This paper investigates the time-consistent robust optimal reinsurance problem for the insurer and reinsurer under weighted objective criteria. The joint objective criterion is obtained by weighting the mean-variance objectives of both the insurer and reinsurer. Specifically, we assume that the net claim process is approximated by a diffusion model, and the insurer can purchase proportional reinsurance from the reinsurer. The insurer adopts the loss-dependent premium principle considering historical claims, while the reinsurance contract still uses the expected premium principle due to information asymmetry. Both the insurer and reinsurer can invest in risk-free assets and risky assets, where the risky asset price is described by the constant elasticity of variance model. Additionally, the ambiguity-averse insurer and ambiguity-averse reinsurer worry about the uncertainty of parameter estimation in the model, therefore, we obtain a robust optimization objective through the robust control method. By solving the corresponding extended Hamilton-Jacobi-Bellman equation, we derive the time-consistent robust equilibrium reinsurance and investment strategy and corresponding value function. Finally, we examined the impact of various parameters on the robust equilibrium strategy through numerical examples.
Citation: Yiming Su, Haiyan Liu, Mi Chen. Robust equilibrium reinsurance and investment strategy for the insurer and reinsurer under weighted mean-variance criterion[J]. Electronic Research Archive, 2023, 31(10): 6384-6411. doi: 10.3934/era.2023323
This paper investigates the time-consistent robust optimal reinsurance problem for the insurer and reinsurer under weighted objective criteria. The joint objective criterion is obtained by weighting the mean-variance objectives of both the insurer and reinsurer. Specifically, we assume that the net claim process is approximated by a diffusion model, and the insurer can purchase proportional reinsurance from the reinsurer. The insurer adopts the loss-dependent premium principle considering historical claims, while the reinsurance contract still uses the expected premium principle due to information asymmetry. Both the insurer and reinsurer can invest in risk-free assets and risky assets, where the risky asset price is described by the constant elasticity of variance model. Additionally, the ambiguity-averse insurer and ambiguity-averse reinsurer worry about the uncertainty of parameter estimation in the model, therefore, we obtain a robust optimization objective through the robust control method. By solving the corresponding extended Hamilton-Jacobi-Bellman equation, we derive the time-consistent robust equilibrium reinsurance and investment strategy and corresponding value function. Finally, we examined the impact of various parameters on the robust equilibrium strategy through numerical examples.
[1] | S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937-958. https://doi.org/10.1287/moor.20.4.937 doi: 10.1287/moor.20.4.937 |
[2] | S. D. Promislow, V. R. Young, Minimizing the probability of ruin when claims follow brownian motion with drift, North Am. Actuarial J., 9 (2005), 110-128. https://doi.org/10.1080/10920277.2005.10596214 doi: 10.1080/10920277.2005.10596214 |
[3] | X. Liang, V. R. Young, Minimizing the probability of ruin: Two riskless assets with transaction costs and proportional reinsurance, Stat. Probab. Lett., 140 (2018), 167-175. https://doi.org/10.1016/j.spl.2018.05.005 doi: 10.1016/j.spl.2018.05.005 |
[4] | H. Yang, L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insur. Math. Econ., 37 (2005), 615-634. https://doi.org/10.1016/j.insmatheco.2005.06.009 doi: 10.1016/j.insmatheco.2005.06.009 |
[5] | L. Bai, J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insur. Math. Econ., 42 (2008), 968-975. https://doi.org/10.1016/j.insmatheco.2007.11.002 doi: 10.1016/j.insmatheco.2007.11.002 |
[6] | Z. Liang, K. C. Yuen, J. Guo, Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process, Insur. Math. Econ., 49 (2011), 207-215. https://doi.org/10.1016/j.insmatheco.2011.04.005 doi: 10.1016/j.insmatheco.2011.04.005 |
[7] | A. Gu, F. G. Viens, B. Yi, Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity, Insur. Math. Econ., 72 (2017), 235-249. https://doi.org/10.1016/j.insmatheco.2016.11.007 doi: 10.1016/j.insmatheco.2016.11.007 |
[8] | C. Fu, A. Lari-Lavassani, X. Li, Dynamic mean-variance portfolio selection with borrowing constraint, Eur. J. Oper. Res., 200 (2010), 312-319. https://doi.org/10.1016/j.ejor.2009.01.005 doi: 10.1016/j.ejor.2009.01.005 |
[9] | Y. Shen, Y. Zeng, Optimal investment-reinsurance strategy for mean-variance insurers with square-root factor process, Insur. Math. Econ., 62 (2015), 118-137. https://doi.org/10.1016/j.insmatheco.2015.03.009 doi: 10.1016/j.insmatheco.2015.03.009 |
[10] | Y. Zeng, D. Li, A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insur. Math. Econ., 66 (2016), 138-152. https://doi.org/10.1016/j.insmatheco.2015.10.012 doi: 10.1016/j.insmatheco.2015.10.012 |
[11] | Z. Sun, K. C. Yuen, J. Guo, A BSDE approach to a class of dependent risk model of mean-variance insurers with stochastic volatility and no-short selling, J. Comput. Appl. Math., 366 (2020), 112413. https://doi.org/10.1016/j.cam.2019.112413 doi: 10.1016/j.cam.2019.112413 |
[12] | H. Fung, G. C. Lai, G. A. Patterson, R. C. Witt, Underwriting cycles in property and liability insurance: an empirical analysis of industry and by-line data, J. Risk. Insur., 65 (1998), 539-561. https://doi.org/10.2307/253802 doi: 10.2307/253802 |
[13] | G. Niehaus, A.Terry, Evidence on the time series properties of insurance premiums and causes of the underwriting cycle: new support for the capital market imperfection hypothesis, J. Risk. Insur., 60 (1993), 466-479. https://doi.org/10.2307/253038 doi: 10.2307/253038 |
[14] | N. Barberis, R.Greenwood, L. Jin, A. Shleifer, X-CAPM: An extrapolative capital asset pricing model, J. Financ. Econ., 115 (2015), 1-24. https://doi.org/10.1016/j.jfineco.2014.08.007 doi: 10.1016/j.jfineco.2014.08.007 |
[15] | S. Chen, D. Hu, H. Wang, Optimal reinsurance problems with extrapolative claim expectation, Optim. Control Appl. Methods, 39 (2018), 78-94. https://doi.org/10.1002/oca.2335 doi: 10.1002/oca.2335 |
[16] | D. Hu, H. Wang, Optimal proportional reinsurance with a loss-dependent premium principle, Scand. Actuarial J., 2019 (2019), 752-767. https://doi.org/10.1080/03461238.2019.1604426 doi: 10.1080/03461238.2019.1604426 |
[17] | Z. Chen, P. Yang, Robust optimal reinsurance-investment strategy with price jumps and correlated claims, Insur. Math. Econ., 92 (2020), 27-46. https://doi.org/10.1016/j.insmatheco.2020.03.001 doi: 10.1016/j.insmatheco.2020.03.001 |
[18] | E. W. Anderson, L. P. Hansen, T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, J. Eur. Econ. Assoc., 1 (2003), 68-123. https://doi.org/10.1162/154247603322256774 doi: 10.1162/154247603322256774 |
[19] | P. J. Maenhout, Robust portfolio rules and asset pricing, Rev. Financ. Stud., 17 (2004), 951-983. https://doi.org/10.1093/rfs/hhh003 doi: 10.1093/rfs/hhh003 |
[20] | X. Zhang, T. K. Siu, Optimal investment and reinsurance of an insurer with model uncertainty, Insur. Math. Econ., 45 (2009), 81-88. https://doi.org/10.1016/j.insmatheco.2009.04.001 doi: 10.1016/j.insmatheco.2009.04.001 |
[21] | B. Yi, Z. Li, F. G. Viens, Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insur. Math. Econ., 53 (2013), 601-614. https://doi.org/10.1016/j.insmatheco.2013.08.011 doi: 10.1016/j.insmatheco.2013.08.011 |
[22] | B. Yi, F. Viens, Z. Li, Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scand. Actuarial J., 2015 (2015), 725-751. https://doi.org/10.1080/03461238.2014.883085 doi: 10.1080/03461238.2014.883085 |
[23] | X. Zheng, J. Zhou, Z. Sun, Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insur. Math. Econ., 67 (2016), 77-87. https://doi.org/10.1016/j.insmatheco.2015.12.008 doi: 10.1016/j.insmatheco.2015.12.008 |
[24] | D. Li, Y. Zeng, H. Yang, Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps, Scand. Actuarial J., 2018 (2018), 145-171. https://doi.org/10.1080/03461238.2017.1309679 doi: 10.1080/03461238.2017.1309679 |
[25] | A. Gu, F. G. Viens, Y. Shen, Optimal excess-of-loss reinsurance contract with ambiguity aversion in the principal-agent model, Scand. Actuarial J., 2020 (2020), 342-375. https://doi.org/10.1080/03461238.2019.1669218 doi: 10.1080/03461238.2019.1669218 |
[26] | N. Wang, N. Zhang, Z. Jin, L. Qian, Reinsurance-investment game between two mean-variance insurers under model uncertainty, J. Comput. Appl. Math., 382 (2021), 113095. https://doi.org/10.1016/j.cam.2020.113095 doi: 10.1016/j.cam.2020.113095 |
[27] | V. Asimit, T. J. Boonen, Insurance with multiple insurers: A game-theoretic approach, Eur. J. Oper. Res., 267 (2018), 778-790. https://doi.org/10.1016/j.ejor.2017.12.026 doi: 10.1016/j.ejor.2017.12.026 |
[28] | T. J. Boonen, W. Jiang, Mean-variance insurance design with counterparty risk and incentive compatibility, ASTIN Bull., 52 (2022), 645-667. https://doi.org/10.1017/asb.2021.36 doi: 10.1017/asb.2021.36 |
[29] | S. C. Zhuang, T. J. Boonen, K. S. Tan, Z. Q. Xu, Optimal insurance in the presence of reinsurance, Scand. Actuarial J., 2017 (2017), 535-554. https://doi.org/10.1080/03461238.2016.1184710 doi: 10.1080/03461238.2016.1184710 |
[30] | L. Chen, Y. Shen, Stochastic Stackelberg differential reinsurance games under time-inconsistent mean-variance framework, Insur. Math. Econ., 88 (2019), 120-137. https://doi.org/10.1016/j.insmatheco.2019.06.006 doi: 10.1016/j.insmatheco.2019.06.006 |
[31] | Y. Yuan, Z. Liang, X. Han, Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game, Scand. Actuarial J., 2022 (2022), 328-355. https://doi.org/10.1080/03461238.2021.1971756 doi: 10.1080/03461238.2021.1971756 |
[32] | X. Zhao, M. Li, Q. Si, Optimal investment-reinsurance strategy with derivatives trading under the joint interests of an insurer and a reinsurer, Electron. Res. Arch., 30 (2022), 4619-4634. https://doi.org/10.3934/era.2022234 doi: 10.3934/era.2022234 |
[33] | G. Guan, X. Hu, Equilibrium mean-variance reinsurance and investment strategies for a general insurance company under smooth ambiguity, North Am. J. Econ. Finance, 63 (2022), 101793. https://doi.org/10.1016/j.najef.2022.101793 doi: 10.1016/j.najef.2022.101793 |
[34] | P. Yang, Robust optimal reinsurance strategy with correlated claims and competition, AIMS Math., 8 (2023), 15689-15711. https://doi.org/10.3934/math.2023801 doi: 10.3934/math.2023801 |
[35] | Y. Huang, Y. Ouyang, L. Tang, J. Zhou, Robust optimal investment and reinsurance problem for the product of the insurer's and the reinsurer's utilities, J. Comput. Appl. Math., 344 (2018), 532-552. https://doi.org/10.1016/j.cam.2018.05.060 doi: 10.1016/j.cam.2018.05.060 |
[36] | Q. Zhang, Robust optimal proportional reinsurance and investment strategy for an insurer and a reinsurer with delay and jumps, J. Ind. Manage. Optim., 19 (2023), 8207-8244. https://doi.org/10.3934/jimo.2023036 doi: 10.3934/jimo.2023036 |
[37] | L. Chen, X. Hu, M. Chen, Optimal investment and reinsurance for the insurer and reinsurer with the joint exponential utility under the CEV model, AIMS Math., 8 (2023), 15383-15410. https://doi.org/10.3934/math.2023786 doi: 10.3934/math.2023786 |
[38] | D. Li, X. Rong, H. Zhao, Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142-162. https://doi.org/10.1016/j.cam.2015.01.038 doi: 10.1016/j.cam.2015.01.038 |
[39] | D. Li, X. Rong, Y. Wang, H. Zhao, Equilibrium excess-of-loss reinsurance and investment strategies for an insurer and a reinsurer, Commun. Stat. Theory Methods, 51 (2022), 7496-7527. https://doi.org/10.1080/03610926.2021.1873379 doi: 10.1080/03610926.2021.1873379 |
[40] | A. Y. Golubin, Pareto-optimal insurance policies in the models with a premium based on the actuarial value, J. Risk Insur., 73 (2006), 469-487. https://doi.org/10.1111/j.1539-6975.2006.00184.x doi: 10.1111/j.1539-6975.2006.00184.x |
[41] | T. Björk, A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems, 2010. Available from: http://www.ssrn.com/abstract = 1694759. |
[42] | T. Björk, M. Khapko, A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stochastics, 21 (2017), 331-360. https://doi.org/10.1007/s00780-017-0327-5 doi: 10.1007/s00780-017-0327-5 |
[43] | E. M. Kryger, M. Steffensen, Some solvable portfolio problems with quadratic and collective objectives, 2010. Available from: http://www.ssrn.com/abstract = 1577265. |