Let $ \alpha $ be the golden ratio, $ m\in \mathbb N $, and $ B(\alpha^m) $ the Beatty sequence (or Beatty set) generated by $ \alpha^m $. In this article, we give some combinatorial structures of $ B(\alpha^m) $ and use them in the study of associated sumsets. In particular, we obtain, for each $ m\in \mathbb N $, a positive integer $ h = h(m) $ such that the $ h $-fold sumset $ hB(\alpha^m) $ is a cofinite subset of $ \mathbb N $. In addition, we explicitly give the integer $ N = N(m) $ such that $ hB(\alpha^m) $ contains every integer that is larger than or equal to $ N $, and show that this choice of $ N $ is best possible when $ m $ is small. We also propose some possible research problems. This paper extends the previous results on sumsets associated with upper and lower Wythoff sequences.
Citation: Prapanpong Pongsriiam. Combinatorial structure and sumsets associated with Beatty sequences generated by powers of the golden ratio[J]. Electronic Research Archive, 2022, 30(7): 2385-2405. doi: 10.3934/era.2022121
Let $ \alpha $ be the golden ratio, $ m\in \mathbb N $, and $ B(\alpha^m) $ the Beatty sequence (or Beatty set) generated by $ \alpha^m $. In this article, we give some combinatorial structures of $ B(\alpha^m) $ and use them in the study of associated sumsets. In particular, we obtain, for each $ m\in \mathbb N $, a positive integer $ h = h(m) $ such that the $ h $-fold sumset $ hB(\alpha^m) $ is a cofinite subset of $ \mathbb N $. In addition, we explicitly give the integer $ N = N(m) $ such that $ hB(\alpha^m) $ contains every integer that is larger than or equal to $ N $, and show that this choice of $ N $ is best possible when $ m $ is small. We also propose some possible research problems. This paper extends the previous results on sumsets associated with upper and lower Wythoff sequences.
[1] | G. A. Freiman, Foundations of a Structural Theory of Set Addition, American Mathematical Society, Translations of Mathematical Monographs, 1973. |
[2] | H. Halberstam, K. F. Roth, Sequences, Springer Science & Business Media, 2012. |
[3] | M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer Science & Business Media, 1996. |
[4] | T. Tao, V. Vu, Additive Combinatorics, Cambridge University Press, 2010. |
[5] | R. C. Vaughan, The Hardy-Littlewood Method, 2nd edition, Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511470929 |
[6] | S. Kawsumarng, T. Khemaratchatakumthorn, P. Noppakaew, P. Pongsriiam, Sumsets associated with Wythoff sequences and Fibonacci numbers, Period Math Hung, 82 (2021), 98–113. https://doi.org/10.1007/s10998-020-00343-0 doi: 10.1007/s10998-020-00343-0 |
[7] | J. Shallit, Sumsets of Wythoff sequences, Fibonacci representation, and beyond, Period. Math. Hung., 84 (2022), 37–46. https://doi.org/10.1016/j.vlsi.2022.01.001 |
[8] | J. Shallit, Frobenius numbers and automatic sequences, preprint, arXiv: 2103.10904. |
[9] | M. Dekking, Sumsets and fixed points of substitutions, preprint, arXiv: 2105.04959. |
[10] | F. M. Dekking, K. Simon B. Székely, The algebraic difference of two random Cantor sets: the Larsson family, Ann. Probab., 39 (2011), 549–586. https://doi.org/10.1214/10-AOP561 doi: 10.1214/10-AOP561 |
[11] | P. Phunphayap, P. Pongsriiam, J. Shallit, Sumsets associated with Beatty sequences, Discrete Math., 345 (2022), 112810. https:/org/10.1016/j.disc.2022.112810 |
[12] | A. S. Fraenkel, The bracket function and complementary sets of integers, Can. J. Math., 21 (1969), 6–27. https://doi.org/10.4153/CJM-1969-002-7 doi: 10.4153/CJM-1969-002-7 |
[13] | A. S. Fraenkel, Wythoff games, continued fractions, cedar trees and Fibonacci searches, Theor. Comput. Sci., 29 (1984), 49–73. |
[14] | A. S. Fraenkel, Heap games, numeration systems and sequences, Ann. Comb., 2 (1998), 197–210. https://doi.org/10.1007/BF01608532 doi: 10.1007/BF01608532 |
[15] | S. Kawsumarng, T. Khemaratchatakumthorn, P. Noppakaew, P. Pongsriiam, Distribution of Wythoff sequences modulo one, Int. J. Math. Comput. Sci., 15 (2020), 1045–1053. |
[16] | C. Kimberling, Complementary equations and Wythoff sequences, J. Integer Sequences, 11 (2008), 3. |
[17] | C. Kimberling, Beatty sequence and Wythoff sequences, generalized, Fibonacci Quart, 49 (2011), 195–200. |
[18] | J. Pitman, Sumsets of finite Beatty sequences, Electron. J. Comb., 8 (2001), 1–23. https://doi.org/10.37236/1614 doi: 10.37236/1614 |
[19] | N. H. Zhou, Partitions into Beatty sequences, preprint, arXiv: 2008.10500. |
[20] | N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Available from: http://oeis.org. |
[21] | W. D. Banks, Every natural number is the sum of forty-nine palindromes, Integers, 16 (2016), 9. |
[22] | J. Cilleruelo, F. Luca, L. Baxter, Every positive integer is a sum of three palindromes, Math. Comp., 87 (2018), 3023–3055. https://doi.org/10.1090/mcom/3221 doi: 10.1090/mcom/3221 |
[23] | A. Rajasekaran, J. Shallit, T. Smith, Sums of palindromes: An approach via automata, preprint, arXiv: 1706.10206. |
[24] | R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd edition, Addison-Wesley, 1994. |
[25] | T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, 2001. https://doi.org/10.1002/9781118033067 |