Research article Special Issues

Existence and stability results of a plate equation with nonlinear damping and source term


  • Received: 22 June 2022 Revised: 29 August 2022 Accepted: 31 August 2022 Published: 13 September 2022
  • The main goal of this work is to investigate the following nonlinear plate equation

    $ u_{tt}+\Delta ^2 u +\alpha(t) g(u_t) = u \vert u\vert ^{\beta}, $

    which models suspension bridges. Firstly, we prove the local existence using Faedo-Galerkin method and Banach fixed point theorem. Secondly, we prove the global existence by using the well-depth method. Finally, we establish explicit and general decay results for the energy of solutions of the problem. Our decay results depend on the functions $ \alpha $ and $ g $ and obtained without any restriction growth assumption on $ g $ at the origin. The multiplier method, properties of the convex functions, Jensen's inequality and the generalized Young inequality are used to establish the stability results.

    Citation: Mohammad M. Al-Gharabli, Adel M. Al-Mahdi. Existence and stability results of a plate equation with nonlinear damping and source term[J]. Electronic Research Archive, 2022, 30(11): 4038-4065. doi: 10.3934/era.2022205

    Related Papers:

  • The main goal of this work is to investigate the following nonlinear plate equation

    $ u_{tt}+\Delta ^2 u +\alpha(t) g(u_t) = u \vert u\vert ^{\beta}, $

    which models suspension bridges. Firstly, we prove the local existence using Faedo-Galerkin method and Banach fixed point theorem. Secondly, we prove the global existence by using the well-depth method. Finally, we establish explicit and general decay results for the energy of solutions of the problem. Our decay results depend on the functions $ \alpha $ and $ g $ and obtained without any restriction growth assumption on $ g $ at the origin. The multiplier method, properties of the convex functions, Jensen's inequality and the generalized Young inequality are used to establish the stability results.



    加载中


    [1] F. C. général des ponts, Chaussées, Rapport a Monsieur Becquey, directeur général des ponts et chaussées et des mines: et Mémoire sur les ponts suspendus, Impr. Royale, 1823.
    [2] J. Melan, Theory of Arches and Suspension Bridges, MC Clark publishing Company, 1913.
    [3] O. H. Amman, T. Von Kármán, G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, 1941. Available from: https://resolver.caltech.edu/CaltechAUTHORS:20140512-105559175.
    [4] F. Bleich, The Mathematical Theory of Vibration in Suspension Bridges: A Contribution to the W ork of the Advisory Board on the Investigation of Suspension Bridges, US Government Printing Office, 1950.
    [5] A. C. Lazer, P. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. https://doi.org/10.1137/1032120 doi: 10.1137/1032120
    [6] P. J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal., 98 (1987), 167–177. https://doi.org/10.1007/BF00251232 doi: 10.1007/BF00251232
    [7] G. Arioli, F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the tacoma narrows bridge, Appl. Math. Modell., 39 (2015), 901–912. https://doi.org/10.1016/j.apm.2014.06.022 doi: 10.1016/j.apm.2014.06.022
    [8] J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Eng. Struct. Dyn., 23 (1994), 1351–1367. https://doi.org/10.1002/eqe.4290231206 doi: 10.1002/eqe.4290231206
    [9] B. Breuer, J. Horák, P. J. McKenna, M. Plum, A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam, J. Differ. Equations, 224 (2006), 60–97. https://doi.org/10.1016/j.jde.2005.07.016 doi: 10.1016/j.jde.2005.07.016
    [10] Z. Ding, On nonlinear oscillations in a suspension bridge system, Trans. Amer. Math. Soc., 354 (2002), 265–274. https://doi.org/10.1090/S0002-9947-01-02864-1 doi: 10.1090/S0002-9947-01-02864-1
    [11] P. J. McKenna, W. Walter, Travelling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703–715. https://doi.org/10.1137/0150041 doi: 10.1137/0150041
    [12] Y. Rocard, Dynamic Instability: Automobiles, Aircraft, Suspension Bridges, C. Lockwood, 1957.
    [13] A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879–5908. https://doi.org/10.3934/dcds.2015.35.5879 doi: 10.3934/dcds.2015.35.5879
    [14] S. A. Messaoudi, Global existence and nonexistence in a system of petrovsky, J. Math. Anal. Appl., 265 (2002), 296–308. https://doi.org/10.1006/jmaa.2001.7697 doi: 10.1006/jmaa.2001.7697
    [15] Y. Wang, Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., 418 (2014), 713–733. https://doi.org/10.1016/j.jmaa.2014.04.015 doi: 10.1016/j.jmaa.2014.04.015
    [16] S. E. Mukiawa, Existence and general decay estimate for a nonlinear plate problem, Boundary Value Probl., 2018 (2018), 11. https://doi.org/10.1186/s13661-018-0931-0 doi: 10.1186/s13661-018-0931-0
    [17] S. A. Messaoudi, S. E. Mukiawa, Existence and stability of fourth-order nonlinear plate problem, Nonauton. Dyn. Syst., 6 (2019), 81–98. https://doi.org/10.1515/msds-2019-0006 doi: 10.1515/msds-2019-0006
    [18] J. D. Audu, S. E. Mukiawa, D. S. A. Júnior, General decay estimate for a two-dimensional plate equation with time-varying feedback and time-varying coefficient, Results Appl. Math., 12 (2021), 100219. https://doi.org/10.1016/j.rinam.2021.100219 doi: 10.1016/j.rinam.2021.100219
    [19] R. Xu, W. Lian, X. Kong, Y. Yang, Fourth order wave equation with nonlinear strain and logarithmic nonlinearity, Appl. Numer. Math., 141 (2019), 185–205. https://doi.org/10.1016/j.apnum.2018.06.004 doi: 10.1016/j.apnum.2018.06.004
    [20] W. He, D. Qin, Q. Wu, Existence, multiplicity and nonexistence results for kirchhoff type equations, Adv. Nonlinear Anal., 10 (2021), 616–635. https://doi.org/10.1515/anona-2020-0154 doi: 10.1515/anona-2020-0154
    [21] J. N. Wang, A. Alsaedi, B. Ahmad, Y. Zhou, Well-posedness and blow-up results for a class of nonlinear fractional rayleigh-stokes problem, Adv. Nonlinear Anal., 11 (2022), 1579–1597. https://doi.org/10.1515/anona-2022-0249 doi: 10.1515/anona-2022-0249
    [22] M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal. Theory Methods Appl., 106 (2014), 18–34. https://doi.org/10.1016/j.na.2014.04.011 doi: 10.1016/j.na.2014.04.011
    [23] M. M. Cavalcanti, W. J. Corrêa, R. Fukuoka, Z. Hajjej, Stabilization of a suspension bridge with locally distributed damping, Math. Control Signals Syst., 30 (2018), 20. https://doi.org/10.1007/s00498-018-0226-0 doi: 10.1007/s00498-018-0226-0
    [24] A. D. D. Cavalcanti, M. M. Cavalcanti, W. J. Corrêa, Z. Hajjej, M. S. Cortés, R. V. Asem, Uniform decay rates for a suspension bridge with locally distributed nonlinear damping, J. Franklin Inst., 357 (2020), 2388–2419. https://doi.org/10.1016/j.jfranklin.2020.01.004 doi: 10.1016/j.jfranklin.2020.01.004
    [25] F. Gazzola, Mathematical Models for Suspension Bridges, 2015. https://doi.org/10.1007/978-3-319-15434-3
    [26] W. Liu, H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, Nonlinear Differ. Equations Appl. NoDEA, 24 (2017), 67. https://doi.org/10.1007/s00030-017-0491-5 doi: 10.1007/s00030-017-0491-5
    [27] V. F. Jr, F. Gazzola, E. M. dos Santos, Instability of modes in a partially hinged rectangular plate, J. Differ. Equations, 261 (2016), 6302–6340. https://doi.org/10.1007/s00030-017-0491-5 doi: 10.1007/s00030-017-0491-5
    [28] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integr. Equations, 6 (1993), 507–533. Available from: file:///C:/Users/97380/Downloads/1370378427.pdf.
    [29] P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM: Control Optim. Calculus Var., 4 (1999), 419–444. https://doi.org/10.1051/cocv:1999116 doi: 10.1051/cocv:1999116
    [30] A. Guesmia, Inégalités intégrales et applications à la stabilisation des systèmes distribués non dissipatifs, Ph.D thesis, Université de Metz, 2006. Available from: https://hal.inria.fr/tel-01283591/.
    [31] V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equations, 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051
    [32] J. Y. Park, T. G. Ha, Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term, J. Math. Phys., 49 (2008), 053511. https://doi.org/10.1063/1.2919886 doi: 10.1063/1.2919886
    [33] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Springer, 2013.
    [34] M. T. Lacroix-Sonrier, Distributions, espaces de Sobolev: Applications, Ellipses, 1998.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1182) PDF downloads(100) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog