classical solutions to the system (1.1) has
been developed.

Theorem 1.3. Assume that the conditions in Theorem 1.1 hold. If the parameter b > 0 is sufficiently
large, then there exists C > 0 such that

a Y -1
v = cllz=@) + llwi — ECVIHL“’(Q) + [[wp — SCYZHLW(Q) < Ce™,

forall t >0, where ¢ = (;—j)ﬁ and A = min{ce, &, &3, &4} > 0 with

- 2 %e? - - 2,84 -
g =4- [4 D2 2o 4 O2+D 2087 2y, 1],

and
=t [%(R popn? 4 PR Ry c)272_2] ,
and
s=429-¢ [A‘XT;"Z@‘” 2+ %(R + C)zyz—z] ,
as well as

gg=2-% [%(R +o) 24 #41—7%272—2] ,
for R > 0and A, A, > 0 as given in (4.1) and (4.2), respectively.
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We shall utilize the method developed in [24-26] to prove Theorem 1.3. Compared with [26], our
system is more generalized, involving nonlinear diffusion functions and nonlinear signal production
mechanisms with general exponents yy,y, > 0, so we have to modify the corresponding method [26,
Theorem 3.3] to overcome the difficulties arising from these items (please see Lemma 4.2). Moreover,
in Theorem 1.3 we also extend the asymptotic behavior result established in [20, Theorem 1.2].

The remaining parts of this paper are carried out as follows. In Section 2, we first show a conclusion
involving the local existence of classical solutions and then give a priori estimates of the solutions. In
Section 3, we obtain L”—boundedness for v and prove Theorem 1.1 by using Moser iteration. Finally,
we give the stability analysis of solutions to system (1.1).

2. Preliminaries

To begin with, we give a lemma involving local solvability of the system. The proof is quite standard,
and it can be derived from [27].

Lemma 2.1. Let Q be a bounded domain of R"(n > 1) with smooth boundary and nonnegative initial
data vy € C%Q). Then, there exis_ts Thax € (0, 00] suc@ that the system (1.1) admits a nonnegative
classical solution (v, wy, ws) € CU(Q X [0, Tmax)) N CZHQ X (0, Tax)) it Q X (0, Trnax) With

vwi,wa >0 in QX (0, T 2.1
Additionally,
if Tomax < ©0, then limsup|v(-, )|l =) = 0. (2.2)
[/Tmax

In order to obtain the proof of the boundedness of fQ(v + 1)7, the following conclusion is useful. The
proof is similar to [1, Lemma 2.3].

Lemma 2.2. (¢f. [1, Lemma 2.3]) Assume that (v, wi, wy) is a solution of system (1.1). For arbitrary

7> 1andn > 0, we have
fwg < nfv”’ + ¢o, 2.3)
0 Q

where ¢y > 0 depends only on t,n, and y,, and 7y, is as in system (1.1). Moreover, we have the estimate

f vSmax{ f vo,(g)“l‘ |Q|} forall 1 € (0, Tyay). 2.4)
Q Q

3. Global existence and boundedness

In this section, we shall first study the L”—boundedness of v under conditions (a) and (b) in Theorem 1.1.

Lemma 3.1. For any p > 1, if the conditions in Theorem 1.1 hold, then we can find C > 0 such that the
following inequality holds:
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Ld f(V+ 1)”+f(v+ 1)”+—4(P_ D flV(v+ e
pdt ) (p+

<2a)((p - 1) vp+9+71—1 fé(p f( 1)p+l 1 §(p - 1) p+l+y2—1
T p+O0-1 Jgo p+l—1 p+l—1
+ (a+ 1)f(v + 1) — bfv“"‘l +C, t€ (0, Thx). 3.1
Q Q

Proof. The proof process is similar to [1, Lemma 3.1], and here we omit it.

At the beginning, we study the first case of condition (a) in Theorem1.1: Namely, the parameters
satisfy 0 +y; =[+y, =k >m+ 2+ 1, and [(Kzzz T;Z(KZ]?‘Z‘)J@ =bwithg>1>1,m>-2andn > 3.
Then, one can get from (3.1) that

d Ap-1
_EL(V+1)I7+L(V+1)F+(I7+—)2

Qaxy —yO(p-1) siy-1, 96— 1) sl
D+i—1 b]fg"p ’ p+l—1f( +y

+(@+1) f(v +1)?+C, te 0, Thax)- (3.2)
Q

Note that b > 0, and thus the the equation [(K;(ll__’?))f(_f_]gz_"rf);m = b means 2ay — y€ > 0. The following

lemma is helpful to prove the L”—boundedness of v for any p > 1.

Lemma 3.2. Assume that the parameters in system (1.1) satisfy a,b,a, B, x,&,7,0,¥1,v2 > 0,k > 1,
and m,0,l € R. Let n > 3 and p > 1. Under the first case of condition (a) in Theorem 1.1, we define

~1- 2ay - ~1
py = KZLmmn gy = GO (3.3)
2 pri—1
Then, one may obtain
h(p) <0ifl <p<pi, h(p)>0ifp> p, and lim h(p) = 0. (3.4)
pP—=p1

. _ [k=1-mn-2]Q2ax—y&)
Proof. Since b = D> We deduce

Caxy -yOp -1 [«k-1-mn-2]Qay - ys)

hp) = -1 20—+ (k=1—-mn
| p-1 k—1-mmn-2 ~
Spe T 2D+ - T | CH TS 3-5)

Thus, the result (3.4) can be directly concluded from (3.5).

Lemma 3.3. Letn > 3 and 1 < p < p; with p, defined in (3.3). Under the first case of condition (a) in
Theorem 1.1, there exists C(p) > 0 such that

f(v + 1)’ < C(p), te (0, Thnax). (3.6)
Q
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Proof. From Lemma 3.2, it is easy to see that A(p) < O for any 1 < p < p;. Thus, we can obtain

from (3.2) that
1df(v+1)p+f(v+1)p+ f|V(+l)
dt

o(p—-1 f
< p+o+y1— 1 1 p+i- 1
_h(p)fgv p+l—1 v+1)

+ (a + l)f(v + 1)+ C, te (0, T 3.7
Q
Since 6 + y; = [ + 7y, , we conclude from Young’s inequality and Lemma 2.2 that
pto+y1-1
octp 1) f v+ )Py, < = f v+ D=ty ¢y f o
p+l—-1
pro+y—
(v + Pl cy f ”
Q
< = f(v + 1)p+6+y|— + — f vp+9+71—1 + C’w
- 2 Ja 2 Ja
< f W+ 1Pl C) e (0, Tax)s (3.8)
Q
with any ¢ > 0 and some C > 0. Choosing ¥ = —}% in (3.8), it is easy to get from (3.7) that
1 d 4 - 1 p+m
——f(v+1)P+f(v+1)P+Mf|V(v+1) e
hp) f( + 1PNl 4 (@ + l)f(v+ P + ¢,
3.9)

<(a+ 1)f(v+ D? + ¢y, te (0, Tha),
Q

with ¢, = C + € > 0. Invoking the Gagliardo-Nirenberg inequality and (2.4), one may choose ¢, c3 > 0

such that

| p+m

(a+ 1)f(v + 1) =(a+ D|(v+ 1)
L7 ()
(1=b1)

<olV(v + 1)7IIZ§Z"Q> v+ 1)7IIZ+'" -
pFm

p+m 2p
+ollv+ D™,
L7 (Q)

< IV(v + DT ||;;;"Q; + 3, 1€ (0, Tina), (3.10)

- by < 2 can be also ensured

m+p _ p+m
where by = w27 € (0, 1) due to m > —2. Moreover, the inequality —Z- -

2 n 2
by m + % > 0. From Young’s inequality, we obtain that
—_— p+mb 2( ) prm
eIV +1)7 ”LZ(Q)I <0 p+ )2f|V(V+ D77 +ca, (3.11)

Volume 32, Issue 3, 2180-2202.
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with some ¢4 > 0. We substitute (3.11) into (3.9) to get

d
- f(v + 1)’ + f(v +1)Y <ci+c3+cs, tE€ (0, Tha). (3.12)
pdt Jo Q
With an application of the ODE comparison, we can deduce the desired results of Lemma 3.3, where
C(p) = max{c; +c3 + c4,fg(v0 +1)7}

Lemma 3.4. For n > 3, under the first case of condition (a) in Theorem 1.1, there exists C(p) > 0
such that

f(v + 1)? < C(p) forallt e (0, Tm.) with p = p1, p; defined in (3.3). (3.13)
Q

(k— 1 —m)n

Proof. For p = p| = and 6 + v, = [+ y,, we set € > 0 sufficiently small to satisfy

ne(l+vy, =D (p+0+y,—-1-¢)<2(p—)@+y,—1-¢&)p; — ?). (3.14)
Adding np(l + v, — 1)(p + 6 +y; — 1 — &) to both sides of (3.14), we see that
npll+y, - D(p+0+y,—1-¢e)+ne(l+y,-1)(p+0+y,—1-¢)
<npl+y=Dp+0+yi—1-e)+2p-e)@+y - 1-&)p - %), (3.15)
which implies
npl+y =D(p+0+y1-1-¢)
<np-el+y-Dp+0+y-1-8+2p-2e)(p - %)(9+71 —-1-2). (3.16)

It is sufficient to obtain h(p) = O for p = p;. By recalling (3.7), we can obtain

1d L)
;d—tfg(v+1)p+L(v+1)” o+ )2f|V( +1) |

< mf(v+1)p+l_1w2+(a+1)f(v+1)p+C, 1 € (0, Trax)- (3.17)
p+l—1 Q le)

The Gagliardo-Nirenberg inequality enables us to find ¢s > 0 such that

2(p+6+y-1-¢)

O+y1—-1- BT e
f v+ PO =
Q

L p+m (Q)

2(p+O+y—1- s). ) pem 2(p+3+y1_1_8)-(1—b2)
p+m . 5 p+m
<osllVv+ 1) ”Lz(Q) v+ 1) = 21
L ptm (Q)
pm 2(p+o+y—1-¢)
- +m
tosllv+ D=l T, s 1€ (0, Tona), (3.18)
L™ P77 (Q)
ptm__ p+m
_2Ap=) Aprbeyy-l-e) n(p+m)[(p+6+y1—-1-&)— (p1 =1 . .
where b, = " = e e e 2~ B (=B € (0, 1). By a simple computation,
1=

we get

2p+0+y, —1-¢) b 2n(p+O+yi-1-g)—n(pi-F)]
p+m 2T n(prm) £ 2p - ) —n(p - =
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due to p; = &lmn 1 " defined in (3.3). The Lemma 3.3 implies that the term [|(v + 1) | JECE. is
(Q)
bounded for p = p; — % < p;. Thus, there exists ¢s > 0 such that
f 0+ PN < V0 + D) R + o 1€ (0, T (3.19)
Q

Based on (3.17) and Young’s inequality, it is easy to see

ldif(v+1)f’+f(v+1)P+4(p—_12f|V(v+1)”5'"|2

pHo+y—
< —zf(v+1)p+9+7‘ l8+c7f o +(a+1)f(v+l)p+C, (3.20)
(m + p)*ce Q Q

where -
_o(p-D)(p+O+y—1-¢\ "' 0+y —1l-¢
C7_p+l—1( 0&(p + m)3ce ) 'p+9+yl—1—s>0'
po+y|—1-¢
Next we deal with the term c¢; fQ w, "7 Multiplying the third equation of system (1.1) with
W;””ﬁ i

it is not difficult to get from Young’s inequality that

4p@+y —1-¢) f i eI ;il is f sl
(p+6’+71—1—8)2 Q W2
=y f VyzW;“h

Q

_ P pto+y|—l-¢
< (5(P 21) f(v + 1)p+€+y|—l—s + cg fwgwl = p+oty|—T-&-7;
(m + p) C6C7 Q Q

(p+0+ 1-¢)
( 6-(i_p _)2 f( + 1)p+9+')’| 1- 8+C9f (5:;] ]ylf)(l’ —£) +C](), (321)
m =+ p)=CeCr Q

with cg, c9,c190 > 0. An application of the Gagliardo-Nirenberg inequality implies that there exists

c11 > 0 such that
p(p+O+y—1-¢) pro+y—l-¢ 2p
@y 1—1-9(p=8) _||,,,20+y1—1-8) || p-¢
f W =[hwy |
Q

2p
LH(Q)
p+o+y|—l-¢ p+o+y|—l-e 2
<c ||VW2(9+71 1€)||[7 = b3 . || 2(6+y1— 1£)| s = (1=b3)
11 L2(Q) 26+y)-1-6)(p| -
L (p+o+y—1-e)(l+y—-1) (Q)

pto+y -l-¢  2)p
26+y1-1-¢) || p—&

Fenlw, ™ TN e 10, Ty, (3.22)

L(p+9+y] —1=&)(l+yp-1) (Q)

(pto+y1—1-e)(l+y—-1) _p-¢

_ 26+y1-1-e)(p1 - %) 2

where b3 = G0y 1o, -D 1
2(0+y-1-e)p1— "2—5 n

I\)

- € (0, 1) for £ > 0 small enough. Let { = 8+y;—1. Since p = p;

(K ] —m)n

and (3.16),
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one may obtain

2p
p—S

- by

2[np(l+ 7y, = D(p +{ = &) —n({ = &)(p1 = F)(p — €]

T ap—o)l+y—D(p+i-6) + 2 —&)p-e)pr - %) —n —e)p—e)p1 — =

< 2.

(3.23)

By applying a classical L”—estimate for the second derivatives of the elliptic equation (see [28,

Theorems 9 and 11]) and Lemma 3.3, we can find ¢, ¢;3 > 0 large enough such that

pHo+y|—l-¢

+04y —1-5
” WGy, -T-2) Np+bty o)

| 200010001~ S cpllv P sy -1y -2 < Cp3.
L (p+O+y —1-8)l+y,—-1) Q) L (p+0+y —1-8)(I+yp—-1) (9}

Combining (3.22)—(3.24), for any €; > 0 one may choose ¢4 = c14(€;) > 0 such that
p(p+é+y;—1-¢) pto+y1—l-¢ ]}js'bz
(B+y1—1-¢)(p—¢) 2(0+y1—1-. s)
fwz " <C3(f|V " ) +C13
Q
pro+y—l-¢
<€ f |V 2 F)| + Cy4.

Let g = @i’ﬁ;?—il—:;g. Then, a combination of (3.21) and (3.25) leads to

pro+y|—l-¢ p _ 1
fW29+71—1—8 < L N2 f(v + 1)174-(-“—)/1_1_‘8 +Ci5, TE (0’ Tmax),
Q (p +m)*cecr Jo

with some c5 > 0. From (3.19) and (3.26), we write the inequality (3.20) as follows:

4p-1) S
pdtf(v+1)p f(v+1)p+(p+m)2L|V(v+l) |

< 2p=b f(v+1)p+9+71_1_8+(a+ 1)f(v+ 1 +ci6
Q Q

(p + m)*ce
c 2p-D

< . (c6f|V(v+1)”5'"|2+c6)+(a+1)f(v+1)P+c16,
(p +m)ce Q o)

with c;¢ > 0. Therefore, we can find c¢;7 > 0 such that

lditfg(v+1)!’+fg(v+l)Ps—(2;1:_—_”11)3[9|V(v+1)”§”’|2+(a+1)fg(v+l)p+c”.

In view of the Gagliardo-Nirenberg inequality and (2.4), we get

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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2p

p+m S
(a+1)f(V+1)”=(a+1)II(V+1) 1",
Q L7 (Q))
< V 1 p+m b 1 %(l_b“)
sV + DFIEG" e+ D

+ellv+ 1) ||W;
Lp+m(Q)
== +m bs
< eV +1)" ||£2(Q) +c19, 1€ (0, Tmax)s (3.29)

m+p _ p+m

2

2t € (0,1)dueto p = p; = w . Since m > —=, we know

with some c¢;g, c19 > 0, where by =
2 n 2
that = - b4 < 2. Thus, by Young’s inequality, there exists ¢,y > 0 such that

pim 2L 2(
ellVo+ DFIRG < 5 tfw<+nz|+qO

(3.30)

Collecting (3.30) and (3.28), we gain that
d
—— f(v +1)7 + f(v + 1) < ¢y, 1€ (0, Thax)s
dt Jo Q

with some ¢;; > 0. Hence, the proof of Lemma 3.4 is complete
Lemma 3.5. Letn > 3 and p; < p < p1 + 0 with p, defined in (3.3) and o > 0 small enough. Under

the first case of condition (a) in Theorem 1.1, one may find C = C(p) > 0 satisfying

f(v + 1) <C, 1€ (0, Trna)-
Q

Proof. Recalling Lemma 3.2, it is clear to get that h(p) > O if p > p;. Moreover, Lemma 3.4 implies
that ||(v + 1|z @) < 2 with some ¢, > 0. Taking ¢ = @ in (3.8) and substituting this into (3.7),

(3.31)

we deduce
ljtf(” 1P + fg(v+ 1)P+?p(’1—_ml)2fg|wv+ DFP
—h(p) fg(v + P 4 @+ 1) fg(v + 1) +c23, 1€ (0, Trnax)s (3.32)
with some ¢,3 > 0. By Young’s inequality, it is not difficult to check that
(3.33)

h
(a+ 1)f(v +1)P < % f(v + PO 4 eon 1€ (0, Tanax)s
Q Q

with some ¢,4 > 0. Thus, we have

Volume 32, Issue 3, 2180-2202.
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Ld 4p - 1) g
pd f(v+1)” j;(v+1)”+(p+m)2fg;|V(v+l) |

< 2h(P) f(v + 1)p+9+71—1 + 05, T E (O’ Tmax)’
Q

(3.34)
where ¢y5 = ¢23 + ¢o4 > 0. By the Gagliardo-Nirenberg inequality, there exists ¢y > 0 such that
y g g1neq y
p | pm 2(p+6+y1 =1
2h(p) [+ 0P =20+ DF L
Q p+m (Q)
2(p+6+y1-1) 2(p+o+y| -
pm m p +m '(1_b5)
< h(p) - el VO + 1D 20 5 o) v+ D ”
Lptm (Q)
2(p+6+y =1
+h(p) - cxll(v+ 1) | o
Lp+m (Q)
pem ZPUTIZD s (p+6+y1-1)(1-bs)
< h(p) - cllVv + 1) 2 ”Lz(é)m N6+ DI @) ’
+0+
+h(p) - cxsllv + DI
(p+6+y1-1)-(1-bs) pem AZOIZD, p+9+y 1
Sh(p)-cax-cyy Ve + DLy T+ h(p) - cas -yt (3.35)
p+m p+m
. 2p]  2ptbry-D n(p+m)(p+6+y;—1-pi) fee _ (k=1-m)n -
where bs S g S i [P ST € (0, 1). By the definition of p; = *—— in (3.3)
we directly compute that

2p+0+y1 - 1)
p+m

b _2p+O0+y1 - 1) n(p+m)p+60+y —1-p)
 bs = .

p+m (p+60+y—Dl(p+mn+2p —np]
_ 2[np + n(@ + 7y, — 1) —np,]

np+nm+2p; —np;
2[np +n(@ +y; — 1) - L=

- n]

=2. (3.36)
np+nm+ (k-1 —m)n—w-n
Combining (3.35) with (3.36), we get
p+o+yi-1 (p+6+y1—-1)(1-bs) LALliY)
2h(p) f(v +1) < h(p) - ¢ - 5, flV(v + 1) 7 |* + ¢y, (3.37)
Q Q

where ¢y = h(p) - ¢26 - €5, 771 Due to lim,,_,,, h(p) = O for any o > 0O sufficiently small satisfying
p1 <p<p+o,weget

- 40p -1
h(p) - ca6 (p+0+y1=1)(1=bs) _ (p )

) 3.38
) = (p+m)? (3.38)
Furthermore, collecting (3.37), (3.38), and (3.34), we deduce

——f(v+ 1)”+f(v+ 1)? < cpg forall p e (pr,pr+0l, t €0, Tha),
pdt Jo Q

where cy3 = ¢35 + ¢7 > 0. Hence, we finish the proof of Lemma 3.5
Electronic Research Archive
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Lemma 3.6. Letn > 3 and p; + 0 < p < +oo with p; defined in (3.3). Under the first case of condition
(a) in Theorem 1.1, there exists C = C(p) > 0 such that

f(V+1)"SC, t € (0, Trmax),
Q

where o > 0 is given in Lemma 3.5

(3.39)
Proof. Thanks to Lemma 3.5, there exists c;9 > 0 such that

IV + Dller) < c29 forall £ € (0, Trnax)s
with p = p; + 0 and o > 0 small enough. In view of (3.34), we have

f(v+1)p f(v+1)p

f Vo + DR < Zh(p)f(v + 17 4 og,  (3.40)
for all p > p with some c3p > 0. Applying the boundedness of |[v(-, 1)||z7q), it can be seen from the
Gagliardo-Nirenberg inequality that

2(p+0+y1—1)
2h(p) f W+ P 2y + 1)

” 2(::9’;14)
L p+m (Q)
<h(p) - exllVr + DT i+ Do -na-ro)
= mp)- s 12(Q) LP(Q)
X p+O+y;—1
+h(p) - exillv + DI
0 1)(1 b) 2(p+0+y1 -1
<h(p) - exr - T4 1) | o
+0+y1—1
+ h(p) - c31 ‘ng 7
m 2(p+6+y1— l)'b6
+m
< C32||V(V + 1) ||L2(;;) + C32, (3-41)
with some c3; = c31(p) > 0, where
0+y1-1)(1-b, O+y;—1
€3 = max {h(P) © €31 C(;;Jr DU ) - sy by },
and
ptm _ __ ptm _
by = 22 2ot _ n(p+m)(p+60+y —1-p)
67T Tpm 1 _ 1 T
2p n 2
Moreover, we have

0,1).
p+0+m—-Dinp+m+2p—np) - D
2p+0+yi-1)

p+m

_2pt0+yi—1)  nptmp+6+y—1-p)
p+m

(p+60+y—Dln(p+m)+2p—np]
2[np+n(9+y1—1) M-n—nO']

<2, (3.42)
np+n(k—1)— w n+20 —no

(el omn 1 " defined in (3.3) and k = 6 +7y,. Thus, in light of Young’s inequality, there exists

2h(p)f(V+ Hp+n- ls fIV( + D) P+ 33, 1€ (0, Tn)-
o) ( + )2

dueto p > p; =

¢33 > 0 such that

Electronic Research Archive
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Collecting (3.43) and (3.40), we arrive at

1d
——f(v+1)p+f(v+1)pSC34
pdt Jg Q

for all p € (p, +o0] and 1 € (0, Tyax), With ¢34 = c309 + ¢33 > 0, which implies (3.39). Thus, we conclude
the proof of Lemma 3.6.

In fact, a similar proof process can be applied to the second case of conditions (a) and (b) in
Theorem 1.1 to obtain the estimate of ||[v + 1||.»q) for any p > 1. We omit them here.

Based on the above preparation work, it is sufficient to prove Theorem 1.1.
The proof of Theorem 1.1. Suppose that the conditions in Theorem 1.1 hold. Let p > max{1, ny;, ny,}.
Invoking the elliptic L”—estimate, one may get

w1 G, Dllwzrm s [Iw2C Dllwzer, < €, 1 € (0, Tax). (3.44)
Based on the Sobolev embedding theorem, we obtain
”Wl(" t)”cl(ﬁ)’ ”WZ(" t)”cl(ﬁ) < C, te (Oa Tmax)- (345)

From Moser iteration in [13], we can infer the boundedness of ||(v + 1)|| ~q) for all # € (0, Tax)-
Hence, we conclude from Lemma 2.1 that T},,,x = o0. Obviously, (v, w;, w») solves the system (1.1) in
the classical sense in Q X (0, c0).

4. Large time behavior

In the following, we further explore the long time behavior of the classical solutions obtained in
Theorem 1.1. It can be inferred from Theorem 1.1 that there exist constants R > 0 and A;,4, > 0
such that

0<v(x,t) <R, 4.1)
and
v+ D2 < 2y and (v + D2 < 2, (4.2)

hold on Q x [0, ), where R, A, A, are independent of the parameters of the system.

Lemma 4.1. (c¢f. [24, Lemma 3.1.]) Assume that h : (ty, c0) — [0, ) is a uniformly continuous function
satisfying | :" h(f)dt < oo with ty > 0. Then,

h(t) - 0, ast — oo. 4.3)

To begin with, we construct an energy functional as follows:

W(r) = f (v(-, f—c—cn 2L t)),
Q C

(4.4)
with ¢ = (£)71.
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Lemma 4.2. Suppose that the conditions in Theorem 1.1 are true. Then, the following properties hold:

2 2
Ly < 2XC f Ny ) — o) + 25€ f Ny — ) = & f v—c), (4.5)
8 Q 8 Q ¢ Ja

dt
with Ay, A, defined in (4.2) for all t > 0, where

Ni(v) = %24‘-7' 2 if yi €(0,1),
4.6
Ni() = S0+ 2 if yr €[l ), 0
and )
Ny(v) = L4172 e2r2 if y2€(0,1),
) 4.7
N>(v) = %y%(v +0)? ify,€[l,0). 7

Proof. 1t is not difficult to see that v = ¢ is the minimum point of W(z), which means that W(z) > 0. By
direct computation, we arrive at

d d v ¢
EW(;) :Efgv—c—cln(z):jg;(l—;)vz

Vv Vv-V Vv-V
“ [orrEhao [@en TR e [Tt
Q v Q v Q v

+ f (1 = SYav - b, (4.8)
O \%

An application of Young’s inequality enables us to get from (4.2) that

Vv-V VW Ax?
C)(f(v+1)9_1&Sif(v+1)29—2¥+ 1ch|le|2
Q 1%
Wi Aax?
—f(v+1)29’"2 ! Vl + ‘chlvwll2
2 Ja

Vv lxcf 2
<= + 1)" + Vw7, 49
2fg<v e T AL (4.9)

Vv-V \Y% &2
_Cé:f(v+l)l—l v w2 Sif( 1)21 2| Vl Zé:cflVWle
Q 1% 24 2
2 1 2
—f(v+1)21m2 )|z|+2icf|vw2|z
Q

2 2
s—fm G fw (4.10)
2 Ja

and

In addition, we infer that
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f(l ~SYav-b¥) = b f(v — O = e
Q v Q

S—bc"_zj‘(v—c)zg—g f(v—c)z. (4.11)
Q ¢ Ja
Therefore, we conclude from (4.8)—(4.11) that
d Ax? 1,2
Swiy < LS f V2 4+ 222 f Vw,f? - 2 f(v — o2 (4.12)
dt 2 o) 2 O c Jo

From the second equation of system (1.1), employing Young’s inequality, we deduce

LWWHZ = —ﬁfQ(Wl - %Cy')z + afg(m - %cy‘)(v” -

2
S_IBL(WI —%Cy')2+,3fg(w1 —%cy‘)2+j—ﬁfg(v” -y

o? 5
< @ ‘[(VY1 -y (4.13)
Q
By the same process as in (4.13), we can also obtain
¥
f [Vwo|* < v f (V" =) (4.14)
Q Q

In the following, we shall divide the parameters vy, and 7y, into two different cases to obtain the better
estimates of (4.13) and (4.14).
Case (a) vy, v, € (0, 1). Considering that (%,7) € Q X (0, oo) fulfills v(%,7) < £, thus we can obtain

<3
Wi—ch| <|v=cli <27 v —¢l i=1,2. (4.15)
Furthermore, the mean value theorem enables us to find &; € (0, 1) with j = 1,2 satisfying

W= el <y = €+ £ v =l (4.16)

Clearly, (v — &y + £;¢)"! is monotone decreasing with respect to v on [£,00), and v — &y + &c > §
if v > 5. Thus, we deduce from (4.16) that

W = <y 2" ey = . (4.17)

Case (b) yi,y> € [1,00). Thanks to y; € [1,00)(i = 1,2) for &; € (0, 1) with j = 3,4, we deduce that
the function (v — & + £;¢)"" is monotone increasing with respect to v. Employing the mean value
theorem again, one may get

W = T Sy =+ £ v = el S v+ o v —dl. (4.18)

Collecting (4.13)—(4.18), for any y,,y, > 0, we can obtain

2 1
fg Vw,* < Z—ﬁ fg WV =) = 2 fg N(W)(v - ¢)?, (4.19)
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and

2
L [Vw,|* < Z_(s fg (V2 —c7)? = }1 fg N-(W)(v = ¢)?, (4.20)

with N;(v) and N,(v) defined in (4.6) and (4.7), respectively. Substituting (4.19) and (4.20) into (4.12),
we can infer that

2 2
4wy < 2xXe f Ny ) — o) + 25€ f N — ¢ = 2 f v —c). (4.21)
dt 8 Q 8 Q ¢ Jao

Thus, Lemma 4.2 is a direct result by collecting Cases (a) and (b).

Now, it is sufficient to conclude the proof of Theorem 1.3.
The proof of Theorem 1.3. Based on Theorem 1.1, by applying the parabolic and elliptic regularity
(see [28,29]) and the global boundedness of (v, w;, w;), one can find oy € (0, 1) and C > 0 such that

v, +lwill +lwall c. (4.22)

2+crl,l+a-—] oy 2+crl,l+(r—] oy 2+(rl,l+(r—] oy S
2 (QX[t,t+1]) 2 (QX[t,t+1]) 2 (QX[t,t+1])

where ¢ > 1. In the sequent, we divide the proof into four cases.
Case (i) v1,7> € (0, 1). Combining (4.6) and (4.7), we get

2 2
de f N — o) + 22C f No()(v = )2
8 Q 8 Q

S, 2. 2
< dixc Y pln 2m-2 f(v —o) + e, Y glonpan2 f(V —c)
g B o 8 0 Q

2.2 24,2
_ [4—<yl+1> %%aczy._l N 4—(72+1)2/12%C272—‘] f v—c. (4.23)
Q

We substitute (4.23) into (4.5) to have

2.2 2,2
iw(,) <-|%_ (4—(y1+1)2/11X @ oyt g-taen 2428 2l f(v_c)z
dt 7 e B s a
2.2 2,2
__ [bkll a —(4-@1“)—”1; T oonet g qronn KLY cm—l)] f v-cP.  (424)
Q

Recalling ¢ = (%)K—%, we can find by > 0 large enough such that

2.2 2,2
20X oyt gGaen 2428 2y s,

b,(]j . al—Klﬁ _ (4—(71+1)
0

whenever b > by. Thus, by taking

2.2 2,2
g = beig—eT _(4—<y1+1>2/11)( X on- +4—(72+1)2/12§ Y nty,

we have
d 2
—WH)<-& | v-0o). 4.25)
dt I
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Integrating (4.25) from ¢, to co, due to W(¢) > 0 we get

fm f(v—c)z < W)
1 Q & '

In view of Lemma 4.1, we conclude from (4.26) that

lim | (v=¢)*=0.

t—00 Q

In light of the Gagliardo-Nirenberg inequality, we conclude from (4.22) and (4.27) that

n_
n+2

n_ n_
wie@llv = cllsq, S Clv =cllj3g, — 0, ast — co.

v = cll=@) < Conllv = cll 12(Q) 2©)
With an application of L’Hopital’s rule, we conclude

~v—c—-cln? 1
lim —— = —.
v=e (v—1c)? 2¢

Thus, from (4.29) we have

2 [o-rswoss [o-or o
4c Q ¢ Ja

with some 7 > 0. According to (4.25) and (4.30), we can infer that

d
EW(ZL) < —cg W(t), t>T.

Using the Gronwall inequality, we derive
W) < W(T)e ™) > T.

Thus,

1 .
i f v—=2c)? < W@ < W(T)e™ a0 > T,
Q

In accordance with (4.13), we have

L|VW1|2 = —ﬁL(Wl - %Cy' )2 + an(WI - %cy‘)(v” - )

2
B _ ¥y & o2

and thus

2
L(Wl _ %C%)Z < Z_z fg;(vw _ C71)2_

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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According to (4.17), we obtain

_ T 4171 2712f — o)
f(wl My < < g Q(v c)

Analogously, for component w we can obtain

f(wz - %c”)2 41 20272 2~[(v—c)2.
Q

Thus, we can get from (4.31)

f(wl - gcw )2 < a_242—71 CZw—lW(Tl)e—csu(t—Tl)
Q B TP ’
and

2
f (wy — gcﬁ)2 < %42—%272—1W(Tl)e—cs'“—”, t>T.
Q

(4.34)

(4.35)

(4.36)

(4.37)

We apply the Gagliardo-Nirenberg inequality to (4.31), (4.36), and (4.37), respectively, and then

conclude from (4.22) that

Y T
v = el + lwi = E” oy + Iz = 5Pl < Cemmt ™)

for all r > T; with some C > 0.
Case (ii) v1,y2 € [1, +00). Combining (4.6) and (4.7), we gain that

2 2
ek & f N1<v><v—c>2+ﬁzgc f No (v = o)
Q Q

8
1 2 2 1 2 2
Q
1v2a? 2 2
<|2XYN gy g fyyz c(R + )" z]f(v—c)
86 Q

Thus, substituting (4.39) into (4.5), we have

22,2

[a (/l‘)( g (R+ )" + L)

d
—W(@) < - 3 5

dt

2y,-2
s ——=(R+0)” )

f(v - )’
Q

8

. 1 2022 2
<— [bkl N L= R (—IX 4 (R+¢c)"2 + ey 72 ——(R+ C)zyz—z)] f(v — )’
Q

B 0

Thanks to ¢ = (‘;‘)xl*l, we can find by > 0 large enough such that

R+ %+

L1 c(Ax’ey L REYY
8 B 5

— 2R+ c)zn-z) >0,

(4.38)

(4.39)

(4.40)
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whenever b > by. Setting

& =bv g w1 — 2 (R + C)Z% 24 — 2R+ c)272—2 ,

1o C /11)(202)’% _ fzy 7’2
B 10)

we can get
d
d_tW(t) <-& fg;(v - )%
By a similar discussion as in Case (i), we have
1
2 f w=cl <W@E) <W(T)e 2T > 1.
o)

Repeating the processes in (4.32)—(4.35), one may obtain that

f(wl cy') ,3 c(R+c)27' ZW(T))e 52T,
and

4
f (w2 = 57’ < y(;yzc<R+ O W(Tye =T,
Q

for t > T5. In view of (4.22) and (4.28), we conclude from (4.42)—(4.44) that
o _8
IV = ellea + by = 5" ey + Iz = 5 e < Cer T,

for t > T, with some C > 0.
Case (iii) v, € (0, 1),y; € [1, +00). Using (4.1), (4.6), and (4.7), we easily have

2 2
Al’g ¢ fg M(v)(v—c)zﬁzgc f No(W)(v = )’

2.2 2
< [5 2P 1 ane y BEV | o ] f (v— o).
s\ 7 p 5 0

Thus, substituting (4.46) into (4.5), we have

dt B

By the same discussion as in Case (i), we can find by > 0 large enough such that

=~ 2(R+c)r?

2
L [/11)( a? gt LEYHY; >0,

:bﬁ. k=1 — —
&3 a 3 ﬁ

and

1
e f =0 < W@ < W(T)e =T > Ty,
Q

2.2 2
iW(l‘) < _[bkll .al—ﬁ — %(M—agﬂ—?’lc%’l 24 ‘f;/ 7/2 (R + 6)272—2)] f(v _ 0)2.
Q

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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with b > by. Similarly, we can obtain

2
f (wy — %071)2 < 2—242-%c271-1W(T1)e-83<f-T1>, (4.50)
Q
and
4 2.2
f (Wy — gcn)2 < y(s—zyzc(R +OPPIW(T)e ST, > T 4.51)
Q

Hence, from (4.22) and (4.28), we can derive

a Y -3 -T
v = cllze@) + llwi = EC”HUO(Q) + [[wy — SCVZHL‘”(Q) < Ce w21, (4.52)

fort > T, with C > 0.
Case (iv) y; € [1, ), ¥, € (0, 1). We can compute

d
SWO <& f v—c), (4.53)
t Q
gy = b1 - q' " — 3 [TI(R +0) 4 27)/41‘7%272‘2 > 0,

due to b > 0 large enough. Using similar processes as in Case (iii), we can conclude the proof for this
case. Therefore, based on the above analysis, we finish the proof of Theorem 1.3.

5. Conclusions and outlook

In this paper, we continued to study the model established in [1] and further showed that the results
on global existence and boundedness of the classical solutions still hold under the corresponding critical
cases. Moreover, we have also explored the long time behavior of the classical solution. In fact, it should
be pointed out that the critical cases mentioned here are be not the borderline cases distinguishing the
boundedness and blow-up of solutions. Naturally, there leaves an interesting problem that how can we
get the genuinely critical conditions in the sense of separating ranges of distinct solution behavior. We
will consider this problem in future work.
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