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Abstract: This paper concerns energy conservation for weak solutions of compressible Navier-Stokes-
Maxwell equations. For the energy equality to hold, we provide sufficient conditions on the regularity
of weak solutions, even for solutions that may include exist near-vacuum or on a boundary. Our energy
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1. Introduction

In this paper, the following isentropic compressible Navier-Stokes-Maxwell (CNSM) system is
considered, which consists of Navier-Stokes equations of fluid dynamics and Maxwell’s equations of
electromagnetism. The coupling comes from the Lorentz force in the fluid equation and the electric
current in the Maxwell following equations:

∂tρ + div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) − µ∆u − (λ + µ)∇divu + ∇P(ρ) = j × b,

∂tE − ∇ × b + j = 0, j := E + u × b,

∂tb + ∇ × E = 0,
divb = 0,

(1.1)

with the initial data
(ρ, u, E, b)(·, 0) = (ρ0, u0, E0, b0), (1.2)
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where ρ is the density, u is the velocity field, and E and b represent electronic and magnetic fields,
respectively. The fluid pressure is represented by P(ρ) meets:

P(ρ) = aργ with a > 0, γ > 1, (1.3)

where a is a physical constant and γ is the adiabatic exponent. The viscosity coefficients µ and λ are
constant and satisfy the physical restrictions µ > 0 and 2µ + 3λ ≥ 0. j is the electric current expressed
by the Ohms law. The force term j × B in Navier-Stokes equations comes from Lorentz force under
a quasi-neutrality assumption of the net charge carried by the fluid. If the electric current is ignored
(i.e., j = 0), (1.1) reduces to the well-known isentropic compressible Navier-Stokes (CNS) system.
Equation (1.1) is one of the most important mathematical models in continuum mechanics. Lions [1]
and Feireisl [2–4] proved that the CNS system admits a weak solution, as long as the adiabatic exponent
γ > 3

2 . Due to a lack of regularity of weak solutions, it is not known whether weak solutions satisfy
the energy equality for both incompressible and compressible fluids equations. It is a nature problem:
how “good” is regularity for weak solutions needed to ensure the energy equality?

For a CNS system, the appearance of ρ makes ∂t(ρu) nonlinear, and; therefore, some density regu-
larity is required in when using commutator estimates. Yu [5] used the Lions’s commutator estimate
to show energy conservation for compressible Navier-Stokes equations with a degenerate viscosity but
without vacuum. Nguyen et al. [6] extended Yu’s result with a weaker regularity condition in a bounded
domain. Liang [7] established a LpLs type condition for the energy equality, in particular, there was no
need regularly assume the density derivative. Recently, Ye et al. [8] showed that Lions’ condition for
energy balance is also valid for the weak solutions of isentropic compressible Navier-Stokes equations
allowing for vacuum under suitable integral conditions on the density and its derivative. This is a very
interesting result.

Comparing with fruitful results for either an incompressible Navier-Stokes system or a compressible
case, there are a few results regarding an incompressible/compressible NSM model due to its hyper-
bolic structure. For the incompressible NSM system, Ma and Wu [9] obtained the Shinbrot type energy
conservation criteria for the weak solution. In addition, for the distributional solution, he showed the
Lions’ energy conservation criteria [10]. To the best of our knowledge, there is no result concerning
the energy equality for a CNSM system (1.1).

Motivated by [7–10], the purpose of this paper is to establish the conditional energy conservation
of weak solutions to the CNSM system (1.1) allowing for vacuum. By proving an energy conserva-
tion/equality, the commutator estimates are required for treating the nonlinear terms. Furthermore, due
to the special structure of parabolic hyperbolic coupling, the derivative to the velocity field u needs to
be transfered. We state the result in detail in the theorem below.

Theorem 1.1. Let 0 ≤ ρ < c < ∞, ∇
√
ρ ∈ L4(0,T ; L4(T3)), u ∈ L∞(0,T ; L2(T3)) ∩ L2(0,T ; H1(T3)),

(E, b) ∈ L∞(0,T ; L2(T3)) and j ∈ L2(0,T ; L2(T3)) be a weak solution to system (1.1). In addition,
if (u, b) ∈ L4(0,T ; L4(T3)) and E ∈ L2(0,T ; L2(T3)), then the weak solution satisfies the following
energy equality:∫

T3
(
1
2
|
√
ρu|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)dx +

∫ T

0

∫
T3
µ|∇u|2 + (µ + λ)|divu|2 + | j|2dxds

=

∫
T3

(
1
2
|
√
ρ0u0|

2 +
1
2
|E0|

2 +
1
2
|b0|

2 +
aργ0
γ − 1

)dx.
(1.4)
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Remark 1.1. This theorem extends the energy equality of the incompressible NSM to the isentropic
compressible equations (1.1) with vacuum.

Remark 1.2. Since u, b ∈ L∞(0,T ; L2(T3)) ∩ Lp(0,T ; Lq(T3)), for any 1
p +

1
q ≤

1
2 , q ≥ 4, one can

deduce that
∥u∥L4(0,T ;L4(T3)) ≤ C∥u∥aL∞(0,T ;L2(T3))∥u∥

1−a
Lp(0,T ;Lq(T3)),

and
∥b∥L4(0,T ;L4(T3)) ≤ C∥b∥aL∞(0,T ;L2(T3))∥b∥

1−a
Lp(0,T ;Lq(T3)),

for some a ∈ (0, 1). Thus, it is also true that L4(0,T ; L4(T3)) in Theorem 1.1 is replaced with
Lp(0,T ; Lq(T3)), for any 1

p +
1
q ≤

1
2 , q ≥ 4.

2. Preliminaries

We will recall some definitions and lemmas that will be used later. First, we denote D
(
T3

)
as the

space of indefinitely differentiable with compact support andD′
(
T3

)
as the space of distributions.

Definition 2.1. The (ρ, u, E, b) is called a weak solution to the CNSM systems (1.1) and (1.2) if
(ρ, u, E, b) satisfies the following assumptions for any time t ∈ [0,T ]:
• The problems (1.1) and (1.2) holds inD′(0,T ;T3);
• The equation (1.1)1 is satisfied in the sense of renormalized solutions: for any function b ∈ C1(R)
such that b′(x) = 0 for x ≥ M), we get inD′(0,T ;T3):

∂tb(ρ) + div(b(ρ)u) + (b′(ρ)ρ − b(ρ))divu = 0

where M is a constant that varies for different functions b.
• The weak solutions require the following properties:

√
ρu ∈ L∞(0,T ; L2(T3)), u ∈ L2(0,T ; W1,2

0 (T3)), E ∈ L∞(0,T ; L2(T3)),
ρ ∈ L∞(0,T ; L1 ∩ Lγ(T3)), b ∈ L∞(0,T ; L2(T3)), j ∈ L2(0,T ; L2(T3)),

(2.1)

• The energy inequality for weak solutions holds:∫
T3

(
1
2
|
√
ρu|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)dx +

∫ T

0

∫
T3
µ|∇u|2 + (µ + λ)|divu|2 + | j|2dxds

≤

∫
T3

(
1
2
|
√
ρ0u0|

2 +
1
2
|E0|

2 +
1
2
|b0|

2 +
aργ0
γ − 1

)dx.
(2.2)

Let η ∈ C∞c (Rd) (d is the number of the space dimension) be a standard mollification kernel and set

ηε(x) =
1
εd+1η

( x
ε

)
, wϵ = ηε ∗ w, f ε(w) = f (w) ∗ ηε.

We should notice that wε is well-defined on Ωε = {x ∈ Ω : d(x, ∂Ω) > ε}. Next, we recall some
useful lemmas which will be frequently used throughout the paper.
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Lemma 2.1. [8] Let r, s, r1, r2, s1, s2 ∈ [1,+∞) with 1
r =

1
r1
+ 1

r2
and 1

s =
1
s1
+ 1

s2
. Assume f ∈

Lr1(0,T ; Ls1(T3)) and g ∈ Lr2(0,T ; Ls2(T3)). Then, for any ε > 0, there holds

∥( f g)ε − f εgε∥Lr(0,T ;Ls(T3)) → 0, as ε→ 0,

and
∥( f × g)ε − ( f ε × gε)∥Lr(0,T ;Ls(T3)) → 0, as ε→ 0.

Lemma 2.2. [8, 11, 12] Let 1 ≤ r, s, r1, s1, r2, s2 ≤ ∞, with 1
r =

1
r1
+ 1

r2
and 1

s =
1
s1
+ 1

s2
. Let ∂ be a

partial derivative in space or time; in addition, let ∂t f , ∇ f ∈ Lr1(0,T ; Ls1(T3)), g ∈ Lr2(0,T ; Ls2(T3)).
Then, there holds

∥∂( f g)ε − ∂( f gε)∥Lr(0,T ;Ls(T3)) ≤ C
(
∥∂t f ∥Lr1 (0,T ;Ls1 (T3)) + ∥∇ f ∥Lr1 (0,T ;Ls1 (T3))

)
∥g∥Lr2 (0,T ;Ls2 (T3)),

or some constant C > 0 independent of ε, f and g. Moreover, as ε→ 0 if r2, s2 < ∞,

∂( f g)ε − ∂( f gε)→ 0 in Lr(0,T ; Ls(T3)).

Lemma 2.3. [13] Let B0 ↪→ B ↪→ B1 be three Banach spaces with compact embedding B0 ↪→↪→ B1,
and let there exist 0 < δ < 1 and C > 0 such that

∥u∥B ≤ C∥u∥1−δB0
∥u∥δB1

f or all u ∈ B0 ∩ B1.

Denote for T > 0,
W(0,T ) = W s0,r0(0,T ; B0) ∩W s1,r1(0,T ; B1)

with
s0, s1 ∈ R; 0 ≤ r0, r1 ≤ ∞.

sδ = (1 − δ)s0 + δs1,
1
rδ
=

1 − δ
r0
+
δ

r1
, s∗ = sδ −

1
rδ
.

Assume that sδ > 0 and G is a bounded set in W(0,T ), Then, we have the following:
• If s∗ ≤ 0, then G is relatively compact in Lp(0,T ; B) for all 1 ≤ p < p∗ := − 1

s∗ .
• If s∗ > 0, then G is relatively compact in C(0,T ; B).

3. Proof of theorem 1.1

First, we mollify the system (1.1) and obtain

∂tρ
ε + ∇ · (ρu)ε = 0, (3.1)

∂t(ρu)ε + ∇ · (ρu ⊗ u)ε − µ∆uε − (λ + µ)∇divuε + ∇(P(ρ))ε = ( j × b)ε, (3.2)

∂tEε − (∇ × b)ε + jε = 0, (3.3)

and
∂tbε + (∇ × E)ε = 0 (3.4)

for any 0 < ε < 1.
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Next, let ϕ(t) be a smooth solution function compactly supported in (0,+∞). Multiplying (3.2)–(3.4)
by ϕ(t)uε, ϕ(t)Eε, and ϕ(t)bε, respectively, then integrating over (0,T ) × T3, one has the following:∫ T

0

∫
T3
ϕ(t)uε∂t(ρu)εdxdt +

∫ T

0

∫
T3
ϕ(t)uε∇ · (ρu ⊗ u)εdxdt − µ

∫ T

0

∫
T3
ϕ(t)uε∆uεdxdt

− (λ + µ)
∫ T

0

∫
T3
ϕ(t)uε∇divuεdxdt +

∫ T

0

∫
T3
ϕ(t)uε∇(P(ρ))εdxdt

−

∫ T

0

∫
T3
ϕ(t)uε( j × b)εdxdt +

∫ T

0

∫
T3
ϕ(t)Eε∂tEεdxdt −

∫ T

0

∫
T3
ϕ(t)Eε(∇ × b)εdxdt

+

∫ T

0

∫
T3
ϕ(t)Eε jεdxdt +

∫ T

0

∫
T3
ϕ(t)bε∂tbεdxdt +

∫ T

0

∫
T3
ϕ(t)bε(∇ × E)εdxdt = 0.

(3.5)

We use (A)–(H) and (J)–(L) to represent the terms on the left-hand side of (3.5), respectively. We
will estimate them as follows.

3.1. Estimate of (A)

By a straightforward computation, we can obtain the following:

(A) =
∫ T

0

∫
T3
ϕ(t)uε(∂t(ρu)ε − ∂t(ρuε))dxdt +

∫ T

0

∫
T3
ϕ(t)uε∂t(ρuε)dxdt

= : (A1) +
∫ T

0

∫
T3
ϕ(t)ρt|uε|2dxdt +

∫ T

0

∫
T3
ϕ(t)ρ∂t

|uε|2

2
dxdt

= : (A1) + (A2) + (A3).

We know that (A3) is the desire term while (A2) will be canceled with the term (B2) later. By
Hölder’s inequality and Lemma 2.2, it gives that the following:

(A1) =
∫ T

0

∫
T3
ϕ(t)uε(∂t(ρu)ε − ∂t(ρuε))dxdt

≤C∥uε∥L4(0,T ;L4(T3))∥∂t(ρu)ε − ∂t(ρuε)∥
L

4
3 (0,T ;L

4
3 (T3))

≤C∥u∥2L4(0,T ;L4(T3))(∥∂tρ∥L2(0,T ;L2(T3)) + ∥∇ρ∥L2(0,T ;L2(T3))).

Based on system (1.1), ρt and ∇ρ can be denoted as follows:

ρt = −2
√
ρv · ∇

√
ρ − ρdivu, ∇ρ = 2

√
ρ∇
√
ρ.

We will obtain the estimate of ρt and ∇ρ by using 0 ≤ ρ < c < ∞, (u,∇
√
ρ) ∈ L4(0,T ; L4(T3)) and

∇u ∈ L2(0,T ; L2(T3)) in Theorem 1.1, which implies that

∥ρt∥L2(0,T ;L2(T3)) ≤ C
(
∥ − 2

√
ρu · ∇

√
ρ∥L2(0,T ;L2(T3)) + ∥ρdivu∥L2(0,T ;L2(T3))

)
≤ C

(
∥u∥L4(0,T ;L4(T3))∥∇

√
ρ∥L4(0,T ;L4(T3)) + ∥∇u∥L2(0,T ;L2(T3))

)
,

(3.6)

and

∥∇ρ∥L2(0,T ;L2(T3)) ≤C∥
√
ρ∇
√
ρ∥L2(0,T ;L2(T3)) ≤ C∥∇

√
ρ∥L4(0,T ;L4(T3)). (3.7)
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Inserting (3.6) and (3.7) into (A1) yields the following:∫ T

0

∫
T3
ϕ(t)uε[∂t(ρu)ε − ∂t(ρuε)]dxdt

≤C∥u∥2L4(0,T ;L4(T3))

((
∥u∥L4(0,T ;L4(T3)) + 1

)
∥∇
√
ρ∥L4(0,T ;L4(T3)) + ∥∇u∥L2(0,T ;L2(T3))

)
≤C.

From Lemma 2.2, we get the estimate of (A1) that

lim sup
ε→0

|(A1)| = 0.

3.2. Estimate of (B)

By utilizing integration by parts and the mass equation (1.1), we deduce that

(B) = −
∫ T

0

∫
T3
ϕ(t)∇uε(ρu ⊗ u)εdxdt

= −

∫ T

0

∫
T3
ϕ(t)∇uε[(ρu ⊗ u)ε − (ρu) ⊗ uε]dxdt −

∫ T

0

∫
T3
ϕ(t)∇uε · ((ρu) ⊗ uε)dxdt

= : (B1) +
∫ T

0

∫
T3
ϕ(t)uε · div((ρu) ⊗ uε)dxdt

= : (B1) +
∫ T

0

∫
T3
ϕ(t)[div(ρu)|uε|2 +

1
2

(ρu) · ∇|uε|2]dxdt

= : (B1) +
∫ T

0

∫
T3
ϕ(t)div(ρu)|uε|2dxdt −

1
2

∫ T

0

∫
T3
ϕ(t)div(ρu)|uε|2dxdt

= : (B1) + (B2) +
1
2

∫ T

0

∫
T3
ϕ(t)∂tρ|uε|2dxdt

= : (B1) + (B2) + (B3).

Taking the mass equation (1.1)1 into consideration, we know that (A2) + (B2) = 0. The (B3) is the
desired term.

(A3) + (B3) =
1
2

∫ T

0

∫
T3
ϕ(t)∂t(ρ|uε|2)dxdt. (3.8)

By Hölder’s inequality and triangle inequality, we deduce the following:

(B1) = −
∫ T

0

∫
T3
ϕ(t)∇uε[(ρu ⊗ u)ε − (ρu) ⊗ uε]dxdt

≤C∥∇uε∥L2(0,T ;L2(T3))∥(ρu ⊗ u)ε − (ρu) ⊗ uε∥L2(0,T ;L2(T3))

≤C∥∇uε∥L2(0,T ;L2(T3))(∥(ρu ⊗ u)ε − (ρu) ⊗ u∥L2(0,T ;L2(T3)) + ∥(ρu) ⊗ u − (ρu) ⊗ uε∥L2(0,T ;L2(T3)))
≤C∥∇uε∥L2(0,T ;L2(T3))(∥(ρu ⊗ u)ε − (ρu) ⊗ u∥L2(0,T ;L2(T3)) + ∥ρu∥L4(0,T ;L4(T3))∥u − uε∥L4(0,T ;L4(T3)))

Thanks to the standard properties of mollifiers, we have the following:

lim sup
ε→0

|(B1)| = 0.
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3.3. Estimates of (C) and (D)

Utilizing integration by parts, we know that the following (C) and (D) are the desired terms, where

(C) = − µ
∫ T

0

∫
T3
ϕ(t)uε∆uεdxdt

=µ

∫ T

0

∫
T3
ϕ(t)|∇uε|2dxdt,

and

(D) = − (λ + µ)
∫ T

0

∫
T3
ϕ(t)uε∇divuεdxdt

=(λ + µ)
∫ T

0

∫
T3
ϕ(t)|divuε|2dxdt.

3.4. Estimate of (E)

Utilizing integration by parts and applying (1.1) leads to the following:

(E) =
∫ T

0

∫
T3
ϕ(t)uε∇[(P(ρ))ε − P(ρ)]dxdt +

∫ T

0

∫
T3
ϕ(t)uε∇P(ρ)dxdt

= : (E1) +
∫ T

0

∫
T3
ϕ(t)(uε − u)∇P(ρ)dxdt +

∫ T

0

∫
T3
ϕ(t)u∇P(ρ)dxdt

= : (E1) + (E2) +
∫ T

0

∫
T3
ϕ(t)u ·

aγ
γ − 1

ρ∇(ργ−1)dxdt

= : (E1) + (E2) −
∫ T

0

∫
T3
ϕ(t)div(ρu) ·

aγ
γ − 1

ργ−1dxdt

= : (E1) + (E2) +
∫ T

0

∫
T3
ϕ(t)∂tρ ·

aγ
γ − 1

ργ−1dxdt

= : (E1) + (E2) +
1
γ − 1

∫ T

0

∫
T3
ϕ(t)∂t(aρ)γdxdt

= : (E1) + (E2) +
1
γ − 1

∫ T

0

∫
T3
ϕ(t)∂tP(ρ)dxdt

= : (E1) + (E2) + (E3).

The term (E3) is the desired term, and the estimate of (E1) and (E2) will be finished as follows:

(E1) =
∫ T

0

∫
T3
ϕ(t)uε∇[(P(ρ))ε − P(ρ)]dxdt

≤∥uε∥L4(0,T ;L4(T3))∥∇(P(ρ))ε − ∇P(ρ)∥
L

4
3 (0,T ;L

4
3 (T3))
,

and

(E2) =
∫ T

0

∫
T3
ϕ(t)(uε − u) · ∇P(ρ)dxdt

≤C∥uε − u∥L4(0,T ;L4(T3))∥∇P(ρ)∥
L

4
3 (0,T ;L

4
3 (T3))
.
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By the upper bounded of ρ and Hölder’s inequality, we have the following:

∥∇P(ρ)∥
L

4
3 (0,T ;L

4
3 (T3))

≤ C∥P′(ρ)∇
√
ρ∥

L
4
3 (0,T ;L

4
3 (T3))

≤ C∥∇
√
ρ∥L4(0,T ;L4(T3)). (3.9)

Combining the standard properties of mollifiers and (3.9), we know that

lim sup
ε→0

|(E1)| = lim sup
ε→0

|(E2)| = 0.

3.5. Estimates of (F) and (J)

Next, we turn to estimate (F) and (J), of which the proof is inspired by [10], and we include that

(F) + (J) =
∫ T

0

∫
T3
ϕ(t)[−uε( j × b)ε + Eε · jε]dxdt

=

∫ T

0

∫
T3
ϕ(t)uε[−( j × b)ε + ( jε × bε) − ( jε × bε)] + ϕ(t)Eε · jεdxdt

=

∫ T

0

∫
T3
ϕ(t)uε[( jε × bε) − ( j × b)ε)]dxdt +

∫ T

0

∫
T3
ϕ(t)[(uε × bε) jε + Eε · jε]dxdt

= : (FJ)1 +

∫ T

0

∫
T3
ϕ(t)| jε|2dxdt +

∫ T

0

∫
T3
ϕ(t)[(uε × bε) − (u × b)ε] jεdxdt

= : (FJ)1 + (FJ)2 + (FJ)3.

We see that (FJ)2 is desired term, while the estimates of (FJ)1 and (FJ)2 will be finished. By
Hölder’s inequality, we can conclude that

(FJ)1 =

∫ T

0

∫
T3
ϕ(t)uε[( jε × bε) − ( j × b)ε)]dxdt

≤C∥uε∥L4(0,T ;L4(T3))∥( jε × bε) − ( j × b)ε∥
L

4
3 (0,T ;L

4
3 (T3))

≤C∥u∥L4(0,T ;L4(T3))∥( jεbε) − ( jb)ε∥
L

4
3 (0,T ;L

4
3 (T3))
,

and

(FJ)3 =

∫ T

0

∫
T3
ϕ(t)[(uε × bε) − (u × b)ε] jεdxdt

≤C∥(uε × bε) − (u × b)ε∥L2(0,T ;L2(T3))∥ jε∥L2(0,T ;L2(T3))

≤C∥(uε × bε) − (u × b)ε∥L2(0,T ;L2(T3))∥ j∥L2(0,T ;L2(T3)).

However, the following results are valid by using Hölder’s inequality:

∥ jεbε∥
L

4
3 (0,T ;L

4
3 (T3))

≤ C∥ j∥L2(0,T ;L2(T3))∥b∥L4(0,T ;L4(T3)). (3.10)

and
∥uε × bε∥L2(0,T ;L2(T3)) ≤ C∥u∥L4(0,T ;L4(T3))∥b∥L4(0,T ;L4(T3)). (3.11)

Therefore, from (FJ)1, (FJ)3, (3.10) and (3.11), with the help of Lemma 2.1, we obtain the follow-
ing:

lim sup
ε→0

|(FJ)1| = 0, lim sup
ε→0

|(FJ)3| = 0.
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3.6. Estimates of (G), (H), (L) and (K)

The remaining is to estimate (G), (H), (L) and (K). Using a straightforward computation leads to

(G) =
∫ T

0

∫
T3
ϕ(t)∂tEε · Eεdxdt

=
1
2

∫ T

0

∫
T3
ϕ(t)∂t|Eε|2dxdt,

and

(H) + (L) =
∫ T

0

∫
T3
ϕ(t)[−Eε · (∇ × b)ε + bε · (∇ × E)ε]dxdt

= −

∫ T

0

∫
T3
ϕ(t)Eεi · ϵi jk∂ jbεkdxdt +

∫ T

0

∫
T3
ϕ(t)bε · (∇ × E)εdxdt

=

∫ T

0

∫
T3
ϕ(t)ϵi jk∂ jEεi · b

ε
kdxdt +

∫ T

0

∫
T 3
ϕ(t)bε · (∇ × E)εdxdt

= −

∫ T

0

∫
T3
ϕ(t)ϵk ji∂ jEεi · b

ε
kdxdt +

∫ T

0

∫
T3
ϕ(t)bε · (∇ × E)εdxdt

= −

∫ T

0

∫
T3
ϕ(t)bε · (∇ × E)εdxdt +

∫ T

0

∫
T3
ϕ(t)bε · (∇ × E)εdxdt

=0,

and

(K) =
∫ T

0

∫
T3
ϕ(t)bε · ∂tbεdxdt

=
1
2

∫ T

0

∫
T3
ϕ(t)∂t|bε|2dxdt.

Then, summarizing all above the aforementioned estimates, putting them into (3.5) and taking the
limit as ε→ 0, we obtain the following:∫ T

0

∫
T3
ϕ(t)∂t(

1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)dxdt

+

∫ T

0

∫
T3
ϕ(t)(µ|∇u|2 + (µ + λ)|divu|2 + | j|2)dxdt = 0.

We can express it in the following form:

−

∫ T

0

∫
T3
ϕt(

1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)dxdt

+

∫ T

0

∫
T3
ϕ(t)(µ|∇u|2 + (µ + λ)|divu|2 + | j|2)dxdt = 0.

(3.12)
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Next, we study a similar method in [5] and shall prove the energy equality up to the initial time
t = 0. First, we claim that the following results are valid for any t0 ≥ 0:

lim
t→t+0
∥E(t)∥L2(T3) = ∥E(t0)∥L2(T3), lim

t→t+0
∥b(t)∥L2(T3) = ∥b(t0)∥L2(T3),

lim
t→t+0
∥
√
ρu(t)∥L2(T3) = ∥

√
ρu(t0)∥L2(T3), lim

t→t+0
∥ργ(t)∥L1(T3) = ∥ρ

γ(t0)∥L1(T3).
(3.13)

Based on the mass equation (1.1), we can write

∂tρ
γ = −γργdivu − 2γργ−

1
2 u · ∇

√
ρ,

and

∂t(
√
ρ) = −

√
ρ

2
divu − u · ∇

√
ρ,

which, together with the assumptions in Theorem 1.1, gives

(∂tρ
γ, ∂t
√
ρ) ∈ L2(0,T ; L2(T3)),

and
(∇ργ,∇

√
ρ) ∈ L4(0,T ; L4(T3)).

Hence, due to Lemma 2.3, it yields that the following:

(ργ,
√
ρ) ∈ C([0,T ]; L2(T3)). (3.14)

Consequently, for any t0 ≥ 0, by the right temporal continuity of ργ in L2(T3) and L2(T3) ⊂ L1(T3),
we deduce that the following:

ργ(t)→ ργ(t0) strongly in L1(T3) as t → t+0 , (3.15)

Furthermore, using the momentum equation (1.1)2, we obtain the following:

ρu ∈ L∞(0,T ; L2(T3)), (ρu)t ∈ L2(0,T ; H−1(T3)).

Then, because of Lemma 2.3, we have the following:

ρu ∈ C([0,T ]; L2
weak(T

3)). (3.16)

Similarly, from (1.1)3, (1.1)4 and (2.2), we can deduce that the following:

∂tE ∈ L2(0,T ; L2(T3)), , ∂tb ∈ L∞(0,T ; L2(T3)).

On the other hand, the assumptions in Theorem 1.1 implies

(E, b) ∈ L∞(0,T ; L2(T3)),

which can be obtained that leads to the following conclusion:

(E, b) ∈ C([0,T ]; L2(T3)). (3.17)
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Hence, for any t0 ≥ 0, from (3.17), we get that the following:

E(t)→ E(t0) strongly in L2(T3) as t → t+0 ,

b(t)→ b(t0) strongly in L2(T3) as t → t+0 .
(3.18)

Meanwhile, utilizing (2.2), (3.14), (3.16), (3.17) and the assumptions in Theorem 1.1 yields to the
following:

0 ≤lim
t→0

∫
|
√
ρu −

√
ρ0u0|

2dx

=2lim
t→0

(∫
(
1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)dx −

∫
(
1
2
ρ0|u0|

2 +
1
2
|E0|

2 +
1
2
|b0|

2 +
aργ0
γ − 1

)dx
)

+ 2lim
t→0

(∫
√
ρ0u0(

√
ρ0u0 −

√
ρu)dx +

a
γ − 1

∫
(ργ0 − ρ

γ)dx
)

+ lim
t→0

(∫
(E2

0 − E2) + (b2
0 − b2)dx

)
≤2lim

t→0

∫
√
ρ0u0(

√
ρ0u0 −

√
ρu)dx

≤2lim
t→0

∫
u0(ρ0u0 − ρu)dx + 2lim

t→0

∫
u0
√
ρu(
√
ρ −
√
ρ0)dx = 0,

which implies
√
ρu(t)→

√
ρu(0) strongly in L2(T3) as t → 0+. (3.19)

Similarly, we can establish the right temporal continuity of
√
ρu in L2(T3); hence, for any t0 ≥ 0,

we have the following:
√
ρu(t)→

√
ρu(t0) strongly in L2(T3) as t → t+0 . (3.20)

Combining (3.15), (3.18) and (3.20), we have now completed the proof of (3.13).
We notice that (3.12) is valid for ϕ belonging to W1,∞ rather than C1. Therefore, for any t0 > 0, we

can use a new test function ϕτ to represent ϕ for some positive τ and α such that τ + α < t0, that is

ϕτ(t) =



0, 0 ≤ t ≤ τ,
t − τ
α
, τ ≤ t ≤ τ + α,

1, τ + α ≤ t ≤ t0,

t0 − t
α
, t0 ≤ t ≤ t0 + α,

0, t0 + α ≤ t.

Then, substituting this function into (3.12), we have the following:

−

∫ τ+α

τ

∫
T3

1
α

(
1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)dxdt

+
1
α

∫ t0+α

t0

∫
T3

(
1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)dxdt

+
1
α

∫ t0+α

τ

∫
T3
ϕτ(µ|∇u|2 + (µ + λ)|divu|2 + | j|2)dxdt = 0.

(3.21)
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Letting α→ 0 and using the fact that
∫ t

0

∫
T3 ϕτ(µ|∇u|2 + (µ + λ)|divu|2 + | j|2)dxdt is continuous with

respect to t and the Lebesgue point Theorem, for all τ and t0 ∈ [0,T ], we arrive at the following:

−

∫
T3

(
1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)(τ)dt

+

∫
T3

(
1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)(t0)dt

+

∫ t0

τ

∫
T3

(µ|∇u|2 + (µ + λ)|divu|2 + | j|2)dxdt = 0.

(3.22)

Finally, taking τ → 0, combining the continuity of
∫ t0

0

∫
T3(µ|∇u|2 + (µ + λ)|divu|2 + | j|2)dxdt and

(3.13), for all t0 ∈ [0,T ], we can deduce that

∫
T3

(
1
2
ρ|u|2 +

1
2
|E|2 +

1
2
|b|2 +

aργ

γ − 1
)(t0)dt +

∫ t0

0

∫
T3

(µ|∇u|2 + (µ + λ)|divu|2 + | j|2)dxdt

=

∫
T3

(
1
2
ρ0|u0|

2 +
1
2
|E0|

2 +
1
2
|b0|

2 +
aργ0
γ − 1

)dt.

This now completes the proof of Theorem 1.1.
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2. E. Feireisl, A. Novotný, H. Petzeltova, On the existence of globally defined weak
solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358–392.
https://doi.org/10.1007/PL00000976

Electronic Research Archive Volume 31, Issue 10, 6412–6424.

http://dx.doi.org/https://doi.org/10.1007/PL00000976


6424

3. E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2003.
https://doi.org/10.1093/acprof:oso/9780198528388.001.0001
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