A three-dimensional dynamic heat transfer mathematical model of the process when cored wire feed in molten iron is established based on finite volume method (FVM). The calculation area is meshed with triangles and quadrilaterals to determine nodes and control volumes, and implicit time integration method is used to ensure the stability of calculating process. For exposing the dynamic heat transfer behavior, the variation of temperature field and explosion characteristics of cored wires are studied. In addition, the melt loss rate of the top end of cored wire and the correlation among melt explosion depth, molten iron temperature and feeding speed of cored wires are theoretically calculated. More importantly, the influence of different structures of cored wires on the absorption rate of magnesium are considered. The calculation results are in good agreement with the experimental data, which indicate that the existing theoretical model has good validity and can provide theoretical guidance for spheroidization process in molten iron.
Citation: Huimin Wang, Yimin Shi, Xingshi He, Wenzhi Zhao. Mathematical modeling and simulation analysis of different structured cored wire feeding spheroidization by finite volume method[J]. Electronic Research Archive, 2023, 31(7): 3980-3998. doi: 10.3934/era.2023202
A three-dimensional dynamic heat transfer mathematical model of the process when cored wire feed in molten iron is established based on finite volume method (FVM). The calculation area is meshed with triangles and quadrilaterals to determine nodes and control volumes, and implicit time integration method is used to ensure the stability of calculating process. For exposing the dynamic heat transfer behavior, the variation of temperature field and explosion characteristics of cored wires are studied. In addition, the melt loss rate of the top end of cored wire and the correlation among melt explosion depth, molten iron temperature and feeding speed of cored wires are theoretically calculated. More importantly, the influence of different structures of cored wires on the absorption rate of magnesium are considered. The calculation results are in good agreement with the experimental data, which indicate that the existing theoretical model has good validity and can provide theoretical guidance for spheroidization process in molten iron.
[1] | K. A. Beklemysheva, A. V. Vasyukov, A. S. Ermakov, I. B. Petrov, Numerical simulation of the failure of composite materials by using the grid-characteristic method, Math. Models Comput. Simul., 8 (2016), 557–567. https://www.doi.org/10.1134/S2070048216050033 doi: 10.1134/S2070048216050033 |
[2] | K. J. Vachaparambil, K. E. Einarsrud, Numerical simulation of bubble growth in a supersaturated solution, Appl. Math. Modell., 81 (2020), 690–710. https://doi.org/10.1016/j.apm.2020.01.017 doi: 10.1016/j.apm.2020.01.017 |
[3] | K. Mohamed, A finite volume method for numerical simulation of shallow water models with porosity, Comput. Fluids, 104 (2014), 9–19. https://doi.org/10.1016/j.compfluid.2014.07.020 doi: 10.1016/j.compfluid.2014.07.020 |
[4] | J. I. Chowdhury, B. K. Nguyen, D. Thornhill, Modelling of evaporator in waste heat recovery system using finite volume method and fuzzy technique, Energies, 8 (2015), 14078–14097. https://doi.org/10.3390/en81212413 doi: 10.3390/en81212413 |
[5] | Z. D. Luo, A new finite volume element formulation for the non-Stationary Navier-Stokes equations, Adv. Appl. Math. Mech., 6 (2014), 615–636. https://doi.org/10.4208/aamm.2013.m83 doi: 10.4208/aamm.2013.m83 |
[6] | T. Zhang, L. X. Tang, A stablized finite volume method for Stokes equations using the lowest order P1-P0 element pair, Adv. Comput. Math., 41 (2015), 781–798. https://doi.org/10.1007/s10444-014-9385-9 doi: 10.1007/s10444-014-9385-9 |
[7] | X. F. Chen, C. Tang, Z. M. Du, X. Ma, Numerical simulation on multi-stage fractured horizontal wells in shale gas reservoirs based on the finite volume method, Nat. Gas Ind. B, 6 (2019), 347–356. https://doi.org/10.1016/j.ngib.2018.12.004 doi: 10.1016/j.ngib.2018.12.004 |
[8] | M. J. Castro, S. Ortega, M. de la Asunción, J. M. Mantas, J. M. Gallardo, GPU computing for shallow water flow simulation based on finite volume schemes, C. R. Mec., 339 (2011), 165–184. https://doi.org/10.1016/j.crme.2010.12.004 doi: 10.1016/j.crme.2010.12.004 |
[9] | S. T. Miller, H. Jasak, D. A. Boger, E. G. Paterson, A. Nedungadi, A pressure-based, compressible, two-phase flow finite volume method for underwater explosions, Comput. Fluids, 87 (2013), 132–143. https://doi.org/10.1016/j.compfluid.2013.04.002 doi: 10.1016/j.compfluid.2013.04.002 |
[10] | L. Ma, D. B. Ingham, X. Wen, A finite volume method for fluid flow in polar cylindrical grids, Int. J. Numer. Methods Fluids, 28 (2015), 663–677. https://doi.org/10.1002/(SICI)1097-0363(19980930)28:4 < 663::AID-FLD739 > 3.0.CO; 2-J doi: 10.1002/(SICI)1097-0363(19980930)28:4 < 663::AID-FLD739 > 3.0.CO; 2-J |
[11] | E. I. Castro-Cedeno, A. Jardy, A. Carré, S. Gerardin, J. P. Bellot, Thermal modeling of the injection of standard and thermally insulated cored wire, Metall. Mater. Trans. B, 48 (2017), 3316–3328. https://doi.org/10.1007/s11663-017-1091-9 doi: 10.1007/s11663-017-1091-9 |
[12] | S. Basak, R. K. Dhal, G. G. Roy, Efficacy and recovery of calcium during CaSi cored wire injection in steel melts, Ironmaking Steelmaking, 37 (2013), 161–168. https://doi.org/10.1179/030192309X12506804200384 doi: 10.1179/030192309X12506804200384 |
[13] | J. H. Li, N. Provatas, Kinetics of scrap melting in liquid steel: multipiece scrap melting, Metall. Mater. Trans. B, 39 (2008), 268–279. https://doi.org/10.1007/s11663-007-9102-x doi: 10.1007/s11663-007-9102-x |
[14] | H. G. Huang, M. Yan, J. N. Sun, F. S. Du, Heat transfer of calcium cored wires and CFD simulation on flow and mixing efficiency in the argon-stirred ladle, Ironmaking Steelmaking, 45 (2018), 626–634. https://doi.org/10.1080/03019233.2017.1309751 doi: 10.1080/03019233.2017.1309751 |
[15] | G. W. Chang, H. X. Wang, X. D. Yue, H. L. Zhang, Research of the feeding speed adopting cored-wire method to spheroidize ductile iron melt, Acta Metall. Sin. Engl. Lett., 21 (2008), 362–368. https://doi.org/10.1016/S1006-7191(08)60060-5 doi: 10.1016/S1006-7191(08)60060-5 |
[16] | S. Sanyal, S. Chandra, S. Kumar, G. G. Roy, An improved model of cored wire injection insteel melts, ISIJ Int., 44 (2004), 1157–1166. https://doi.org/10.2355/isijinternational.44.1157 doi: 10.2355/isijinternational.44.1157 |
[17] | J. N. Reddy, M. Martinez, P. Nampally, A novel numerical method for the solution of nonlinearequations with applications to heat transfer, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 1884–1904. https://doi.org/10.1108/HFF-07-2020-0397 doi: 10.1108/HFF-07-2020-0397 |
[18] | T. Zhang, Z. Li, A finite volume method for Stokes problems on quadrilateral meshes, Comput. Math. Appl., 77 (2019), 1091–1106.https://doi.org/10.1016/j.camwa.2018.10.044 doi: 10.1016/j.camwa.2018.10.044 |
[19] | Z. M. Zhang, Q. S. Zou, Vertex centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary problems, Numer. Math., 130 (2015), 363–393. https://doi.org/10.1007/s00211-014-0664-7 doi: 10.1007/s00211-014-0664-7 |
[20] | W. F. Gale, T. C. Totemeir, Smithells Metals Reference Book, 2003. |