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Abstract: This paper investigates the time-consistent robust optimal reinsurance problem for the
insurer and reinsurer under weighted objective criteria. The joint objective criterion is obtained by
weighting the mean-variance objectives of both the insurer and reinsurer. Specifically, we assume that
the net claim process is approximated by a diffusion model, and the insurer can purchase proportional
reinsurance from the reinsurer. The insurer adopts the loss-dependent premium principle considering
historical claims, while the reinsurance contract still uses the expected premium principle due to
information asymmetry. Both the insurer and reinsurer can invest in risk-free assets and risky assets,
where the risky asset price is described by the constant elasticity of variance model. Additionally,
the ambiguity-averse insurer and ambiguity-averse reinsurer worry about the uncertainty of parameter
estimation in the model, therefore, we obtain a robust optimization objective through the robust
control method. By solving the corresponding extended Hamilton-Jacobi-Bellman equation, we derive
the time-consistent robust equilibrium reinsurance and investment strategy and corresponding value
function. Finally, we examined the impact of various parameters on the robust equilibrium strategy
through numerical examples.

Keywords: the insurer and reinsurer; loss-dependent premium principle; constant elasticity of
variance model; weighted mean-variance criterion; ambiguity aversion

1. Introduction

Optimization problems play an important role in actuarial science, and the optimal
reinsurance-investment strategies of insurers have been popular topics in financial research in recent
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years. Reinsurance and investment are critical tools for insurers to diversify risks and increase returns.
The primary challenge for insurers is to attain optimal goals through controlling their reinsurance and
investment strategies. This problem has been broadly studied with various criteria, such as
minimizing the bankruptcy probability (see [1–3]), maximizing the expected utility of terminal wealth
(see [4–7]), and the mean-variance optimization (see [8–11]).

In most studies, insurance premiums are typically determined based on future losses and charged
using mean (variance) premium principles. However, in practice, current premiums are associated
with historical losses. Fung et al. [12] and Niehaus and Terry [13] conducted empirical research to
explore the dynamic relationship between premiums and losses. Barberis et al. [14] introduced the
extrapolation bias to study a consumption-based asset pricing model. Inspired by extrapolation bias,
Chen et al. [15] proposed an extrapolation claim model in which future premiums are determined by
both historical and future claims and studied the optimal reinsurance strategy under this model. Hu
and Wang [16] further introduced the loss-dependent premium principle and investigated how it affects
the insurer’s reinsurance strategy. Chen and Yang [17] extended the consideration of reinsurance and
investment problems with correlated claims to the robust framework.

In traditional investment-reinsurance models, the ambiguity-neutral insurers (ANI) trust the
accuracy of parameter estimation in the model. However, in practice, it is hard to accurately estimate
parameters in insurance and financial markets, resulting in so-called model uncertainty. In recent
years, model uncertainty has been widely employed in optimal risk control. The main method for
solving model uncertainty is the robust control method proposed by Anderson et al. [18], where they
studied continuous-time asset pricing models under this method and used the difference between the
reference model and the true model as a penalty term to reflect investors’ attitudes towards model
uncertainty. Maenhout [19] studied optimization problems in intertemporal consumption through
dynamic programming and derived closed-form expressions for the optimal strategy under
“homothetic robustness”. These studies greatly inspired research on model uncertainty in actuarial
science. Zhang and Siu [20] utilized game theory to study the investment and reinsurance problem
under model uncertainty conditions. Yi et al. [21] investigated the optimal reinsurance-investment
strategies when the risk asset price process is described by the Heston model. Yi et al. [22] extended
the robust optimal investment-reinsurance problem to the mean-variance framework. Zheng et al. [23]
explored the robust optimal strategies under the constant elasticity of variance (CEV) model and
terminal utility function. Li et al. [24] considered the problem of optimal excess-of-loss reinsurance
and investment under a jump model. Gu et al. [25] explored the optimal excess-of-loss reinsurance
contract with fuzzy aversion. Wang et al. [26] studied the robust equilibrium reinsurance-investment
strategies of two insurance companies with ambiguity aversion in a robust game framework.

Before (re)insurance contracts are signed, negotiations take place among the participants.
Therefore, (re)insurance contracts that consider the interests of multiple parties are more practical and
more likely to be accepted. Recently, there have been several studies considering the multiple-party
interests. Asimit and Boonen [27], Boonen and Jiang [28] and Zhuang et al. [29] explored
(re)insurance contracts that considered multiple-party interests in a one-period (static) model.
Moreover, there have been corresponding studies in a continuous-time (dynamic) framework. For
instance, Chen and Shen [30] and Yuan et al. [31] considered the interests of both parties within a
Stackelberg game framework when reinsurance contracts are signed. Apart from game-theoretic
studies, there are two types of approaches that consider joint interests in a continuous-time
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framework. One approach combines the wealth processes of both parties to form a common wealth
process to consider their interests. For instance, Zhao et al. [32] and Guan and Hu [33] considered the
maximization of exponential utility criteria and mean-variance criteria, respectively, by weighting the
wealth processes of the insurer and reinsurer. Yang [34] quantified the competition between the
insurer and the reinsurer by representing their interests through relative wealth processes. Another
approach integrates the objective criteria of both parties, which becomes more complex during the
solution process due to the retention of the wealth processes of both parties. Huang et al. [35],
Zhang [36] and Chen et al. [37] multiplied the objective criteria of the insurer and reinsurer to
considered the optimal strategy under the maximization of the product of exponential utilities. On the
other hand, Li et al. [38] and Li et al. [39] formed a common objective criterion by weighting the
mean-variance criteria of the insurer and reinsurer, where the weight α represents the outcome of
negotiations and serves to balance the interests of both parties.

Although there have been numerous studies integrating the aforementioned ways of linking the
interests of both parties with robustness, there is still no research on considering the mean-variance
weighted criteria of both sides within a robust framework. This paper primarily focuses on this aspect.
Specifically, the insurer adopts the loss-dependent premium principle by combining a weighted
average of past claim indices and the expectation of future claims, which is an extension of the
traditional expected premium principle. Due to the fact that the reinsurer may not have access to
historical claims information, the reinsurance contract adopts the expected premium principle. In
addition, both the insurer and reinsurer invest their surplus in the financial market, where the risky
asset is described by the CEV model. We address the issue of parameter estimation uncertainty in the
model using robust control methods and derive the extended Hamilton-Jacobi-Bellman (HJB)
equation within a robust framework. Finally, by utilizing stochastic control theory, closed-form
expressions for the robust equilibrium strategy and the corresponding value function can be obtained.
Furthermore, we also consider several special cases of the model and analyze the impact of model
parameters on the strategies through numerical simulations. Different from Yang [34], we incorporate
the interests of both the insurer and reinsurer by weighting their respective objective criteria. The
reinsurer’s involvement in decision-making is enhanced, and we consider the CEV risk model in the
investment market. Furthermore, unlike Li et al. [38] and Li et al. [39], we take into account the
impact of historical claims from the perspective of the insurer. We derive robust insurance investment
strategies within a robust framework, and the numerical analysis reveals different effects of
parameters on the strategies.

This paper is structured as follows: In Section 2, we introduce our model from three perspectives.
In Section 3, we present a robust optimization problem considering model uncertainty and derive the
explicit solutions for the robust equilibrium strategies and the corresponding value function under
the mean-variance weighted sum criterion. In Section 4, we illustrate our results through numerical
simulations. Section 5 summarizes this paper. The proofs of the theorems are provided in the appendix.

2. Model setting and assumptions

In this paper, we suppose that all investments and assets are infinitely divisible and all assets are
tradable continuously over time, without considering transaction costs or taxes. Let

(
Ω,F , {Ft}t∈[0,T ],P

)
be a complete, filtered probability space satisfying the usual conditions, where the information flow
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{Ft}t∈[0,T ] is generated by independent random processes and includes all market information available
before time t. Here, T > 0 is a fixed, finite time horizon.

2.1. Surplus process

We assume that the surplus process of the insurer satisfies the following classical risk model,

dR(t) = cdt − d
N(t)∑
i=1

Zi,

where c is the premium rate, N(t) is a homogeneous Poission process with intensity λ > 0, {Zi, i ≥ 1} is
a sequence of positive independent and identically distributed random variables and independent of
N(t), and they have a common distribution function of F(z) with finite first and second moments,
where FZ(z) = 0 for z ≤ 0 and 0 < FZ(z) ≤ 1 for z > 0. The process L(t) can be approximated by a
diffusion model

L(t) ≈ µdt − σ0W0(t),

where µ = λE(Z), σ2
0 = λE(Z2) and W0(t) is a standard Brownian motion on (Ω,F ,P).

The traditional premium principle is based on future losses, but in reality, premiums are also
related to historical claims. For instance, when renewing the insurance contracts, insurance
companies will take into account the claims that have occurred in the recent past. Inspired by
Barberis et al. [14], we assume that the insurer is an extrapolator who believes that if claims have
recently increased (decreased), they will continue to show an increasing (decreasing) trend in the near
future. Then, we introduce the loss-dependent premium principle proposed by Hu and Wang [16],
which is constructed by a stochastic volatility model. Firstly, we define the exponential weighted
average of historical losses as follows:

v(t) = β
∫ t

0
e−β(t−s)dL(s − dt), 0 < β < 1, (2.1)

where dL(s − dt) means the total claims that occurred during the time interval [s − dt, s], and the
constant parameter β represents the strength of extrapolation. When β is relatively large, v(t) is
primarily determined by recent losses. The differential form of v(t) is

dv(t) = β(µ − v(t))dt − βσ0dW0(t). (2.2)

It should be noted that the total weight of past losses, given by β
∫ t

0
e−β(t−s)ds = 1− e−β(t), is less than 1.

Therefore, we assign a time-varying weight of e−β(t) to the expected future loss. Subsequently, the
premium charged by the insurer per unit of time based on the loss-dependent premium principle is
as follows:

C = (1 + n1)
[
v(t) + e−βtµ

]
,

here n1 represents the safety loading of the insurer. When β = 0, this premium principle can degenerate
to the traditional expected value premium principle.
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2.2. Reinsurance and investment

In general, insurers transfer their potential claim risks by purchasing reinsurance and investing in
financial markets. We suppose that the insurer chooses to purchase proportional reinsurance in this
paper, and the retention level of the insurer is q(t) ∈ [0, 1]. Since the reinsurer may not have access to
the insurer’s historical claim information, assuming that the reinsurance contract follows the expected
premium principle, the insurer should pay the reinsurer a reinsurance premium of (1+ n2)(1− q(t))µ at
time t. To exclude the insurer’s arbitrage behavior, we require n2 > n1. Therefore, the surplus process
in the presence of the reinsurance of the insurer and reinsurer are respectively given by

dR1(t) =
[
(1 + n1)(v(t) + e−βtµ)

]
dt −
[
(1 + n2)(1 − q(t))µ

]
dt − q(t)

[
µdt − σ0dW0(t)

]
,

and

dR2(t) = (1 + n2)(1 − q(t))µdt − (1 − q(t))
[
µdt − σ0dW0(t)

]
.

In addition, both the insurer and reinsurer are allowed to invest their surplus in a financial market which
consists of two kinds of asset: risk-free asset and risky asset. The price process of the risk-free asset is
given by

dB(t) = rB(t)dt, B(0) = 1,

where r > 0 is the risk-free interest rate. The price of the risky assets available for the insurer and
reinsurer to invest in are described by the CEV model:

dS 1(t) = S 1(t)
[
b1dt + σ1S δ11 (t)dW1(t)

]
, S 1(0) = s11, (2.3)

dS 2(t) = S 2(t)
[
b2dt + σ2S δ22 (t)dW2(t)

]
, S 2(0) = s21, (2.4)

where b1 > 0, b2 > 0 are expected instantaneous rates of return of the risky assets. Without any loss
of generality, we assume that b1 > r, b2 > r, σ1S δ11 (t), σ2S δ22 (t) are instantaneous volatilities, δ1, δ2

are elasticity parameters that satisfy the general condition δ1 ≥ 0, δ2 ≥ 0, W1(t) and W2(t) are standard
Brownian motions defined on the complete probability space (Ω,F ,P), and they are independent of
W0(t), i.e., E[W0(t)W1(t)] = 0 and E[W0(t)W2(t)] = 0.

Remark 2.1. We denote E[W1(t)W2(t)] = ρt, ρ ∈ (−1, 1]. When W1(t) and W2(t) are dependent and
W1(t) , W2(t) (i.e., 0 < |ρ| < 1), it is difficult to obtain explicit solutions for the optimal strategies.
Therefore, this paper provides analytical results only for the cases of ρ = 0 and ρ = 1. For the case of
ρ = 1, which corresponds to both parties investing in the same risky asset S 1(t), the solution process
is similar to the case of ρ = 0 but simpler. The analytical results for the case of ρ = 1 are discussed in
Remark 3.4. In the following discussion, we will focus on the case of ρ = 0.

2.3. Wealth process

Let π1(t) denote the amount invested by the insurer in the risky asset S 1(t), and π2(t) denote the
amount invested by the reinsurer in the risky asset S 2(t) at time t. Assume that
u(t) := (π1(t), π2(t), q(t))t∈[0,T ] represents the decision variables of both the insurer and reinsurer at
time t, then, the wealth processes of the insurer and reinsurer are respectively described by

dX(t) =[rX(t) + (b1 − r)π1(t) + (1 + n1)(e−βtµ + v) − (1 + n2)µ + q(t)n2µ]dt
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+ q(t)σ0dW0(t) + π1(t)σ1S δ11 (t)dW1(t), (2.5)

and

dY(t) = [rY(t) + (b2 − r)π2(t) + n2(1 − q(t))µ]dt + (1 − q(t))σ0dW0(t) + π2(t)σ2S δ22 (t)dW2(t), (2.6)

with the initial conditions X(0) = x0 and Y(0) = y0.
Similar to Chen and Yang [17] and Huang et al. [35], we provide the following definition of

admissible strategies:

Definition 1. A strategy u(t) := (π1(t), π2(t), q(t))t∈[0,T ] is called a admissible strategy if it satisfies

(i) π1(t), π2(t) and q(t) are progressively measurable, and π1(t), π2(t) ∈ [0,+∞), q(t) ∈ [0, 1] for any
t ∈ [0,T ];

(ii) E
[∫ T

0
∥u(t)∥2dt

]
< ∞, where ∥u(t)∥2 = q2(t) + π2

1(t) + π2
2(t);

(iii) ∀(t, x, y, v, s1, s2) ∈ [0,T )×R2×R+×R2, the equations (2.5) and (2.6) have unique strong solutions
{Xu(t)}t∈[0,T ] and {Yu(t)}t∈[0,T ] respectively, with Et,x,y,v,s1,s2[U(Xu(T ))] < ∞, Et,x,y,v,s1,s2[U(Yu(T ))] <
∞.

LetU denote the set of all admissible strategies.

3. Optimization problem

When signing a reinsurance contract, negotiation between both parties is required. The optimal
strategy for one party often conflicts with the interests of the other party, therefore, contracts that
maximize the common interests of both parties are more likely to be accepted. In this paper, we adopt
the mean-variance weighted objective criterion used in Li et al. [38] and Li et al. [39]. This objective
criterion considers the optimization problem from the perspectives of both insurers and reinsurers,
where both parties aim to maximize the expected terminal wealth and minimize the variance of terminal
wealth. The specific form is as follows

sup
u∈U

Ju(t, x, y, v, s1, s2) := sup
u∈U

{
αJu

x(t, x, y, v, s1, s2) + (1 − α)Ju
y (t, x, y, v, s1, s2)

}
, (3.1)

where

Ju
x(t, x, y, v, s1, s2) = Et,x,y,v,s1,s2[X

u(T )] −
γ1

2
Vart,x,y,v,s1,s2[X

u(T )],

Ju
y (t, x, y, v, s1, s2) = Et,x,y,v,s1,s2[Y

u(T )] −
γ2

2
Vart,x,y,v,s1,s2[Y

u(T )].

The weighting parameter α (0 ≤ α ≤ 1) plays a role in balancing the interests of the insurer and
reinsurer. The specific value of α can be determined by the insurer and reinsurer through relative
weighting of their respective ultimate objectives. In reality, some large financial companies not only
own insurance companies but also reinsurers, and these large financial companies may make
reinsurance and investment decisions for both. In addition, Golubin [40] discusses methods for
determining the value of α. One approach is to rely on exogenous methods provided by experts based
on empirical research. Another method is based on cooperative game theory. For further discussion
on the determination of α, refer to Golubin [40] and the references therein.
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3.1. Optimization problems with model ambiguity

In the given framework, the ambiguity-neutral insurer (ANI) and the ambiguity-neutral reinsurer
(ANR) do not doubt the accuracy of the probability distribution P and its parameter estimation.
However, in theory, the parameter model used contains significant uncertainties. These uncertainties
mainly come from two aspects, it is difficult for investors to accurately estimate the expected return
process of risky assets, and there may also be errors in estimating the drift parameters. On the other
hand, there may also be uncertainties in the parameter estimation of the surplus process for
the insurer.

To consider the uncertainty of the model, we adopt a systematic and quantitative approach by
referring to the methods proposed by Anderson et al. [18]. Therefore, we consider alternative models
to obtain robust optimal strategies by broadly defining a class of probability measures Q that are
equivalent to the probability measure P. Let these alternative probability measures belong to set Q,
which is defined by

Q := {Q | Q ∼ P}.

Next, we introduce a process {θ(t) = (θ0(t), θ1(t), θ2(t)) | t ∈ [0,T ]} satisfying

1) θ(t) is progressively measurable;

2) E
[
exp
(

1
2

∫ T

0
∥θ(t)∥2dt

)]
< ∞, where ∥θ(t)∥2 = θ20(t) + θ21(t) + θ22(t).

We denote the space of all such processes as Θ. For each θ ∈ Θ, we define a new probability
measure Q that is absolutely continuous with respect to P on FT and satisfies

dQ
dP

∣∣∣∣∣
Ft

:= exp
{
−

∫ t

0
θ(u)dW(u) −

1
2

∫ t

0
∥θ(u)∥2du

}
,

where W(t) = (W0(t),W1(t),W2(t))′ is a standard three-dimensional Brownian motion. Therefore, by
choosing different processes θ ∈ Θ, different probability measures for the diffusion part of the wealth
process are obtained. According to the Girsanov’s theorem, the Brownian motion under Q ∈ Q can be
defined as dWQ(t) = dWP(t) + θ(t)dt, i.e.,

dWQ
0 (t) = dW0(t) + θ0(t)dt, dWQ

1 (t) = dW1(t) + θ1(t)dt, dWQ
2 (t) = dW2(t) + θ2(t)dt.

It can be observed that the main difference between the alternative model and the reference model lies
in the drift term. Moreover, since the Brownian motion W0,W1,W2 are mutually independent, they
remain independent even after the measure transformation.

Under the probability measure Q, the Eqs (2.5) and (2.6) can be respectively rewritten as follows:

dXu(t) = [rXu + (b1 − r)π1(t) + (1 + n1)(e−βtµ + v) − (1 + n2)µ + q(t)n2µ

− q(t)σ0θ0 − π1(t)σ1θ1S δ11 (t)]dt + q(t)σ0dWQ
0 (t) + π1(t)σ1S δ11 (t)dWQ

1 (t), (3.2)

dYu(t) = [rYu + (b2 − r)π2(t) + n2µ(1 − q(t)) − σ0θ0(1 − q(t)) − π2(t)σ2θ2S δ22 (t)]dt

+ (1 − q(t))σ0dWQ
0 (t) + π2(t)σ2S δ22 (t)dWQ

2 (t). (3.3)

The Eqs (2.3) and (2.4) become

dS 1(t) = S 1(t)
[
(b1 − σ1θ1S δ11 (t))dt + σ1S δ11 (t)dWQ

1 (t)
]
, (3.4)
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dS 2(t) = S 2(t)
[
(b2 − σ2θ2S δ22 (t))dt + σ2S δ22 (t)dWQ

2 (t)
]
. (3.5)

Correspondingly, the differential of historical loss information v in Eq (2.2) becomes

dv(t) = β(µ − v(t) + σ0θ0)dt − βσ0dWQ
0 (t). (3.6)

The value functions in Eq (3.1) ignore the uncertainty of the model, but the ambiguity-averse
insurer (AAI) and ambiguity-averse reinsurer (AAR) are skeptical about the accuracy of the reference
model P, and they choose Q as a probability measure for the alternative model from Q. Actually, the
ambiguity-averse policy maker wants to find the worst alternative from the available alternatives to
deal with the mean-variance optimization problem. Inspired by Maenhout [19], Yi et al. [21] and
Yuan et al. [31], we modify the objective functions of the AAI and AAR as robust optimization
problems formulated by the following equations:

JQ,ux = EQt,x,y,v,s1,s2
[Xt,x,y,v,s1,s2(T )] −

γ1

2
VarQt,x,y,v,s1,s2

[Xt,x,y,v,s1,s2(T )] + EQ[hx(Q∥P)],

JQ,uy = EQt,x,y,v,s1,s2
[Yt,x,y,v,s1,s2(T )] −

γ2

2
VarQt,x,y,v,s1,s2

[Yt,x,y,v,s1,s2(T )] + EQ[hy(Q∥P)],

where h(Q∥P) is a penalty function that measures the relative entropy between Q and P, and also
reflects the decision maker’s confidence in the reference model P. Correspondingly, the weighted sum
objective criterion considering model aversion is described by

sup
u∈U

inf
Q∈Q

JQ,u(t, x, y, v, s1, s2) = sup
u∈U

inf
Q∈Q

{
αJQ,ux (t, x, y, v, s1, s2) + (1 − α)JQ,uy (t, x, y, v, s1, s2)

}
. (3.7)

A smaller penalty term indicates that the decision maker has less trust in the reference model, and
the deviation between the worst-case substitute model and the reference model will be greater. When
h(Q∥P) = 0, the penalty term disappears and the decision maker has no information about the true
model, and all the alternative models are on the equal footing. When h(Q∥P) → ∞, the ambiguity-
averse decision maker strongly believes that the reference model P is the true model, and any substitute
model that deviates from P will be punished infinitely. It should be emphasized that the penalty term
depends on the relative entropy generated by diffusion risk. The increase in relative entropy from t to
t + dt is equal to 1

2 [θ20(t) + θ21(t)]dt in the insurance model, while it is equal to 1
2 [θ20(t) + θ22(t)]dt in the

reinsurance model.
We consider the penalty function of the following form used in Huang et al. [35] and

Wang et al. [26],

hx(Q∥P) =
∫ T

t
Ψx(s, Xu(s), v(s), θ(s))ds,

hy(Q∥P) =
∫ T

t
Ψy(s,Yu(s), v(s), θ(s))ds,

where

Ψx (s, Xu(s), v(s), θ(s)) =
θ20(s)

2ϕ0 (s, Xu(s), v(s))
+

θ21(s)
2ϕ1 (s, Xu(s), v(s))

,
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Ψy (s,Yu(s), v(s), θ(s)) =
θ20(s)

2ϕ0 (s,Yu(s), v(s))
+

θ22(s)
2ϕ2 (s,Yu(s), v(s))

.

The advantage of this penalty function is that it makes the robustness of the model not dependent on
wealth variables X and Y . Based on the approaches of Zeng et al. [10] and Wang et al. [26], we
assume that

ϕ0(t, Xu(t), v(t)) = ϕ0(t,Yu(t), v(t)) = m0, ϕ1(t, Xu(t), v(t)) = m1, ϕ2(t,Yu(t), v(t)) = m2,

where mi ≥ 0, i = 0, 1, 2, represents the ambiguity-aversion coefficient describing the decision maker’s
attitude towards diffusion risk. Specifically, we interpret m0 as the degree of ambiguity aversion in
the claim process, and m1,m2 as the degree of ambiguity-aversion in the investment market. When
mi = 0, the policy maker’s attitude towards diffusion risk is ambiguity-neutral. It is worth noting
that the optimization problem in Eq (3.7) is time-inconsistent, thus the Bellman optimality principle
is invalidated. We use game-theoretic methods from Björk and Murgoci [41] and Björk et al. [42] to
solve it and derive the time-consistent equilibrium strategy.

Definition 2. For an admissible strategy u∗(t) = {(π1(t), π2(t), q(t))}t∈[0,T ] with any fixed initial
state (t, x, y, v, s1, s2) ∈ [0,T ] × R × R × R+ × R+ × R+, we define the following strategy

uε(λ) =

 ũ, t ≤ λ < t + ε,

u∗(λ), t + ε ≤ λ < T,
(3.8)

where ũ = (π̃1, π̃2, q̃) , and ε ∈ R+. If ∀ ũ = (π̃1, π̃2, q̃) ∈ R × R × R, we have

lim
ε→0

inf
Ju∗(t, x, y, v, s1, s2) − Juε(t, x, y, v, s1, s2)

ε
≥ 0,

then u∗ is called an equilibrium strategy, and the equilibrium value function is Ju∗(t, x, y, v, s1, s2).

3.2. Robust equilibrium reinsurance investment strategy

For any φ (t, x, y, v, s1, s2) ∈ C1,2,2,2,2,2 ([0,T ] × R × R × R+ × R+ × R+), we denote

Auφ(t, x, y, v, s1, s2)

=φt + [rx + (b1 − r)π1 + (1 + n1)(e−βtµ + v) − (1 + n2)µ + qn2µ − qσ0θ0 − π1σ1θ1sδ11 ]φx

+ [ry + (b2 − r)π2 + n2(1 − q)µ − (1 − q)σ0θ0 − π2σ2θ2sδ22 ]φy + β(µ − v + σ0θ0)φv

+ (b1 − σ1θ1sδ11 )s1φs1 + (b2 − σ2θ2sδ22 )s2φs2 +
1
2

(q2σ2
0 + π

2
1σ

2
1s2δ1

1 )φxx

+
1
2

[(1 − q)2σ2
0 + π

2
2σ

2
2s2δ2

2 ]φyy +
1
2
β2σ2

0φvv +
1
2
σ2

1s2δ1+2
1 φs1 s1 +

1
2
σ2

2s2δ2+2
2 φs2 s2

+ q(1 − q)σ2
0φxy − qβσ2

0φxv − (1 − q)βσ2
0φyv + π1σ

2
1s2δ1+1

1 φxs1 + π2σ
2
2s2δ2+1

2 φys2 .

Similar to the proof of Theorem 4.1 of Björk and Murgoci [41] and Theorem 1 of Kryger and
Steffensen [43], we have the following verification theorem:
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Theorem 3.1 (Verification Theorem). For problem (3.7), if there exist real value functions
V(t, x, y, v, s1, s2), g1(t, x, y, v, s1, s2) and g2(t, x, y, v, s1, s2) ∈ C1,2,2,2,2,2([0,T ] × R × R × R+ × R+ × R+)
satisfying the following conditions: ∀(t, x, y, v, s1, s2) ∈ [0,T ] × R × R × R+ × R+ × R+,

sup
u∈U

inf
Q∈Q

{
AuV(t, x, y, v, s1, s2) − αAuγ1

2
(g1(t, x, y, v, s1s2))2

+ αγ1g1(t, x, y, v, s1, s2)Aug1(t, x, y, v, s1, s2) − (1 − α)Auγ2

2
(g2(t, x, y, v, s1s2))2

+ (1 − α)γ2g2(t, x, y, v, s1, s2)Aug2(t, x, y, v, s1, s2)

+α(
θ20

2m0
+
θ21

2m1
) + (1 − α)(

θ20
2m0
+
θ22

2m2
)
}
= 0,

V(T, x, y, v, s1, s2) = αx + (1 − α)y,
(3.9)

Au∗g1(t, x, y, v, s1s2) = 0, g1(T, x, y, v, s1s2) = x, (3.10)

Au∗g2(t, x, y, v, s1s2) = 0, g2(T, x, y, v, s1s2) = y, (3.11)

and

u∗ := arg sup
u∈U

inf
Q∈Q
{AuV(t, x, y, v, s1, s2) − αAuγ1

2
(g1(t, x, y, v, s1s2))2

+ αγ1g1(t, x, y, v, s1, s2)Aug1(t, x, y, v, s1, s2) − (1 − α)Auγ2

2
(g2(t, x, y, v, s1s2))2

+ (1 − α)γ2g2(t, x, y, v, s1, s2)Aug2(t, x, y, v, s1, s2)

+ α(
θ20

2m0
+
θ21

2m1
) + (1 − α)(

θ20
2m0
+
θ22

2m2
)}, (3.12)

then Ju∗(t, x, y, v, s1, s2) = V(t, x, y, v, s1, s2), Et,x,y,v,s1,s2[X
u∗(T )] = g1(t, x, y, v, s1, s2),

Et,x,y,v,s1,s2[Y
u∗(T )] = g2(t, x, y, v, s1, s2) and u∗ is a time-consistent robust strategy.

After giving the verification theorem, we now present the main results in Theorem 3.2.

Theorem 3.2 (Time-consistent robust equilibrium strategy). Let

L1(t) = αγ1βB3(t) + (1 − α)γ2er(T−t) + m0(2α − 1)
[

n2µ

σ2
0m0
+ βαB3(t) − (1 − α)er(T−t)

]
,

L2(t) = ασ2
2[γ1 + m0(2α − 1)][er(T−t) − βB3(t)] − n2µ(2α − 1).

For the robust optimization problem (3.7), the robust equilibrium strategies and the corresponding
equilibrium value function are given by

q∗1(t) =


0, L1(t) ≤ 0,
q̃1(t), L1(t) > 0 and L2(t) > 0,
1, L1(t) > 0 and L2(t) ≤ 0,

(3.13)
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where

q̃1(t) =
n2µ(2α − 1) + σ2

0

[
(1 − α)γ2er(T−t) + m0(2α − 1)(βA3(t) − (1 − α)er(T−t)) + αγ1βB3(t)

]
σ2

0
[
αγ1 + (1 − α)γ2 + m0(2α − 1)2] er(T−t)

,

and

π∗1(t) =
(b1 − r) + 2δ1σ

2
1(γ1B4(t) + m1

α
A4(t))

σ2
1s2δ1

1 (γ1 + m1)er(T−t)
, (3.14)

π∗2(t) =
(b2 − r) + 2δ2σ

2
2(γ2C5(t) + m2

1−αA5(t))

σ2
2s2δ2

2 (γ2 + m2)er(T−t)
, (3.15)

V(t, x, y, v, s1, s2) = αer(T−t)x + (1 − α)er(T−t)y +
α(1 + n1)

r + β
(er(T−t) − e−β(T−t))v

+ A4(t)s−2δ1
1 + A5(t)s−2δ2

2 + A6(t), (3.16)

where A4(t), B4(t), A5(t),C5(t) and A6(t) are given by Eqs (A.37), (A.36), (A.42), (A.41) and (A.43),
respectively.

Proof. See Appendix A.

Remark 3.1. If β = 0, the loss-dependent premium degenerates to the traditional expected value
premium principle, then the robust equilibrium reinsurance strategy under expected value premium is

q∗2(t) =
n2µ(2α − 1) + σ2

0(1 − α)
[
γ2 − m0(2α − 1)

]
er(T−t)

σ2
0
[
αγ1 + (1 − α)γ2 + m0(2α − 1)2] er(T−t)

.

The robust equilibrium investment strategies under expected value premium are the same as Eqs (3.14)
and (3.15). Since we assumed no correlation between the insurance market and financial market at the
outset, the investment strategy is independent of the insurance market parameters.

Remark 3.2. If mi = 0, i = 0, 1, 2, i.e., without considering robustness, the equilibrium optimal
reinsurance strategy under loss-dependent premium is

q∗3(t) =
n2µ(2α − 1) + σ2

0

[
αγ1βB3 + (1 − α)γ2er(T−t)

]
σ2

0
[
αγ1 + (1 − α)γ2

]
er(T−t)

.

The equilibrium optimal investment strategies under loss-dependent premium are

π̂1(t) =
b1 − r

γ1σ
2
1s2δ1

1 er(T−t)

[
1 +

b1 − r
r

(1 − e2rδ1(t−T ))
]
,

π̂2(t) =
b2 − r

γ2σ
2
2s2δ2

2 er(T−t)

[
1 +

b2 − r
r

(1 − e2rδ2(t−T ))
]
,

which are the same as the investment strategies in Li et al. [38].

Remark 3.3. If β = 0 and mi = 0, i = 0, 1, 2, i.e., without using loss-dependent premium and without
considering robustness, the result in Theorem 3.2 reduces to that in Li et al. [38].

Electronic Research Archive Volume 31, Issue 10, 6384–6411.



6395

Remark 3.4. When ρ = 1 (i.e.,W1(t) = W2(t))), the robust equilibrium reinsurance strategy is the same
as Eq (3.13), and the robust equilibrium investment strategy and the corresponding value function are
given by the following expressions,

π1(t) =
γ2

(1−α)m1+γ2
(b1 − r) + 2δ1σ

2
1

[
γ1B4(t) + γ2

(1−α)m1+γ2
(m1A4(t) − (1 − α)m1C4(t))

]
σ2

1s2δ1
1

[
γ1 +

αγ2
(1−α)m1+γ2

m1

]
er(T−t)

,

π2(t) =
γ1

αm1+γ1
(b1 − r) + 2δ1σ

2
1

[
γ2C4(t) + γ1

αm1+γ1
(m1A4(t) − αm1B4(t))

]
σ2

1s2δ1
1

[
γ2 +

(1−α)γ1
αm1+γ1

m1

]
er(T−t)

,

V (t, x, y, s1) = αer(T−t)x + (1 − α)er(T−t)y + A3(t)v + A4(t)s−2δ1
1 + A5(t).

The process of solving for A3(t), A4(t), B4(t),C4(t) and A5(t) are similar to that in Appendix A. We omit
the detailed derivation here.

4. Numerical analysis

In this section, we present some numerical analysis to study the influencing factors of the robust
equilibrium reinsurance-investment strategy and explain the results for better understanding in the
economic sense. Unless otherwise specified, the basic parameters are shown in Table 1.

Table 1. Some basic parameters.

Common parameters r µ σ0 α β m0 t T
0.03 0.5 1.5 0.6 0.12 0.8 0 10

Insurer n1 γ1 m1 b1 σ1 δ1 s1

0.2 0.5 1 0.06 6.16 0.6 36
Reinsurer n2 γ2 m2 b2 σ2 δ2 s2

0.25 0.6 1.2 0.05 5.16 0.5 26

4.1. Sensitivity analysis of the equilibrium reinsurance strategy

In this part, we consider the sensitivity of the equilibrium reinsurance strategy. Figure 1 shows that
the robust equilibrium reinsurance strategy q∗1(t) decreases as α increases. This is due to the
increasing decision-making power of the insurer as α increases. Considering the insurer’s preference,
it aims to purchase more reinsurance to transfer insurance risk to the reinsurer. When α > 0.5, more
voices are heard from the insurer in the decision, and the decreasing trend of q∗1(t) over time is
attributed to the fact that, under the principle of loss-dependent insurance premium, the premium paid
by policyholders is positively correlated with their past claims. Therefore, this premium principle
imposes constraints on policyholders’ behavior. A decrease in premiums collected by the insurer
leads to a reduction in its retention level. On the other hand, when α < 0.5, the reinsurer who apply
the expected premium principle are given more priority, and q∗1(t) also decreases over time. This can
be attributed to the accumulation of investment returns in financial markets over time, which increases
the wealth of the reinsurer and their risk absorption capacity. Therefore, they are more willing to take
on more reinsurance business.
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Figure 1. The effects of α and t on q∗1(t).

Figure 2(a) reveals that the insurer’s retention level q∗1(t) increases with the increase in extrapolation
intensity β at the initial stage of decision-making. Moreover, as β becomes larger, q∗1(t) becomes more
sensitive with a larger rate of change. This is attributed to the negative correlation between the dynamic
weighted average loss v in Eq (2.2) and the insurer’s wealth dynamics in Eq (2.5), which enables risk
hedging. As β increases, the insurer’s ability to resist risk also increases.
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(a) The effects of β and t on q∗1(t).
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(b) The effects of α and n2 on q∗1(t).

Figure 2. Effects of β, t, α and n2 on q∗1(t).

From Figure 2(b), it is observed that when α > 0.5, q∗1(t) increases with an increase in safety loading
n2, whereas for α < 0.5, there is a decreasing trend in q∗1(t) with an increase in n2. This can be attributed
to the fact that when the insurer dominates, the cost of reinsurance becomes more expensive with an
increase in safety loading n2, and therefore, the insurer is more inclined to purchase less reinsurance
to maintain stable income. Conversely, when the reinsurer dominates, he will gain more profit from
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reinsurance with an increase in n2, and thus is more willing to accept more reinsurance.

Figure 3 reveals that q∗1(t) decreases with an increase in the parameter m0. As m0 increases, the
AAI becomes more uncertain towards the claim distribution, and will be more likely to purchase an
increased amount of reinsurance to counteract the impact of model uncertainty. Furthermore, q∗1(t) is
a decreasing function of parameter γ1. As γ1 increases, the AAI becomes more risk-averse and will
purchase more reinsurance to transfer the risk to the reinsurer. On the other hand, q∗1(t) is an increasing
function of parameter γ2 . As γ2 increases, the AAR becomes more risk-averse and thus is more willing
to accept less reinsurance.

(a) The effects of γ1 and m0 on q∗1(t). (b) The effects of γ2 and m0 on q∗1(t).

Figure 3. Effects of γ1, γ2 and m0 on q∗1(t).

Figures 4–6 illustrate the impact of various variables on the equilibrium reinsurance strategies under
three different models. One common observation is that q∗3(t) > q∗1(t) > q∗2(t). The explanation for
q∗1(t) > q∗2(t) is that, compared to the expected premium principle, the insurer’s ability to absorb risk
under the loss-dependent premium principle is stronger, reducing the demand for risk transfer through
reinsurance. The reason for q∗3(t) > q∗1(t) is that, compared to ambiguity-neutral decision makers, the
AAI have a greater aversion to model uncertainty, and thus tend to adopt more conservative strategies
by transferring more of their risk to the reinsurer, resulting in a higher demand for reinsurance.

In Figure 4(a), it is worth noting that under the expected value premium principle, q∗2(t) increases
with t, while under the loss-dependence premium principle, q∗1(t) and q∗3(t) decrease with t. Figure 4(b)
shows that as β increases, the change trend of q∗1(t) and q∗3(t) are the same, indicating that considering
robustness does not affect the correlation between q∗(t) and β.

As is shown in Figure 5(a), the equilibrium reinsurance strategies for all three models increase with
the increase of n2 . From Figure 5(b), we can see that as the ambiguity aversion coefficient m0 increases,
both q∗1(t) and q∗2(t) show a decreasing trend, which indicates that the impact of robustness on q∗(t) is
similar under the two aforementioned premium principles. Figure 6 illustrates that the correlation
between the equilibrium reinsurance strategies of the three models and the risk aversion coefficients γ1

and γ2 is the same.
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Figure 4. Effects of t and β on q∗1(t), q∗2(t), q∗3(t).
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Figure 5. Effects of n2 and m0 on q∗1(t), q∗2(t), q∗3(t).
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(b) Effect of r2 on q∗1(t), q∗2(t), q∗3(t).

Figure 6. Effects of r1 and r2 on q∗1(t), q∗2(t), q∗3(t).
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4.2. Sensitivity analysis of the equilibrium investment strategy

In this part, we discuss the impact of model parameters on the equilibrium investment strategy. Here,
π∗1 and π∗2 represent the robust equilibrium investment strategy of the AAI and AAR, respectively, and
π1 and π2 represent the equilibrium investment strategies of the ANI and ANR.

Figure 7(a) demonstrates the increasing trends of π1(π∗1) and π2(π∗2) as t increases. This phenomenon
can be attributed to the fact that over time the insurer and reinsurer enhance their risk-bearing capacity
while accumulating wealth, consequently leading to a gradual increase in the allocation of investment
towards risk assets. From Figure 7(b), we observe that the robust equilibrium investment strategy
π1(π2) decreases as the elasticity coefficient δ1(δ2) increases. Higher values of δ may lead to a larger
decrease in expected volatility and an increased likelihood of significant adverse movements in the
risky asset prices. Therefore, with an increase in δ, both the insurer and reinsurer prefer to reduce their
investments in the risky asset to mitigate risks.
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(b) Effect of δ1(δ2) on π1(π2), π∗1(π∗2).

Figure 7. Effects of t and δ1(δ2) on π1(π2), π∗1(π∗2).

As shown in Figure 8, the robust equilibrium investment strategy for the insurer (reinsurer) is an
increasing function of b1(b2), and a decreasing function of r. This is in accordance with our intuition.
As b1(b2) increases, the insurer (reinsurer) will obtain higher returns from investments, leading them
to increase their investments in risky assets to gain more profits. Furthermore, as r increases, risk-free
assets become more attractive, and the insurer (reinsurer) is willing to invest more funds into risk-free
assets. Consequently, the amount of investment in risky assets decreases.

Figure 9(a) reveals that the coefficient of risk aversion γ1(γ2) has a negative effect on the robust
equilibrium investment strategy of the insurer (reinsurer). This means that the insurer (reinsurer) with
a higher level of risk aversion will reduce her or his investment in risky assets to avoid risks.
Figure 9(b) demonstrates that the insurer (reinsurer) reduces her or his investment in the risky market
as the ambiguity-aversion coefficient m1(m2) increases. As mentioned earlier, the ambiguity-aversion
coefficient can describe the decision-maker’s attitude towards model uncertainty. Therefore, when
m1(m2) is larger, the AAI (AAR) is more averse to uncertain risks, and thus is less willing to invest in
risky assets.
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Figure 8. Effects of b1(b2) and r on π1(π2), π∗1(π∗2).
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Figure 9. Effects of r1(r2) and m1(m2) on π1(π2), π∗1(π∗2).

Additionally, we can observe the same phenomenon from Figures 7–9: π1 > π
∗
1; π2 > π

∗
2. Due to

the aversion to the uncertainty of estimating parameters in the risky market, the ambiguity-aversion
decision-makers adopt more conservative investment strategies, i.e., reducing risk investments to resist
ambiguity uncertainty.

5. Conclusions

In this paper, we study the robust equilibrium reinsurance-investment problem for the AAI and the
AAR under a mean-variance weighted sum objective criterion. Specifically, it is assumed that the net
claims process is approximated by a diffusion process, and the insurer considers the historical claims
and adopts the loss-dependent premium principle. However, due to information loss, the reinsurer still
employs the traditional expected value premium principle. Both the insurer and reinsurer invest in
risk-free and risky assets, where the price process of the risky asset is modeled by the CEV model.
After considering the uncertainty of model parameters, we employ robust optimization methods and
derive the extended HJB equation. Through dynamic programming theory, we derive closed-form
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expressions for robust equilibrium reinsurance-investment strategies, as well as their corresponding
value functions. We also provide numerical simulations to illustrate the economic implications of
our results. We find that the impact of some model parameters on the reinsurance strategy depends
on the weighting parameters. In the early stages of decision-making, there is an inverse relationship
between extrapolation intensity and reinsurance demand, and employing the loss-dependent premium
principle reduces the insurer’s demand for reinsurance. Moreover, we find that ambiguity aversion
has a significant impact on the reinsurance-investment strategy. As the degree of ambiguity aversion
increases, the demand for reinsurance also increases, while the investment in risky assets decreases.

In future research, it may be worthwhile to consider jump risk asset price processes or Ornstein-
Uhlenbeck processes. Additionally, robust optimization objectives can be extended to include Alpha-
robust mean-variance criteria. These extensions could provide more complex problems and greatly
enrich our research.
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Appendix A

Proof of Theorem 3.2
In order to solve the extended HJB Eqs (3.9)–(3.11), we postulate the following form of solution,

V(t, x, y, v, s1, s2) = A1(t)x + A2(t)y + A3(t)v + A4(t)s−2δ1
1 + A5(t)s−2δ2

2 + A6(t), (A.1)

g1(t, x, y, v, s1, s2) = B1(t)x + B2(t)y + B3(t)v + B4(t)s−2δ1
1 + B5(t)s−2δ2

2 + B6(t), (A.2)

g2(t, x, y, v, s1, s2) = C1(t)x +C2(t)y +C3(t)v +C4(t)s−2δ1
1 +C5(t)s−2δ2

2 +C6(t), (A.3)

with boundary conditions

A1(T ) = α, A2(T ) = 1 − α, B1(T ) = C2(T ) = 1, A3(T ) = A4(T ) = A5(T ) = A6(T ) = 0,
B2(T ) = B3(T ) = B4(t) = B5(T ) = B6(T ) = C1(T ) = C3(T ) = C4(T ) = C5(T ) = C6(T ) = 0.

The partial derivatives are

Vt = A1tx + A2ty + A3tv + A4ts
−2δ1
1 + A5ts

−2δ2
2 + A6t, Vx = A1,
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Vy = A2,Vv = A3, Vs1 = −2δ1s−2δ1−1
1 A4, Vs2 = −2δ2s−2δ2−1

2 A5,

Vs1 s1 = 2δ1(2δ1 + 1)s−2δ1−2
1 A4, Vs2 s2 = 2δ2(2δ2 + 1)s−2δ2−2

2 A5,

g1t = B1tx + B2ty + B3tv + B4ts
−2δ1
1 + B5ts

−2δ2
2 + B6t, g1x = B1,

g1y = B2, g1v = B3, g1s1 = −2δ1s−2δ1−1
1 B4, g1s2 = −2δ2s−2δ2−1

2 B5,

g1s1 s1 = 2δ1(2δ1 + 1)s−2δ1−2
1 B4, g1s2 s2 = 2δ2(2δ2 + 1)s−2δ2−2

2 B5,

g2t = C1tx +C2ty +C3tv +C4ts
−2δ1
1 +C5ts

−2δ2
2 +C6t, g2x = C1,

g2y = C2, g2v = C3, g2s1 = −2δ1s−2δ1−1
1 C4, g2s2 = −2δ2s−2δ2−1

2 C5,

g2s1 s1 = 2δ1(2δ1 + 1)s−2δ1−2
1 C4, g2s2 s2 = 2δ2(2δ2 + 1)s−2δ2−2

2 C5,

Vxx = Vyy = Vvv = Vxv = Vyv = Vxy = Vxs1 = Vys2 = 0,
g1xx = g1yy = g1vv = g1xv = g1yv = g1xy = g1xs1 = g1ys2 = 0,
g2xx = g2yy = g2vv = g2xv = g2yv = g2xy = g2xs1 = g2ys2 = 0, (A.4)

where V, gi, Ai, Bi and Ci are abbreviations for V(t, x, y, v, s1, s2), gi(t, x, y, v, s1, s2), Ai(t), Bi(t) and
Ci(t), respectively.

Substituting Eqs (A.1)–(A.4) into Eqs (3.9)–(3.11), we have

sup
u∈U

inf
Q∈Q
{A1tx + A2ty + A3tv + A4ts

−2δ1
1 + A5ts

−2δ2
2 + A6t

+ [rx + (b1 − r)π1 + (1 + n1)(e−βtµ + v) − (1 + n2)µ + qn2µ − qσ0θ0 − π1σ1θ1sδ11 ]A1

+ [ry + (b2 − r)π2 + n2(1 − q)µ − (1 − q)σ0θ0 − π2σ2θ2sδ22 ]A2 + β(µ − v + σ0θ0)A3

− (b1 − σ1θ1sδ11 )2δ1s−2δ1
1 A4 − (b2 − σ2θ2sδ22 )2δ2s−2δ2

2 A5 + σ
2
1δ1(2δ1 + 1)A4 + σ

2
2δ2(2δ2 + 1)A5

− αγ1

[
1
2

(q2σ2
0 + π

2
1σ

2
1s2δ1

1 )B2
1 +

1
2

((1 − q)2σ2
0 + π

2
2σ

2
2s2δ2

2 )B2
2 +

1
2
β2σ2

0B2
3

+ 2σ2
1δ

2
1s−2δ1

1 B2
4 + 2σ2

2δ
2
2s−2δ2

2 B2
5 + q(1 − q)σ2

0B1B2 − qβσ2
0B1B3

−(1 − q)βσ2
0B2B3 − 2π1σ

2
1δ1B1B4 − 2π2σ

2
2δ2B2B5

]
− (1 − α)γ2[

1
2

(q2σ2
0 + π

2
1σ

2
1s2δ1

1 )C2
1 +

1
2

((1 − q)2σ2
0 + π

2
2σ

2
2s2δ2

2 )C2
2 +

1
2
β2σ2

0C
2
3

+ 2σ2
1δ

2
1s−2δ1

1 C2
4 + 2σ2

2δ
2
2s−2δ2

2 C2
5 + q(1 − q)σ2

0C1C2 − qβσ2
0C1C3 − (1 − q)βσ2

0C2C3

− 2π1σ
2
1δ1C1C4 − 2π2σ

2
2δ2C2C5] +

θ20
2m0
+ α
θ21

2m1
+ (1 − α)

θ22
2m2
} = 0, (A.5)

B1tx + B2ty + B3tv + B4ts
−2δ1
1 + B5ts

−2δ2
2 + B6t

+ [rx + (b1 − r)π1 + (1 + n1)(e−βtµ + v) − (1 + n2)µ + qn2µ − qσ0θ0 − π1σ1θ1sδ11 ]B1

+ [ry + (b2 − r)π2 + n2(1 − q)µ − (1 − q)σ0θ0 − π2σ2θ2sδ22 ]B2 + β(µ − v + σ0θ0)B3

− [b1 − σ1θ1sδ11 ]2δ1s−2δ1
1 B4 − [b2 − σ2θ2sδ22 ]2δ2s−2δ2

2 B5

+ σ2
1δ1(2δ1 + 1)B4 + σ

2
2δ2(2δ2 + 1)B5 = 0, (A.6)
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C1tx +C2ty +C3tv +C4ts
−2δ1
1 +C5ts

−2δ2
2 +C6t

+ [rx + (b1 − r)π1 + (1 + n1)(e−βtµ + v) − (1 + n2)µ + qn2µ − qσ0θ0 − π1σ1θ1sδ11 ]C1

+ [ry + (b2 − r)π2 + n2(1 − q)µ − (1 − q)σ0θ0 − π2σ2θ2sδ22 ]C2 + β(µ − v + σ0θ0)C3

− [b1 − σ1θ1sδ11 ]2δ1s−2δ1
1 C4 − [b2 − σ2θ2sδ22 ]2δ2s−2δ2

2 C5

+ σ2
1δ1(2δ1 + 1)C4 + σ

2
2δ2(2δ2 + 1)C5 = 0. (A.7)

Based on Eq (A.5), by fixing q, π1, π2 and maximizing over θ, we obtain the following first-order
condition for the minimum point θ∗,

θ∗0(q) = m0
[
qσ0A1 + (1 − q)σ0A2 − βσ0A3

]
,

θ∗1(π1) =
m1σ1

α
(π1sδ11 A1 − 2δ1s−δ11 A4),

θ∗2(π2) =
m2σ2

1 − α
(π2sδ22 A2 − 2δ2s−δ22 A5). (A.8)

Replacing Eq (A.8) back into Eq (A.5) yields

A1tx + A2ty + A3tv + A4ts
−2δ1
1 + A5ts

−2δ2
2 + A6t + [rx + (1 + n1)(e−βtµ + v)

− (1 + n2)µ]A1 + (ry + n2µ)A2 + β(µ − v)A3 −
1
2

m0σ
2
0(A2 − βA3)2

− 2b1δ1s−2δ1
1 A4 − 2b2δ2s−2δ2

2 A5 + σ
2
1δ1(2δ1 + 1)A4 + σ

2
2δ2(2δ2 + 1)A5

− αγ1[
1
2
σ2

0B2
2 − βσ

2
0B2B3 +

1
2
β2σ2

0B2
3 + 2σ2

1δ
2
1s−2δ1

1 B2
4 + 2σ2

2δ
2
2s−2δ2

2 B2
5]

− (1 − α)γ2[
1
2
σ2

0C
2
2 − βσ

2
0C2C3 +

1
2
β2

0σ
2
0C

2
3 + 2σ2

1δ
2
1s−2δ1

1 C2
4 + 2σ2

2δ
2
2s−2δ2

2 C2
5]

+ sup
q
{R0(q)} + sup

π1

{R1(π1)} + sup
π2

{R2(π2)} = 0, (A.9)

where

R0(q) =qn2µ(A1 − A2) − m0σ
2
0q(A1 − A2)(A2 − βA3) −

1
2

m0σ
2
0q2(A1 − A2)2

− αγ1σ
2
0[

1
2

q2(B1 − B2)2 + q(B1 − B2)(B2 − βB3)]

− (1 − α)γ2σ
2
0[

1
2

q2(C1 −C2)2 + q(C1 −C2)(C2 − βC3)],

R1(π1) =(b1 − r)π1A1 −
1
2
π2

1σ
2
1s2δ1

1 [αγ1B2
1 + (1 − α)γ2C2

1] + 2π1σ
2
1δ1[αγ1B1B4

+ (1 − α)γ2C1C4] −
m1

2α
σ2

1(π1sδ11 A1 − 2δ1s−δ11 A4)2,

R2(π2) =(b2 − r)π2A2 −
1
2
π2

2σ
2
2s2δ2

2 [αγ1B2
2 + (1 − α)γ2C2

2] + 2π2σ
2
2δ2[αγ1B2B5

+ (1 − α)γ2C2C5] −
m2

2(1 − α)
σ2

2(π2sδ22 A2 − 2δ2s−δ22 A5)2.
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Differentiating Eq (A.9) with respect to π1, π2 and q, we obtain the following first-order optimality
conditions:

q∗ =
n2µ(A1 − A2)

σ2
0
[
αγ1(B1 − B2)2 + (1 − α)γ2(C1 −C2)2 + m0(A1 − A2)2]

+
αγ1(B1 − B2)(B2 − βB3) + (1 − α)γ2(C1 −C2)(C2 − βC3) + m0(A1 − A2)(A2 − βA3)

αγ1(B1 − B2)2 + (1 − α)γ2(C1 −C2)2 + m0(A1 − A2)2 , (A.10)

π∗1 =
(b1 − r)A1 + 2σ2

1δ1
[
αγ1B1B4 + (1 − α)γ2C1C4

]
+ m1
α
σ2

12δ1A1A4

σ2
1s2δ1

1

[
αγ1B2

1 + (1 − α)γ2C2
1

]
+ m1
α
σ2

1s2δ1
1 A2

1

, (A.11)

π∗2 =
(b2 − r)A2 + 2σ2

2δ2
[
αγ1B2B5 + (1 − α)γ2C2C5

]
+ m2

1−ασ
2
22δ2A2A5

σ2
2s2δ2

2

[
αγ1B2

2 + (1 − α)γ2C2
2

]
+ m2

1−ασ
2
2s2δ2

2 A2
2

. (A.12)

Introducing q∗, π∗1, π
∗
2 into Eq (A.9) gives

A1tx + A2ty + A3tv + A4ts
−2δ1
1 + A5ts

−2δ2
2 + A6t

+ [rx + (1 + n1)(e−βtµ + v) − (1 + n2)µ]A1 + ryA2 + n2µA2 + β(µ − v)A3

− 2b1δ1s−2δ1
1 A4 − 2b2δ2s−2δ2

2 A5 + σ
2
1δ1(2δ1 + 1)A4 + σ

2
2δ2(2δ2 + 1)A5

− αγ1[
1
2
σ2

0B2
2 − βσ

2
0B2B3 +

1
2
β2σ2

0B2
3 + 2σ2

1δ
2
1s−2δ1

1 B2
4 + 2σ2

2δ
2
2s−2δ2

2 B2
5]

− (1 − α)γ2[
1
2
σ2

0C
2
2 − βσ

2
0C2C3 +

1
2
β2

0σ
2
0C

2
3 + 2σ2

1δ
2
1s−2δ1

1 C2
4 + 2σ2

2δ
2
2s−2δ2

2 C2
5]

−
1
2

m0σ
2
0(A2 − βA3)2 + R0(q∗) + R1(π∗1) + R2(π∗2) = 0. (A.13)

By matching the coefficients of variables x, y, v, s1 and s2, we obtain that
(A1t + rA1)x = 0,
(A2t + rA2)y = 0,[
A3t + (1 + n1)A1 − βA3

]
v = 0,

(A.14)

[
A4t − 2b1δ1A4 − 2αγ1σ

2
1δ

2
1B2

4 − 2(1 − α)γ2σ
2
1δ

2
1C

2
4 + s2δ1

1 R1(π∗1)
]

s−2δ1
1 = 0, (A.15)[

A5t − 2b2δ2A5 − 2αγ1σ
2
2δ

2
2B2

5 − 2(1 − α)γ2σ
2
2δ

2
2C

2
5 + s2δ2

2 R2(π∗2)
]

s−2δ2
2 = 0, (A.16)

and the rest is

A6t + [(1 + n1)e−βtµ + (1 + n2)µ]A1 + n2µA2 + βµA3 + δ1σ
2
1(2δ1 + 1)A4

+ δ2σ
2
2(2δ2 + 1)A5 −

1
2

m0σ
2
0(A2 − βA3)2 −

1
2
β2σ2

0

[
αγ1B2

3 + (1 − α)γ2C2
3

]
−

1
2
σ2

0

[
αγ1B2

2 + (1 − α)γ2C2
2

]
+ βσ2

0
[
αγ1B2B3 + (1 − α)γ2C2C3

]
+ R0(q∗) = 0. (A.17)

By substituting q∗, π∗1, π
∗
2 into Eqs (A.6) and (A.7), and then separating the variables x, y, v, s1 and s2,

we can obtain the following equations:
(B1t + rB1)x = 0,
(B2t + rB2)y = 0,[
B3t + (1 + n1)B1 − βB3

]
v = 0,

(A.18)
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B4t + (b1 − r)π∗1s2δ1
1 B1 − m1σ

2
1(π∗1s2δ1

1 )2 A1

α
B1 + 2m1δ1σ

2
1π
∗
1s2δ1

1
A4

α
B1

− 2b1δ1B4 + 2δ1m1π
∗
1s2δ1

1 σ
2
1
A1

α
B4 − 4m1σ

2
1δ

2
1
A4

α
B4 = 0, (A.19)

B5t + (b2 − r)π∗2s2δ2
2 B2 − m2σ

2
2(π∗2s2δ2

2 )2 A2

1 − α
B2 + 2m2δ2σ

2
2π
∗
2s2δ2

2
A5

1 − α
B2

− 2b2δ2B5 + 2m2δ2σ
2
2π
∗
2s2δ2

2
A2

1 − α
B5 − 4m2δ

2
2σ

2
2

A5

1 − α
B5 = 0, (A.20)

(C1t + rC1)x = 0,
(C2t + rC2)y = 0,[
C3t + (1 + n1)C1 − βC3

]
v = 0,

(A.21)

C4t + (b1 − r)π∗1s2δ1
1 C1 − m1σ

2
1(π∗1s2δ1

1 )2 A1

α
C1 + 2m1δ1σ

2
1π
∗
1s2δ1

1
A4

α
C1

− 2b1δ1C4 + 2m1δ1σ
2
1π
∗
1s2

1δ1
A1

α
C4 − 4m1δ

2
1σ

2
1
A4

α
C4 = 0, (A.22)

C5t + (b2 − r)π∗2s2δ2
2 C2 − m2σ

2
2(π∗2s2δ2

2 )2 A2

1 − α
C2 + 2m2δ2σ

2
2π
∗
2s2δ2

2
A5

1 − α
C2

− 2b2δ2C5 + 2m2δ2σ
2
2π
∗
2s2δ2

2
A2

1 − α
C5 − 4m2δ

2
2σ

2
2

A5

1 − α
C5 = 0, (A.23)

and the rest is

B6t +
[
(1 + n1)e−βtµ − (1 + n2)µ

]
B1 + n2µB2 + βµB3 + q∗n2µ(B1 − B2) + σ2

1δ1(2δ1 + 1)B4

+ σ2
2δ2(2δ2 + 1)B5 − m0σ

2
0[q∗(B1 − B2) + B2 − βB3][q∗(A1 − A2) + A2 − βA3] = 0, (A.24)

C6t +
[
(1 + n1)e−βtµ − (1 + n2)µ

]
C1 + n2µC2 + βµC3 + q∗n2µ(C1 −C2) + σ2

1δ1(2δ1 + 1)C4

+ σ2
2δ2(2δ2 + 1)C5 − m0σ

2
0[q∗(C1 −C2) +C2 − βC3][q∗(A1 − A2) + A2 − βA3] = 0. (A.25)

Considering the boundary conditions and solving Eqs (A.14), (A.18) and (A.21), we obtain

A1(t) = αer(T−t), A2(t) = (1 − α)er(T−t),

B1(t) = C2(t) = er(T−t),

B2(t) = C1(t) = C3(t) = 0,
A3(t) = α 1+n1

r+β [er(T−t) − e−β(T−t)],

B3(t) = 1+n1
r+β [er(T−t) − e−β(T−t)].

(A.26)

Inputting Eqs (A.26) into (A.20), (A.22) and simplifying, we have

B5t +

2m2δ2

[
(b2 − r)(1 − α) + 2σ2

2δ2(1 − α)γ2C5 − 2γ2δ2σ
2
2A5

]
(1 − α)(γ2 + m2)

− 2b2δ2

 B5 = 0, (A.27)

C4t +

2m1δ1

[
(b1 − r)α + 2δ1σ

2
1γ1αB4 − 2δ1σ

2
1γ1A4

]
α(γ1 + m1)

− 2b1δ1

C4 = 0. (A.28)

Electronic Research Archive Volume 31, Issue 10, 6384–6411.



6409

With the boundary condition B5(T ) = 0,C4(T ) = 0, we can find that B5(t) and C4(t) have the following
solutions:

B5(t) = 0, C4(t) = 0. (A.29)

Substituting the solutions (A.29) into (A.15) and (A.19), we have

A4t − 2b1δ1A4 + 2δ1(b1 − r)
m1

γ1 + m1
A4 + 2αδ1(b1 − r)

γ1

γ1 + m1
B4

− 2ασ2
1δ

2
1
γ1m1

γ1 + m1

[
B2

4 + (
A4

α
)2 − 2B4

A4

α

]
+
α(b1 − r)2

2σ2
1(γ1 + m1)

= 0, (A.30)

B4t − 2b1δ1B4 + 2δ1(b1 − r)
2γ1m1

(γ1 + m1)2

A4

α
+ 2δ1(b1 − r)

γ2
1 + m2

1

(γ1 + m1)2 B4

+ 4σ2
1δ

2
1

γ1m2
1

(γ1 + m1)2

[
B2

4 + (
A4

α
)2 − 2B4

A4

α

]
+
γ1(b1 − r)2

σ2
1(γ1 + m1)2

= 0. (A.31)

Denote I1(t) := A4(t) + α(γ1+m1)
2m1

B4(t), hence I1t = A4t +
α(γ1+m1)

2m1
B4t and I1(T ) = 0.

Combining Eqs (A.31) and (A.30), we obtain the following equation

I1t − 2δ1rI1 +
α(b1 − r)2

2m1σ
2
1

= 0. (A.32)

Solving Eq (A.32) with I1(T ) = 0, we obtain

I1(t) =
α(b1 − r)2

4m1δ1rσ2
1

[
1 − e−2δ1r(T−t)

]
. (A.33)

Plugging A4 = I1 −
α(r1+m1)

2m1
B4 into Eq (A.31) implies

B4t + [2δ1(b1 − r)
m1(m1 − γ1)
(m1 + γ1)2 − 2b1δ1 − δ1(b1 − r)2 (γ1 + 3m1)γ1

(γ1 + m1)2r
(1 − e−2δ1r(T−t))]B4

+ σ2
1δ

2
1γ1(
γ1 + 3m1

γ1 + m1
)2B2

4 +
(b1 − r)2γ1

(γ1 + m1)2σ2
1

[
b1 − r

2r
(1 − e−2δ1r(T−t)) + 1

]2
= 0. (A.34)

Let

k1 = σ
2
1δ

2
1r1(
γ1 + 3m1

γ1 + m1
)2,

k2 = 2δ1(b1 − r)
m1(m1 − γ1)
(m1 + γ1)2 − 2b1δ1 − δ1(b1 − r)2 (γ1 + 3m1)γ1

(γ1 + m1)2r
(1 − e−2δ1r(T−t)),

k3 =
(b1 − r)2r1

(γ1 + m1)2σ2
1

[
b1 − r

2r
(1 − e−2δ1r(T−t)) + 1

]2
.

Then, the Eq (A.34) can be written as

B4t + k1B2
4 + k2B4 + k3 = 0. (A.35)
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This is a regular Riccati equation satisfying k2
2 − 4k1k3 > 0, and the solution of the Eq (A.35) with the

boundary condition B4(T ) = 0 is given by

B4(t) = M1 +
etN1

k1
N1

(etN1 − eT N1) − 1
M1

eT N1
, (A.36)

where

N1 =

√
k2

2 − 4k1k3, M1 =
−k2 − N1

2k1
.

Plugging Eq (A.36) into A4(t) = I1(t) − α(r1+m1)
2m1

B4(t), we obtain

A4(t) = I1(t) −
α(r1 + m1)

2m1

M1 +
etN1

k1
N1

(etN1 − eT N1) − 1
M1

eT N1

 . (A.37)

Substituting the solutions (A.29) into (A.16) and (A.20), we have

A5t − 2b2δ2A5 + 2δ2(b2 − r)
m2

γ2 + m2
A5 + 2(1 − α)δ2(b2 − r)

γ2

γ2 + m2
C5

− 2(1 − α)δ2
2σ

2
2
γ2m2

γ2 + m2

[
C2

5 + (
A5

1 − α
)2 − 2C5(

A5

1 − α
)
]
+

(1 − α)(b2 − r)2

2(γ2 + m2)σ2
2

= 0, (A.38)

C5t − 2b2δ2C5 + 2δ2(b2 − r)
2γ2m2

(γ2 + m2)2

A5

1 − α
+ 2δ2(b2 − r)

γ2
2 + m2

2

(γ2 + m2)2 C5

+ 4σ2
2δ

2
2

γ2m2
2

(γ2 + m2)2

[
C2

5 + (
A5

1 − α
)2 − 2C5

A5

1 − α

]
+
γ2(b2 − r)2

σ2
2(γ2 + m2)2

= 0. (A.39)

Referring to the procedure used to solve for A4, B5, we can derive the Riccati equation for C5 as follows

C5t + l1C2
5 + l2C5 + l3 = 0, (A.40)

where

l1 = σ
2
2δ

2
2γ2(
γ2 + 3m2

γ2 + m2
)2,

l2 = 2δ2(b2 − r)
m2(m2 − γ2)
(m2 + γ2)2 − 2b2δ2 − δ2(b2 − r)2 (γ2 + 3m2)γ2

(γ2 + m2)2r
(1 − e−2δ2r(T−t)),

l3 =
(b2 − r)2γ2

(γ2 + m2)2σ2
2

[
b2 − r

2r
(1 − e−2δ2r(T−t)) + 1]2.

This Riccati equation satisfies l2
2 − 4l1l3 > 0. Using standard methods, we can obtain the solution of

the Eq (A.40) with C5(T ) = 0 as

C5(t) = M2 +
etN2

l1
N2

(etN2 − eT N2) − 1
M2

eT N2
, (A.41)
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where

N2 =

√
l2
2 − 4l1l3, M2 =

−l2 − N2

2l1
.

Correspondingly, we have

A5(t) = I2(t) −
(1 − α)(γ2 + m2)

2m2

M2 +
etN2

l1
N2

(etN2 − eT N2) − 1
M2

eT N2

 , (A.42)

where

I2(t) =
(1 − α)(b2 − r)2

4m2δ2rσ2
2

[
1 − e−2δ2r(T−t)

]
.

By plugging the aforementioned results into Eqs (A.10), (A.11) and (A.12), the robust equilibrium
strategy as described in Theorem 3.2 can be obtained.

Subsequently, by substituting the aforementioned results into Eqs (A.17), (A.24) and (A.25), and
incorporating the boundary conditions A6(T ) = B6(T ) = C6(T ) = 0, we can derive the
following solutions:

A6(t) =
∫ T

t

[
(1 + n1)e−βsµ + (1 + n2)µ

]
A1(s)ds +

∫ T

t
n2µA2(s) + βµA3(s)ds

+ δ1σ
2
1 (2δ1 + 1)

∫ T

t
A4(s)ds + δ2σ

2
2 (2δ2 + 1)

∫ T

t
A5(s)ds −

1
2

m0σ
2
0

∫ T

t
(A2(s) − βA3(s))2ds

−
1
2
β2σ2

0αγ1

∫ T

t
B2

3(s)ds −
1
2
σ2

0(1 − α)γ2

∫ T

t
C2

2(s)ds +
∫ T

t
R0
[
q∗(s)
]
ds, (A.43)

B6(t) =
∫ T

t
[(1 + n1)e−βsµ − (1 + n2)µ + n2µq∗(s)]B1(s)ds +

∫ T

t
βµB3(s) + σ2

1δ1(2δ1 + 1)B4(s) ds

+ m0σ
2
0

∫ T

t

[
βB3(s) − q∗(s)B1(s)

] [
q∗(s) (A1(s) − A2(s)) + A2(s) − βA3(s)

]
ds, (A.44)

C6(t) =
∫ T

t
n2µC2(s) (1 − q∗(s)) ds + σ2

2δ2 (2δ2 + 1)
∫ T

t
C5(s)ds

− m0σ
2
0

∫ T

t
C2(s)(1 − q∗(s))

[
q∗(s) (A1(s) − A2(s)) + A2(s) − βA3(s)

]
ds. (A.45)

Above all, the proof of Theorem 3.2 is completed.
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