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Abstract: In this manuscript, we study the asymptotic stability of solutions of two coupled quasi-
linear viscoelastic Kirchhoff plate equations involving free boundary conditions, and accounting for
rotational forces

!
Vil — Ay + A%y - f hi(t = $)A*y(s) ds + fi(y,2) = 0,
0

t
|2z — Azys + A’z - f hy(t - S)AZZ(S) ds+ fr(y,z) = 0.
0

The system under study in this contribution could be seen as a model for two stacked plates. This work
1s motivated by previous works about coupled quasi-linear wave equations or concerning single quasi-
linear Kirchhoff plate. The existence of local weak solutions is established by the Faedo-Galerkin
approach. By using the perturbed energy method, we prove a general decay rate of the energy for a
wide class of relaxation functions.

Keywords: Kirchhoff plate equation; free boundary conditions; viscoelastic; Faedo-Galerkin
method; asymptotic stability

1. Introduction

A coupled system of two Kirchhoff plate equations is considered:
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!

b#m—Am+A%—jVMrwm®@nm+ﬁmo=o in Qx(0,c0),
0
!

|zl zi — Azyy + Nz - f hy(t — S)AZZ(S) ds+ fo(y,2) =0 in QX (0,00),
0

y=0,y=2=0,z=0 on Iy x(0,00),

! !
Bly—f hi(t — $)By(s) ds:Blz—f hy(t— $)Biz(s)ds =0  on T X (0, o0), (1.1)
0 0
!

Bﬂ—mm—fhw—wmmwm:o on Ty x (0, 00),
0

BzZ - al,Zn - f hz(f - S)BzZ(S) ds =0 on I'jXx (O, OO),
0
y(x,0) = yo(x), yi(x,0) =yi1(x), 2(x,0) =20(x), z(x,0)=2z1(x) In €Q,

where Q is a bounded domain of R? with a smooth boundary I' = 9Q = I’y U T}, such that T,NT, =0,
the initial data yy, y, zo and z; lie in appropriate Hilbert space.

The symbols y, and y,, refer, respectively, to first order and second order derivatives ( with respect to
f) of y, while A and A? are the Laplacian and Bilaplacian operators. The functions h; and f; (fori = 1,2)
verify some assumptions that will be given in the next section. p is a positive constant, = (xi, x,) is
the space variable, and the operators B; and B, are defined by

Biy = Ay + (1= 1) (2V1%2Y5, = VVere, = V3V )

and
Boy = 0, Ay + (1 = 107 (7] = V3)¥srs + V1v20Vss = Vi)

where the constant 0 < u < % is the Poisson coefficient. Here, 9, stands for normal derivative,
v = (v1, ) 1s the unit outer normal vector to I" and 7 = (—v,, v;) 1s a unit tangent vector.

Model (1.1) describes the interaction of two viscoelastic Kirchhoff plates with rotational forces,
which possess a rigid surface and whose interiors are somehow permissive to slight deformations,
such that the material densities vary according to the velocity [1]. Each one of these two plates is
clamped along I'y, and without bending and twisting moments on I';. The analysis of stability issues
for plate models is more challenging due to free boundary conditions and the presence of rotational
forces, etc. [2]. Moreover, in our case the source term competes with the dissipation induced by the
viscoelastic term only. Therefore, it will be interesting to study this interaction [3].

We start off by reviewing some works related to quasi-linear wave equation and plate equation.

Cavalcanti et al. [1] considered the following equation
t
lu ' uy — Au — Auy, + f g(t = s)Au(s)ds — yAu, = 0, (1.2)
0
and proved the global existence of weak solutions and a uniform decay rates of the energy in the
presence of a strong damping, of the form —yAu, acting in the domain and assuming that the
relaxation function decays exponentially. Messaoudi and Tatar [3] studied (1.2) but without a strong

damping (y = 0). They showed that the memory term is enough to stabilize the solution. The global
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existence and uniform decay for solutions of (1.2), provided that the initial data are in some stable set,
are obtained in [4] with the presence of a source term and with y = 0. Later, in [5], for y = 0, the
authors investigated the general decay result of the energy of (1.2) with nonlinear damping. In [6], the
author investigated (1.2) with weakly nonlinear time-dependent dissipation and source terms, and he
established an explicit and general energy decay rate results without imposing any restrictive growth
assumption on the damping term at the origin. For other related results for quasi-linear wave
equations, we refer the reader to [7-10]. For quasi-linear plate equations, we mention the work of
Al-Gharabli et al. [11] where the authors studied the well-posedness and asymptotic stability for a
quasi-linear viscoelastic plate equation with a logarithmic nonlinearity. Recently, Al-Mahdi [12]
studied the same problem as in Al-Gharabli et al. [11], but with infinite memory. With the imposition
of a minimal condition on the relaxation function, he obtained an explicit and general decay rate
result for the energy. Very recently, in [13], the authors considered a plate equation with infinite
memory, nonlinear damping, and logarithmic source. They proved explicit and general decay rate of
the solution.

The stability of coupled quasi-linear systems has been discussed by many authors. Liu [14]
considered two coupled quasi-linear viscoelastic wave equations. He showed that the viscoelastic
terms’ dissipations guarantee that the solutions decay exponentially and polynomially. Later on, with
more general relaxation functions and specific initial data, He [15] extended the result of Liu [14].
Recently, Mustafa and Kafini [16] considered the same problem and improved earlier results for a
wider class of relaxation functions. In [17], the authors studied the same problem, but with nonlinear
damping, and showed a general decay rate estimates of energy of solutions. Very recently, Pigkin and
Ekinci [18] generalized and improved earlier results by considering a degenerate damping. Finally,
let’s mention the recent works of Fang et al. [19] and Zhu et al. [20] that relate to our problem.

As I know, there is no work regarding quasi-linear plate equations. This paper seems to be the first
that deals with this problem.

The structure of this paper is shown as follows: In Section 2, we present some presumptions that
are necessary for the proof of essential results. The third section provides the proof of well-posedness
of our system. The general energy decay result is stated and established in Section 4. The fifth section
provides two examples that illustrate explicit formulas for the energy decay rates. A concluding section
is given at the end.

2. Preliminaries

This part is devoted to give some necessary materials and assumptions for the proof of our key
results. We define

V={yeH Q) :y=3d,y=0 on Iy},

and
W={yeH (@) :y=0 on I}

Denoting dx = dx,dx,, we define the bilinear form b : V X V — R by:

b(y,2) = f {yxmzxm + VonZon T 201 = WY 0nZan + 4 OxxZoen + szXszm)} dx.
Q
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Firstly, we must recall Green’s formula (see [2]):
b(y,z) = fAzyzdx + f(BlyG,,z — Boy2)dll, ¥Vye HY(Q), ze H(Q), 2.1
Q r
and a weaker version of it (see Theorem 5.6 in [21]) in the following form:

—(Boy, 7). 3 Y z € HX(Q). (2.2)

H 3 (M).HIT) H3@HITY

b@@=fN%M+@m%@
Q

We need the following lemma.

Lemma 2.1. ( [22]) For any y € C(0, T; H*(Q)), we get

bUﬁw—m@wﬁ
0

1 1d !
-Emawmw—za{mem—(£mmmﬁm%w}

1
+3 (IO, (23)

where

(hiOy)(1) fo hy (1 = 5)b (y(1) = y(5), y(1) = y(5)) ds.

In this paper, we suppose that:
(A1): The two non-increasing C' functions 4; : [0, +c0) — (0, +o0) (for i = 1,2) such that

1- fw hi(s)ds =1; > 0. (2.4)
0

(A2): There are a positive C' functions G; : (0, +00) — (0, +00), that are linear or strictly increasing
and strictly convex C? on (0, 7], (r < 1), with G;(0) = Gi(0) = 0, satisfying for all > 0

hi(1) < =&0G(hi(2)), for i = 1,2, (2.5)

where &, and &, are positive non-increasing differentiable functions.
(A3): f;:R? - R (fori=1,2)are C' functions and there exists a positive function F, such that

F F
filx, %) = —, foilx1, %) = —, x1fi(x1, x2) + X2 f2(x1, X2) — F(x1, x2) > 0,
(9)61 ébcz

and
ofi ofi . o
‘%()ﬁ,xz)‘ + 'a_)];(xl,XZ)‘ <d(1+ x P+ ), V(L x0) € R, (2.6)
1
for some constant d > 0 and 3;; > 1 for i, j = 1,2.

Remark 2.1. [. The condition (A1) guarantees the hyperbolicity of the first two equations in the
system (1.1).
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2. By (2.6) and the mean value theorem, we have for some positive constant d,
fiCx1, x| < di(1x1] + 3] + [P + [xf2), (2.7)
and
[fi(x1, x2) = fiCwr, w)| < di(1+ 1P+ 102 + P+ P (x — wi| + x — ), (2.8)
Jor all (x1, x2), (uy,uy) € R2andi=1,2.

The energy functional is defined by

E()

1 1 1 ! 1
- o+2 - 2, - _ -
o+2 L ly " dx + 2||Vyt” *3 (1 j; hl(S)dS) b(y,y) + 2(hllily)(t)

K@) Py(0)

1 1 1 ! 1
+ m fQ IZ,Ier2 dx + §||Vz1,5||2 + 3 (1 - L hz(s)ds) b(z,2) + E(hzmz)(t)
K(1) P(1)
; f F(y.2) dx. (2.9)
Q

Here,

K@) = K1) + K(t) and P(1) = Py(t) + P.(t) + fF(y, 2) dx

Q

represent, respectively, the kinetic and the elastic potential energy of the model.

We have the following dissipation identity:

Proposition 2.1.

1 1 1 1
E'(t) = E(h’l Oy)(?) — Ehl(t)b(y, y) + E(hél]z)(t) - Ehz(t)b(z, 7) <0. (2.10)

Proof. Multiplying (1.1), by y, and (1.1), by z;, summing the resultant equations and integrating over
Q to get

R p+2 d - 2 —b p+2 d I 5
i fg il d SV P + 5600 + fg o dx+ 29z
1 t ¢
+§b(z,z)+fF(y,z) dx}—fhl(t—s)b@(s),yt)ds—fhz(t—s)b(z(s),z,)ds:0,(2_11)
Q 0 0

Inserting (2.3) in (2.11), we get the desired result. |

Throughout this paper, ¢ denotes a generic positive constant, and not necessarily the same at
different occurrences.
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3. Global existence

We begin this part by defining a weak solution of the system (1.1).

Definition 3.1. A couple of functions (y, z) defined on [0,T] is a weak solution of the problem (1.1) if
y € C([0,T],V)nCY([0,T],W), z€ C(0,T],V)NCY[0,T], W), and satisfies

f el yrtt dx + f VyuVu dx+b(y,u) - f h(t = $)b(y(s), u) ds + ffl(y, Dudx =0,
Q Q 0 Q
y(-x’ O) = )’O(X)a )’z(x, O) = )’I(X)a

and

!
f |zl zv dx + f VzuVvdx+bz,v)— f hy(t — $)b(z(s),v) ds + ffz(y, 2vdx =0,
Q Q 0 Q
2(x, 0) = z0(x), z(x,0) = z1(x),
fora.e. t € [0,T] and all test functions u,v € V.

Theorem 3.1. Let (yo, y1), (z0,21) € V X W. Assume that assumptions (A1)—(A3) are true. Then, the
system (1.1) has at least a local weak solution. Moreover, this solution is global and bounded.

Proof. With the help of the Faedo-Galerkin approach, the existence is demonstrated. In order to achieve
this, let {w j};il be a basis of V. Define E,, = span{wy, w,, ..., w,,}. On the finite dimensional subspaces
E,,, the initial data are projected as follows:

W) = ) w0 = ) b FW) = Y cwe W = ) dow,
= k=1 k=1

k=1 k=1

such that
0072 = (o,20) in V2, and (., zL) = (vi,z1) in W2 3.1)

Considering the following solution

Yt = prowix), 20 = ) quwix),
k=1 k=1

which satisfies the following approximate problem in E,,:

!
f Vi Pyiiw dx + f Vyit Vw dx + b(y",w) - f hi(t = $)b(Y"(s),w) ds + f AG™ Zwdx =0,
Q Q 0 Q

!
f 12" PZw dx + f VzVw dx + bZ",w) — f ha(t — $)b(Z"(s),w) ds + ffz(y’”,z’")w dx=0, (3.2)
Q Q 0 o
y"(0) = yg, y/'(0) = y1',2"(0) =z, 7"(0) = 2.

This leads to a system of ordinary differential equations (ODEs) for unknown functions p; and g.
Hence, from the standard theory of system of ODEs, a solution (y™, z"*) of (3.2) exists, for all m > 1,
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on[0,t,), withO<¢t,<T, YVm>1.

A priori estimate 1: Letw = y/" in (3.2); and w = )" in (3.2),. Combining the resultant equations
and integrating on € to obtain

d 1
ZE" (@) = 2{(n'my") @) = @b, y") + (D" @) = (Db, 2", (3.3)

where

1 1 ' 1 1
m — mp+2 - _ mo.m _ my2 , m
E"(1) +2fly,l dx + 2(1 j;fn(S)dS)b(y V) + SIVYIE + 5 (my™)()

A
1
dx + — ( - f hz(s)ds)b(zm,zm)+EIIVzZ”llz
0
+—(h2|:|z’”)(t)+fF(y’”,zm) dx.
2 o

Noting, by (3.1), that
107, zllv2, G ZDllwe < c.

Then, by integrating (3.3) over (0,7),0 < ¢ < t,,, we get a constant M; > 0 that doesn’t depend on ¢ and
m, satisfying

E"(t) < E"(0) < M,. (3.4)

Hence, t,, can be replaced by some 7 > 0, for all m > 1.

A priori estimate 2: Let w = y) in (3.2); and w = z in (3.2),, adding the resultant equations,
integrating on Q , and using Young’s inequality to obtain for all > 0

f WP dx + f I dx+ f Yy dx + f VP da
Q Q

_ b+ fo (= 9BO"(5)y) ds

!
—b(z’”,z?f)+fhz(t—S)b(zm(S),z’ﬁ) ds
0
- f A7 2 dx - f O™ M dx
Q Q

1
20 (bGyrs yit) + bz zp)) 1 (b(ym,ym) +b(Z",2")
+(1 - 11)h1(0) + (1

IA

[5)h>(0
o f (B (5), 3" () + b(E"(5), 2"(5))) dis
- [ Aoy de- [ pom2ne ax (3.5)
Q
Using Holder’s inequality, Sobolev’s embedding, (2.7) and (3.4), one has for some M, > 0,
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| f AO™ N d < d f ("1 + 12"+ P+ 12 )yl dx
Q Q
< eIyl + Iyl + Iy 1Bs, + 1162, ) 1l
: (b(ym W+ (BE 2N + (b0 F + (bE"2M) ) by ¥y
< Mofb(yy.Yi). (3.6)

Similarly, we obtain that

D=

[ [ o 2meg dx| < Matbeag ' (3.7)
Q

From (3.5)—(3.7), we infer that

f WP dx + f I dx+( f Yy dx - 2nb<yn,yn) ( f VP dx - 2nb<z,,,z,,>)

< 4— (BO",Y") +a@", ") + My (b vl + (b, Z0))
n

(1 =1)hi(0) + (1 =
4n

Lh(0) (7
20 fo (DG (5),5"(5)) + BE"(5), 2"() d. (3:8)
Integrating (3.8) on (0, T'), and using (3.4) gives us

T T T T
f f WP dx di + f f PPIIP dx di + f ( f VyrP dx—anb(y;’:,y'::)) dt + f ( f (V2 dx = 3pb( 2 di
0 Q 0 Q 0 Q 0 Q

T
< g M T = 1) (0) + (1= 1)a(O)]) + M3} (3.9)

Choosing n small enough, such that

1
IVl = 3nb.u) > 0, V u eV,

and so that |
IV ull; — 3nb(u, u) > §IIVUI|§, YuelV.

Consequently, (3.9) becomes

T T T
1
[ oo axars [ [ evnp a5 [ [ (9uip e 9ape) ava
0 Q 0 Q 0 Q

T
< 3 (M TIA = ) 0) + (1= B)ha(O)]) + M3,

Then, we have

T
f f(IVy P+ V2 ) dx dt < Ms, (3.10)
0
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for some constant M3z > 0.

From (3.4) and (3.10), we conclude that

y", Z" are uniformly bounded in L*(0,T; V), 3.11)

v, z;' are uniformly bounded in L*(0, T'; W), (3.12)
and

vy, Z; are uniformly bounded in L0, T; W). (3.13)

Hence, we can extract subsequence of (y") and (z™), still denoted by (y"") and (z") respectively, such
that

Yy Sy 2 Sz in LO0,T; V) and y" — y, 7" — zin LX0,T; V), (3.14)
Yy, 2 g in LU0, T; W) and y" — y,, 2" — z, in L2(0, T; W), (3.15)

and
YU =y, 2" — z, weakly in L*(0,T; W). (3.16)

Analysis of the non-linear terms:

1. Term f;(y",z™): We have that (y"*) and (") are bounded in L*(0, T'; V). This shows, by the use
of the embedding of V ¢ L¥(Q)(Q c R?), the boundedness of (y") and (") in L*(Q x (0, T)).
Likewise, (y") and () are bounded in L*(Q x (0,T)). Hence, by the use of the Aubin-Lions
Theorem, we get, up to a subsequence, that

y" =y and 7" — z strongly in L*(Q X (0, T)).

Then,
y'"—>yand 7" — zaein Qx (0,7),

and, therefore, from (A3),
", 7" = fi(y,z) aein Qx(0,7T), fori=1,2. (3.17)

On the other hand, we have (y") and (z) that are bounded in L*(0, T'; L*(Q)), then, by using (2.7)
and (3.4), we get that £;(y", z") is bounded in L>(0, T'; L>(€2)). This fact and (3.17) leads to

fO™ 2" — fi(y,z) in L*(0, T; L*(Q)), fori =1,2.

2. Terms [y7"fy!" and |Z)"|°z}": We recall that (y}") and (z}") are bounded in L*(0, T'; W), which gives
that (y}") and (z]") are bounded in L*(€2x (0, T")), and so in L*(Qx(0,T)). By the same, we deduce
that (") and (z) are bounded in L*(Q X (0, T')). Now, using Aubin-Lions theorem, we conclude,
up to a subsequence, that

yi' =y and 7" — z; strongly in LX(Q % (0,T)),

and
WPy = vy, and |21z — |2z a.ein QX (0, 7). (3.18)
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Using (3.4), we see that

m

Vi y,

2
cHeth f IVy 3¢ dr < 2O M T, (3.19)
LZ(OTLZ(Q))

and similarly
< CHO M, (3.20)

*

0
=

where C. is a positive constant satisfying |[u||, < C.||Vul|,, for all u € W.

L2(0,T;L%(Q))

Then, the sequences (|y"[’y™) and (|z""[’z") are bounded in L*(Q x (0,7)). Combining (3.18),
(3.19) and (3.20) and using Lion’s lemma [23], one derives

DY = yly, and [2'Fz" — |2z in L*(0, T; L*()). (3.21)
Next, by integrating (3.2) on (0, 7), one obtains
! ! S
P f Py w dx + f Vy"Vw dx + f b(y",w) ds — f f h(s — Ob™(0),w) di ds
Q Q
! 1
+f ffl(y’",zm)w dxds = — f Y EYT'w dx + f Vy"Vw dx, (3.22)

p+1f|Z’ Ipz[wdx+szth'w dx+fb(z w)ds—ffhz(s—g“)b(z (O),w)d ds

"‘f ffz(ym,zm)w dXdS=—f|Z’1"IpZ'1"W dx+sz{”Vw dx.
0 Jo p+1Jg Q

Letting m — +o00, the aforementioned convergence results give that

1 1
p+1f|y,|py,wdx+nyti dx——flyllpylw a’x—nyIV'w dx

= fb(y,w)ds+ff 1(s = Ob(y(0), w)dg“ds—f ffl(y, 2w dx ds, (3.23)

1
f |z[Pzw dx + f Vz,Vwdx — —— f lz1IPziw dx — f VzVw dx
p+1 p+1 Q

—fb(z,w)ds+ffhz(s—g“)b(z(g’),w)d{ds—fffz(y,z)wdxds,
0 0o Jo 0 Jo

Since the terms in the right hand side of (3.23), and (3.23), are absolutely continuous, then (3.23)
is differentiable for a.e. ¢ > 0, and, therefore, one has for allw € V

forallwe V.

t
f el yaewdx + b(y,w) + f VyuVwdx - f hy(t — s)b(y(s),w) ds + ffl(y, owdx =0,
Q Q 0 Q

!
f |z zwdx + b(z, w) + f VzuVwdx - f hyo(t — $)b(z(s),w) ds + ffz(y, 2w dx =0
Q Q 0 Q
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Regarding the initial conditions, we recall that

y' =y, " —zinL*0,T;V)

(3.24)
YW=y, ' =2z inLX0,T;W).
Consequently, the use of Lion’s Lemma [23] leads to
Y=y, 2" =z in C(0,T), (). (3.25)

Hence, y"(x,0) and z”(x,0) make sense and y"(x,0) — y(x,0), z"(x,0) — z(x,0) in L*(Q).
Recalling that
Y*(x,0) = y5(x) = yo(x), 2"(x,0) = z5'(x) = z0(x) in V,

we obtain that
y(x,0) = yo(x) and z(x,0) = zo(x). (3.26)

Besides, multiplying (3.2) by ¢ € C7(0, T) [24] and integrating on (0, T), to get

T
f Y W)y (1) di = f f VyrVwd(s) dx di - fo b, W) di

p+1
. f f it = bO"(s), w)p(0) dis dt
0 0
T
_ f f " 2we(0) dx d.
0 Q
and
T T
f rwadOdi= - [ [ Vv dvd- [ bewon a
p+1 0 Ja 0
T t
v f f ot — $Yb(E"(s), W) dis dr
0 0

T
- f f SO, Zwh(n) dx dt.
0 Q

As m — +oo, we have for any w € V and any ¢ € C7(0,7)

T T
f (yelye W' (@) di = fo fg VyuVwe(r) dx dr - fo b(y, w)g(1) dt

p+1

+

T t
f f hi(t — $)b(y(s), w)d(t) ds dt
0

0

T
- f f A, W) dx dt,
0 Q
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and

T T
f Vz,Vwe(t) dx dt — f b(z, w)p(t) dt
0 0
S
0
T
-
yi and z; € LZ(O, T;V).
Since y; and z, € L*(0, T; L*(Q)), we deduce that y, and z, € C(0, T; V).

o1 f (22, W2’ (¢) dit =

hy(t — s)b(z(s), w)o(t) ds dt

£y, 2)we(t) dx dt.

hhh

This means that (see [24])

So, y/"(x,0) and z}"(x, 0) make sense and
y:”(x, 0) - yl‘(xa O)’ Z;n(x’ O) - Zl‘(x’ O) in V
But
Vi(x,0) = y1'(x) = yi(x), 7'(x,0) =2Z/'(x) = z1(x) in W.

Hence,
yi(x,0) = yi(x) and z(x,0) = z;(x).

Consequently, the proof of local existence of weak solutions is complete. Besides, it is easy to
see that
Lb(,y) + IV Yl + Lb(z, 2) + IV z|* < 2E (1) < 2E(0), (3.27)

which gives the globalness and boundedness of the solution of problem (1.1). O
4. General decay

We denote by &(7) = min{&,(¢), & (1)}, h(t) = max{h(¢), h,(¢¥)} and G(¢) = min{G(¢), G,(?)}.

Theorem 4.1. Let (uy,u;), (vo,vi) € V X W. Suppose that (A1)—(A3) hold. Thus, the energy
E(¢) satisfies

4.1)

E@® < ,Bngl( e g(s)ds), V1> h7\(r), with Go(1) = f[ G

for some positive constants 31 and 3.
Remark 4.1. ( [16])

1. We recall the Jensen’s inequality: Assume F is a concave function on [a,b], f : Q — [a,b] and

g are in L'(Q), with g(x) > 0 and f g(x)dx =m >0, then
Q

1 1
- f FIf()]g(x) dx < F| f f(g(x) dx|
m Jo mJo
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2. From (A2), one has lim h;(t) = 0. Hence, A t; > 0 is large enough, verifying
t—+00
ht)=r=h@)<r, Yt=>1. 4.2)
One can easily check, for i = 1,2, that

a; < &(DGi(hi(D) < b,

for some constants a; > 0 and b; > 0. This implies that

’ a; a;
hi(t) < =&(DGi(hi(1)) < —mhi(()) < —mhi(f), Yiel0,n]. (4.3)

Proof of Theorem (4.1): The proof is divided into three steps.

Step 1: In this step, we give estimates for the derivatives ( with respect to 7) of the functionals ¢(¢)
and (¢) defined below by:

@(t) = 1(2) + @a2(D), 4.4)
with .
o) = — f Wyil?y: dx + f Vy:Vy dx,
p+1Ja Q
(1) = L leztlpZt dx + f VzVzdx,
p+1Ja Q
and
() = Y1 (0) + (1), 4.5)
with
1 !
(@ = —— f Iytlpytf hi(t = s)(y(®) — y(s)) ds dx
p+1Jg 0
- [ vy [ =9V E) — y(s)) ds dx. 4.6)
Q 0

Uo(t) = —L f |z,|“’ztf hy(t — s)(z(t) — z(s)) ds dx — f Vztf hy(t — s)V (z(t) — z(s)) ds dx.
p+ 1 Q 0 Q 0

Lemma 4.1. If (A1)—(A3) hold. The functional ¢(t) defined in (4.4) verifies, along the solution of (1.1),
[ 1
@' < —Elb(y, y) + f \Vyl* dx + — f il?*? dx + c(hyOy)(2)
Q p+1Ja
[ 1
— 2b(z,0) + f V2l dx + — f |2+ dix + c(ha0z)(1) — f F(y,2)dx.  (4.7)
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Proof. We have ¢/(1) = ¢, (1) + ¢,(#). By using (1.1), we obtain

1
f|Yt|thty dx + — f |)’t|p+2 dx + f |V'yt|2 dx + f VyVy, dx
Q p+1Jo Q Q

! 1
by, y) + f it = $)b(y(s), ¥(0) ds + f Vil dx + —— f i dx
0 Q p+1Jq

¢,

- fg fi(y, 2y dx. (4.8)

t +00
Since f hi(s)ds < f hi(s)ds = 1 — 1, then, by the use of Cauchy-Schwarz’s inequality and
0 0

Young’s inequality, we derive

f e - YO, ¥(s) ds
0

= fo hi(t = $)b(y(s) = Y(0), y(1)) ds + fo hi(t = 9)b((0), Y(1) ds
< fo ha(t = ) {b(y(s) = y(2), ¥(s) = YOI 1B, YD)} ds+( fo h1<s>ds)b<y<r>,y<r)>
b(y(t) y<z>>+—( f Vhi(t = ){hi(t = b((s) = (1), y(s) = (1)} ds)

+(1 — 1D)b(y(®), y(1))
)
< (1 - 51) b(y(1), y(1) + c(hOy)(®). (4.9)

Inserting (4.9) in (4.8), we get that

1

, [ 1 -1
01(D) < —=b(y,y) + f IVl dx + — f v+ dx + =(hy0y)(0) — ffl(y, 2)y dx.
2 Q p+1Ja 21 Q

Similarly, we infer that

’ l 1_l
soz(t>s—§b<z,z>+ f IV 2 dx+— f 22 dx + ——=(h,00z)(t) — f (. 2)z dx.
2 Q

Summing the last two inequalities, we get the desired inequality (4.7). O

Lemma 4.2. If (A1)—(A3) hold. The functional defined in (4.6) verifies, for any 0 < 6 < 1 and for all
t > ty, along the solution of (1.1),

, h h ,
Yy < ——= f 2 dx = Wyl + 8By, y) + bz, 2)) + <(mBY)@) = c(hoy)(@).  (.10)
P + 1 O 2 6

! !
Here hozmin{ f hy(s)ds, f hz(s)ds}.
0 0
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Proof. Differentiating i/ (¢) with respect to ¢ and using (1.1);, we get

! 1 !
_ f Py f (e = )00 = (5) d dx = —— fg Py, fo (6 = )00 = y())ds dx

- pﬂ( [ 1<s)ds) [orax= [ Fua [ nie- 99 ((0) - ys))ds s
- [ [ 0= 99w — yds v ( [ mooas) [ 1vutas

_ fo i = b (1) - ¥(5)) ds — f (-0 f It = b (), ¥(0) = Q) ds di

W, (1)

4 f fi32) f It = )00 = y(s))ds dx — —— f Iy f (£ = $)00) = y())ds dx
Q 0 p+1Ja 0

- L(f hl(s)ds)fly,|p+2dx—nytfh'l(t—s)V(y(t)—y(s))ds dx
P +1 0 Q Q 0

( f hl(s)ds) f |Vydx. 4.11)
0 Q

Now, we estimate the terms in the right-hand side of (4.11) as follows:

e Estimation of the term f hi(t — s)b(y,y(t) — y(s))ds.
0

Cauchy Schwarz’s inequality and Young’s inequality are used to get, for any ¢ > 0,
t
f hy (1 = $)b (y,y(1) = y(5)) ds
0
t
1 1
< [ =9 1e@01 1560 - 56050 - 350 ds
0

1 (( s’
< ob(y,y) + 5 { f hi(t = s) [b (@) = y(5), (1) = y(s)]* dS}

< 0b(y,y) + g(hll]y)(t). (4.12)

e Estimation of the term — f hi(t—20) f hi(t — )b (y(s),y(t) — y()) ds d¢.
0 0

We have

fohl(l—§)foh1(t—S)b(y(S),y(t)—y(J))dsdé

< | -0 i a2 = 95 OL) — ¥(0, 90 ~ YO ds i + | - 2) | It = 9 (0, 90— 900 ds dg
< | -0 i = 9] 00) = 59,50 - Y6 + b (60~ 0.0 - 3D |ds dt
+ ( i tm@)dg) | it - b, )~ Y0 d
< cobly, y)+c(6+ )(hluy)(t) 4.13)
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!
¢ Estimation of the term — f Vy, f K (t — s)((t) — y(s))dsdx.
Q 0
One has

t 1 t 2
_fvytf hi(t = s)(y(t) = y(s))dsdx < 6, f IVyel* + — f (f hi (& = $)(y(?) —)’(S))ds) dx
Q 0 Q 461 Jo\Jo

A

O [, )
< o [Vl =" [ -9 [ b~ s
Q 1 0 Q
C
< o [ 1Vl - Sen. (4.14)
Q 1

t

¢ Estimation of the term f [, 2) f hi(t — s)((t) — y(s))ds dx.
Q 0
By using (2.7) and (3.27), we derive that

Lfl(y, Z)fo hi(t — s)((f) — y(s))ds dx

t 2
cﬁijF+kF+Mw“+mwﬂdx+5j(jﬂma—ﬂ@m—yw»h)dx
Q 6 Q 0
¢8 (b(.3) + bz ) + (B! + (B 2F2) + S(nEy) )

= c0(b0y) + b2 + BB + b DBE D) + SE0)

2E(0)\s1-1 2E(0)
T) + b(Z, Z)(T

6 (b(y,y) + b(z,2)) + g(hlmy)(t). (4.15)

IA

IA

IA

c%%xw+Ma@+wa( f”j+§mem

IA

t
e Estimation of the term — ﬁ fQ vil’y; fo H(t — s)((t) — y(s))ds dx.
Using (3.27) again, we infer that

IA

C51f|)’z|2(p+l)dx— £(hll:‘y)(l)
Q |

c ’
o1Vl 7D — 5 (moy@)
1

1 t
_—f|)7t|p)’tf Ryt = 5)(0(1) — y(s))ds dx
p+1Jo 0

IA

IA

01 (2EO) IVyelP = = (o)), (4.16)

!

By combining (4.12)—(4.16), using the fact that — ( f hl(s)ds) < —hg for all + > t; and choosing ¢,
0
small enough, we derive the estimate (4.10). O

Repeating the calculations above with i, (¢) yields

ho
po+1

, h c ,

Yo(1) < - f |zl 2 dx - EOIIVZtII2 +co(b(y,y) + b(z,2)) + g(thy)(t) - c(h,Oz)(@).  (4.17)
Q

Combining (4.10) and (4.17), we obtain the following result.
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Corollary 4.1. Assume that (A1)—(A3) hold. Then, the functional  satisfies, along the solution, the

estimate
’ ho ,0+2 h() 2 C ’
Y < - il 2dx — SV gl + cob(y, y) + = (hioy)(e) — c(hymy)()
p + 1 le) 2 6
h h ,
o f a2 dx = UV 2zl + c0b(z, 2) + =(02)(0) — (D)), Y1211, (4.18)
P + 1 le) 2 5

forany0 <6< 1.
Step 2: The aim of this step is to establish the inequality (4.26).

Let’s define the functional
F(t) = NE(t) + ¢(t) + hiow(t), (4.19)
where N > 0. For N sufficiently large, one has that F ~ E, i. e.
c1E(t) < F(t) < ,E(1), (4.20)

for some ¢y, ¢, > 0.

Let [ = min{/;, }. By using (2.10), (4.7), (4.18), and taking 6 = %‘l, we get forany 7 > 1

[ 3
F0) s -7 00.0)+b@2) - —— f (™ + 2?) dx = [V el = 11V 2 f F(y, 2)dx
p+1Ja

Q
64c? N 4 , ,
" (c . lh—j) ((MEY)@) + (5)(0)) + (5 - h—c) () @) + U0(0)
5 0
Taking N, such that

N 4c
———>0,
2 hy

to obtain that

l 3
Fi) < =300 +b@) - = [ (P2 + ) de= IVulf = IV2P - [ Fo.adx
p+1Ja Q

+ (Mo + (ho2)(®), Vi1, (4.21)

By the virtue of (2.10) and (4.3), we infer that for any ¢ > 1,

fo IO = Yt — 5, 3(0) = (i — 5)ds

hi(0) (™
<_ 1(0) [) W, ($)b(y(t) = y(t — ), y(£) = y(t — 5))ds < —cE'(?),

a

and similarly

fl hy($)b(z(t) — z(t — 5),2(t) — z2(t — 5))ds < —cE'(¢).
0
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Hence, (4.21) becomes
F'(t) < —aE(t)+ c(hyOy)(t) + c(h,02)(1)
< —aE@)-cE'D+c ft t hy ($)b(y(t) = y(t = ), (1) = y(t = $))d's

+c f t ho($)b(z(t) — 2(t — 5), 2(8) — z2(t — s))ds, Y t>1, (4.22)

where a > 0. Define H(t) = F(t) + cE(?). It is easy to see that H(¢) ~ E(t). Using (4.22), we get
H' () < —aE@)+c ftl t hi($)b(y(2) — y(t = 5), y(1) = y(t — $))d's
+c f, t ho($)b(z(t) — z(t — ), 2(1) — 2(t — $))ds. (4.23)

The following two situations are th;:n distinguished.

First Case: G,(¢) and G,(?) are linear.
By multiplying (4.23) by &(¢) and using (A2) and (2.10) to obtain

EOH' (1) < —adE®) + c&(1) le thl(S)b(y(t) —y(t = 5),y(t) = y(t — ))ds
+c&(1) f, t ho(8)b(z(1) — z(t — 5), 2(t) — z(t — $))d's
< —aE(MED +c¢ j; t §1(HM()b(y(E) — y(t = 5),¥(1) — y(t — 5))ds
+c ft t &2()ha()b(z(1) — z(t — ), 2(t) — 2(t — 5))ds
< —aE(MEWD) —c¢ fz. t R ($)b(y(t) = y(t = 5), y(t) = y(t — 5))d's
—c f | hy()b(z(t) — z(t — ), 2(1) — z(t = $))d's
< —oaf(l;)E(t) — cE'(1). (4.24)

Since ¢ is non-increasing, then by using (4.24), the functional F () = £(r)H(¢) + cE() satisfies for any
t =1,

F'(t) < —aé(HE().

It is obvious that ¥ ~ E, and then we get the existence of some positive constant m;, such that
F' () < —mEOF (@).

By applying Gronwall’s Lemma, there exists a constant m, > 0, such that

o f £(s) ds
F(t) < mye g ,
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and then we have

—my f f(S) ds
E(t) < mse gl ,

where ms; > 0.

Second Case: G (t) or G,(¢) is nonlinear. Defining J; and J, by

/l t
S0 =~ fo b(y(t) — y(t = ), y(t) = y(t = s))ds, 1> 0,

and

(1) = /;l fo b(z(t) — z(t — ), z2(t) — z(t — 5))ds, t> 0.

Since b(y(1), y(t)) + b(y(t — ), y(t — 5)) < % (E@+E(-y9)) < %E(O), for all 0 < s < t, we infer that

81 (7 81
Ji(@) < —f E0)ds = —E(0) < +o0,

It Jo l

and similarly
81

Jo(r) < TE(O) < +o00.
By taking 0 < A < 1 sufficiently small, we get, for all 7 > 0,

Ji(t) <1 and Jr(r) < 1. (4.25)

Now, defining K;(¢) and K,(¢) by

Ki(r) = - j; hi()b(y(1) — y(t = ), y() = y(t = 5))ds,

and )
K>(t) = — f hy($)b(z(t) — z(t — 5), 2(t) — z(t — s))dss.
0

One can easily check that K;(t) < —cE’(¢), fori=1,2.

Given that G1(0) = 0 and the strict convexity of G; on (0, r], one has then G(«kx) < kG(x), ¥ 0 <
k <1 and x € (0, r]. Now, using (A1), (4.25) and Jensen’s inequality, we obtain

1 !
ko = 70 fo JO(=R,()ABG(@) = ¥(t = 5), (1) = (¢t = $)ds
1 !
= W0 fo J(OE ()G (i (N AB((D) = y(t = ), ¥(t) = y(t — 5))ds
SIGEN S
> V) . Gl(]l(l‘)/’ll(s))/lb(y(t) — y(t — S),y(l‘) _ y(t — $))ds
1 !
> ¥G1 (T(f) j(; J1(Oh(s)Ab(y(t) — y(t — 5), y(t) — y(t — S))ds)
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- #Gl (/l fo h($)b(y(t) — y(t — 5), y(t) — y(t - S))dS)

= 517(”61 (/lvg hy($)b(y(t) — y(t — 5), y(t) — y(t — S))ds).

Note that G, is an extension of G, satisfying G as strictly convex and strictly increasing on (0, +co).
Thus, we have

f(; hi(s)b(y(t) — y(t — 5), y(t) — y(t — s))ds < /1161_1 (/l;(ét()t))

Similarly, we have

fo ho($)b(z(1) — 2(t = $), 2(1) — 2(t — 5))ds < %5; (if?ff))

where G, is an extension of G,.

We infer from (4.23) that

(4.26)

H'(t) < —aE(t) + <G, (AKIU)) £ G, (AKZ(I)), Vi,

&i(0) e
Step 3: Here, we shall prove the desired inequality (4.1).

We set G = min{al,az}. For gy < r, using (4.26) and since E’ < 0, 5; > 0, 5, >0,i=1,2, we
claim that the functional G, defined by

E
6(=G (eo%)m) + E(0,
is equivalent to E(¢) and satisfies
’ _ ’ E,(t) ’” & ’ & ’
Gt = E@+ SOE(O)G (eoE(O))W(t) +G (80E(0))‘H (1)
A E®\ . [ E®\=1 (1K)
< —Q’E(I)G (SQE(O)) +cG (Eom) Gl ( fl (l‘) )
(. E@ 51 (AK(0)
+cG (80 E(O)) G, ( 50 ) . (4.27)
The convex conjugate of G in the Young’s sense (see [25]) is denoted by G* and satisfies
G'(1) = (G')" (1) = G(G') ' (). (4.28)
The following inequality holds true:
AB; <G (A)+G(B), i=1,2, (4.29)
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with A = G’ (52%) and B, = G, (), i =1,2.
Using (4.27), (4.28) and (4.29), we obtain

(1) E(@) E@) Ki(1) K1)
—G’ A .
E(O)) T E©) ( E(O)) e (&(t) T é’z(l))

Gt < —-aE@G (

Since K;(t) < —cE’(¢) (for i = 1,2), we infer that

()) E() ( E()

YE(0) 20 g0y VY YE(0)

"E0) ) cE'(1). (4.30)

§DG' M) < —aE(t)g(z)G'(
Consequently, letting G| = £G + cE, we have: a1G1(t) < E(f) < a2G\(?), for some ay, @z > 0.

Thus, we get

610) < B0 506 s

E(1)
"E(0)

(1)
t Yit>t, 4.31
) —B1&( )Qz(E(O)) >1 4.31)
where 8; > 0 and G»(1) = 1G'(got). Since G, (1) = G’ (o) +&0tG" (£o1), then using the strict convexity of
Gi(i = 1,2) on (0, r], we have G/(?), G»(t) > O on (0, 1]. Since G, ~ E and using (4.31), one derives that

a1G (1)

R(t) ~ E(t), where R(r) = EQ)

(4.32)

and
R(1) £ —Bob(NGR(1)), Y t = 11,
with 3, > 0. Integrating the last inequality over (¢, t) yields

! _R/(S) coR(t1) t
. GRG) ‘ﬁzf f(s)d”fm G'(5) Zﬁsz“)ds'

Now, the function G, defined by G((t) = f
llIIOI Go(t) = +oo. Thus, we deduce that t
r—

GG )ds is strictly decreasing on (0, r] and satisfies
S

R(r)siG(;‘ (,31 f g(s)ds).
€0 f

This inequality together with (4.32) yields to (4.1). This ends the proof of Theorem (4.1). |

5. Examples

In this section, we give two examples that illustrate explicit formulas for the decay rates of the
energy.
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1. Let hi(f) = hy(t) = pe* 4" ¢t >0, where p > 0,0 < g < 1 and p > 0 is chosen so that A
satisfies (2.4). We can see, for i = 1,2, that

hy(t) = —pgk(1 + ™' ™" = —£(D)Gi(hi(D)),
where &(t) = gk(1 + £)?~! and G;(t) = t. From (4.1), it holds that

E(t) < Bre P+ "y ¢ >0,

2. Let hi(t) = (1%;)%, i = 1,2, where g; > 0 and p; > 0 is chosen such that, (2.4) holds true. One has,
fori=1,2,
i+l
’ —Piqi 4qi Di i
h‘[:—:—— :—itGihit,
(1) 1+ e p‘iii ((1+t)qf) &G i(hi(1))

1

qi+1
where &,(f) = 4 and G(r) =t % .

qi

Putting g3 = mlin{q 1,¢2}. Therefore, it follows from (4.1) that

C
(14105’

E(?) < Vi>0.

6. Conclusions

This paper focuses on the existence and the asymptotic stability of solutions for a system of two
coupled quasi-linear Kirchhoff plate equations in a bounded domain of R?, subject only to
viscoelasticity dissipative terms and with the presence of rotational forces and source terms. Each one
of these two equations describes the motion of a plate, which is clamped along one portion of its
boundary and has free vibrations on the other portion of the boundary. This work is motivated by
previous results concerning coupled quasi-linear wave equations [14—16] and single quasi-linear plate
equation [12,13].

As future works, we can change the type of damping by considering, for example, weak damping
(of the form y,), Balakrishnan-Taylor damping (of the form (Vy, Vy,)Ay) or strong damping (of the
form AZ%y,).
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