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Abstract: Let α be the golden ratio, m ∈ N, and B(αm) the Beatty sequence (or Beatty set) generated
by αm. In this article, we give some combinatorial structures of B(αm) and use them in the study of
associated sumsets. In particular, we obtain, for each m ∈ N, a positive integer h = h(m) such that the
h-fold sumset hB(αm) is a cofinite subset of N. In addition, we explicitly give the integer N = N(m)
such that hB(αm) contains every integer that is larger than or equal to N, and show that this choice of
N is best possible when m is small. We also propose some possible research problems. This paper
extends the previous results on sumsets associated with upper and lower Wythoff sequences.
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1. Introduction

Let A and B be nonempty subsets of Z, h ∈ N, and x ∈ Z. The sumset A + B, the h-fold sumset hA,
the translation x + A, and the dilation x ∗ A are defined by

A + B = {a + b | a ∈ A and b ∈ B}, hA = {a1 + a2 + · · · + ah | ai ∈ A for all i},

x + A = A + x = {a + x | a ∈ A}, and x ∗ A = A ∗ x = {ax | a ∈ A}.

The central problem in additive number theory is to determine whether a given subset A of N (or
N0) is an additive basis or an asymptotic additive basis of finite order, and if it is, then it is desirable
to explicitly obtain positive integers h and N such that the h-fold sumset hA contains all positive
integers, or every positive integer larger than N. For additional details and references on sumsets and
additive number theory, we refer the reader to the books by Freiman [1], Halberstam and Roth [2],
Nathanson [3], Tao and Vu [4], and Vaughan [5].
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Let α be the golden ratio, B(α) and B(α2) the lower and upper Wythoff sequences, respectively, and
in general, let B(x) be the Beatty sequence (or Beatty set) generated by x. Previously, Pongsriiam and
his coauthors [6] obtained various results on sumsets associated with B(α) and B(α2) and showed that
2B(α) and 3B(α2) are cofinite while B(α) and 2B(α2) are not. Using automata theory and a computer
program called Walnut, Shallit [7,8] gave a different proof of this result and also calculated the Frobe-
nius numbers for some classical automatic sequences. Dekking [9] introduced a different technique
to compute the sumsets 2B(α) and 3B(α2) by using combinatorics on words and the theory of two di-
mensional substitution; see also [10]. Napp Phunphayap, Pongsriiam, and Shallit [11] studied sumsets
associated with B(x) where x is any irrational number in the interval (1, 3). For more information on
related research, we refer the reader to Fraenkel [12–14], Kawsumarng et al. [15], Kimberling [16,17],
Pitman [18], Zhou [19], and in the online encyclopedia OEIS [20].

One of our motivations comes from the recent results on palindromes as an additive basis: Banks
[21] showed that every positive integer can be written as the sum of at most 49 palindromes in base
10; Cilleruelo, Luca, and Baxter [22] improved it by showing that if b ≥ 5 is fixed, then every positive
integer is the sum of at most three b-adic palindromes; Rajasekaran, Shallit, and Smith [23] com-
pleted the study by proving that the theorem of Cilleruelo, Luca, and Baxter [22] also holds when
b ∈ {3, 4}, and if b = 2, then we need four summands to write every positive integer as a sum of
b-adic palindromes. Comparing these complete results on palindromes [21–23] and those satisfactory
but incomplete answers on the classical bases such as primes or powers of nonnegative integers in
Goldbach’s or Waring’s problems, we are led to an idea of studying a new arithmetic or combinatorial
sequence as an additive basis like they did for palindromes in [21–23].

Clearly, arithmetic progressions are bad for sumsets because the calculation is too easy and many
of them cannot be a basis. For instance, the set of all positive integers that are congruent to a modulo m
where m and gcd(a,m) are larger than 1 is not a basis. Being a generalization of arithmetic progressions,
Beatty sequences B(x) are nearly periodic but not really periodic when their generator x is an irrational
number. So it is interesting to replace arithmetic progressions by Beatty sequences and see what
happen.

It seems that there are some connections between the sumsets of B(x) and the members of a par-
ticular linear recurrence relation whose characteristic polynomial has x as one of its root; see, for
example, in Theorems 3.5, 3.16, 3.17, Remark 3.19, and open questions in the article by Kawsumarng
et al. [15]. In particular, if m ≥ 3 is an integer and h = h(m) is the smallest positive integer such that
hB(αm) is cofinite, then it seems that there are infinitely many Fibonacci numbers that do not belong
to (h − 1)B(αm). While many combinatorial properties of lower and upper Wythoff sequences have
been extensively studied, there are only a few arithmetic results concerning sumsets associated with
Beatty sequences, a generalization of Wythoff sequences. These motivate us to investigate more on
this problem.

In this article, we continue the investigation on B(αm) for m ≥ 3. In particular, we provide some
combinatorial structures of B(αm) in Theorems 3.4 and 3.5 and use them to calculate, for each m ≥ 3,
a positive integer h = h(m) such that hB(αm) is cofinite. In addition, we explicitly give in Theorems
4.3 and 4.4 a positive integer N = N(m), which is best possible when m is small, such that hB(αm)
contains every integer that is larger than or equal to N. For example, we obtain that 12B(α5) contains
every integer larger than or equal to 2684 and that 2684 is the smallest integer having this property.
By some numerical evidence as shown in Remark 2, Corollary 1, and Question 1, we believe that our
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choices of the integers h and N are actually the smallest possible for all m ∈ N. Nevertheless, the proof
seems very long and difficult, and so we postpone this for future research.

We organize this article as follows. In Section 2, we recall some definitions and useful results for
the reader’s convenience. In Section 3, we give some combinatorial structures of B(αm), and then in
Section 4, we use them to obtain the desired results on sumsets.

2. Preliminaries and lemmas

We first introduce the notation which will be used throughout this article as follows: α = (1+
√

5)/2
is the golden ratio, β = (1 −

√
5)/2, and if x ∈ R, then bxc is the largest integer less than or equal to x,

{x} = x − bxc, dxe is the smallest integer larger than or equal to x, and with a little abuse of notation

B(x) = {bnxc | n ∈ N} = (bnxc)n≥1 ,

where we consider B(x) as a sequence (bnxc)n≥1 when we show its combinatorial structure, and we treat
B(x) as a set when we give a result on sumsets. In addition, for n ≥ 0, we write Fn and Ln to denote
the nth Fibonacci and Lucas numbers, which are defined by the same recursive pattern an = an−1 + an−2

for n ≥ 2 but with different initial values F0 = 0, F1 = 1, L0 = 2, and L1 = 1. We can also extend
them to negative indices by the formula F−n = (−1)n+1Fn and L−n = (−1)nLn. Furthermore, if P is a
mathematical statement, then the Iverson notation [P] is defined by

[P] =

1, if P holds;
0, otherwise.

We often use the following fact: −1 < β < 0, (|βn|)n≥1 is strictly decreasing, if a1 > a2 > · · · > ar

are even positive integers, then 0 < βa1 < βa2 < · · · < βar , and if b1 > b2 > · · · > br are odd positive
integers, then 0 > βb1 > βb2 > · · · > βbr . In addition, α and β are roots of the equation x2 − x − 1 = 0.
So, for instance, αβ = −1, β2 = β+ 1, and β2 + β4 = 4β+ 3. Finally, we remark that we apply Lemmas
2.1 to 2.3 throughout this article sometimes without reference.

Lemma 2.1. For n ∈ Z and x, y ∈ R, the following statements hold.

(i) bn + xc = n + bxc and dn + xe = n + dxe.
(ii) {n + x} = {x}.

(iii) 0 ≤ {x} < 1 and if x is not an integer, then {−x} = 1 − {x}.

(iv) bx + yc =

bxc + byc, if {x} + {y} < 1;

bxc + byc + 1, if {x} + {y} ≥ 1.
(v) b(n + 1)xc − bnxc = bxc or bxc + 1.

Proof. These are well known and can be proved easily. For more details, see for instance in [24,
Chapter 3].

Lemma 2.2. The following statements hold for all nonnegative integers m and n.

(i) (Binet’s formula) Fn =
αn−βn

α−β
and Ln = αn + βn.

(ii) αn = αFn + Fn−1 and βn = βFn + Fn−1.
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(iii) Ln = Fn−1 + Fn+1.

Proof. These are well known, not difficult to prove, and can be found on pages 78–80 in [25].

By Lemma 2.5 of [6], we know the formulas for bFnαc ,
⌊
Fnα

2
⌋
, {Fnα}, and {Fnα

2}. In this article,
we extend those to the following lemma.

Lemma 2.3. Let k and m be positive integers. Then the following statements hold.

(i) If k ≥ m, then
⌊
βkFm

⌋
= −[k ≡ 1 (mod 2)].

(ii) If k < m, then
⌊
βkFm

⌋
= (−1)kFm−k − [m ≡ 1 (mod 2)].

(iii) If k ≥ m, then bFkα
mc = Fk+m − [k ≡ 0 (mod 2)].

(iv) If k < m, then bFkα
mc = Fk+m + (−1)k+1Fm−k − [m ≡ 0 (mod 2)].

(v) If k ≥ m, then {Fkα
m} =

{
−βkFm

}
= [k ≡ 0 (mod 2)] − βkFm.

(vi) If k ≥ m, then
{
βkFm

}
= [k ≡ 1 (mod 2)] + βkFm.

For (vii) and (viii), let k < m and g(m, k) = βm−k((−1)k − β2k)/
√

5. Then

(vii) {Fkα
m} =

{
−βkFm

}
= {−g(m, k)} = −g(m, k) + [m ≡ 0 (mod 2)],

(viii)
{
βkFm

}
= {g(m, k)} = g(m, k) + [m ≡ 1 (mod 2)].

Proof. By Binet’s formula and the fact that αβ = −1,we see that

Fkα
m =

αk+m − βk+m

α − β
+
βk+m − βkαm

α − β
= Fk+m − β

kFm, and (2.1)

|βmFm| =

∣∣∣∣∣∣ (−1)m − β2m

α − β

∣∣∣∣∣∣ ≤ 1 + β2m

√
5
≤

1 + β2

√
5

< 1. (2.2)

Case 1 k ≥ m. Then |βkFm| ≤ |β
mFm| < 1. So if k is even, then 0 < βkFm < 1; if k is odd, then

−1 < βkFm < 0. Therefore
⌊
βkFm

⌋
= −[k ≡ 1 (mod 2)],

⌊
−βkFm

⌋
= −[k ≡ 0 (mod 2)], and (2.1)

implies that
bFkα

mc = Fk+m +
⌊
−βkFm

⌋
= Fk+m − [k ≡ 0 (mod 2)].

Therefore (i) and (iii) are proved.
Case 2 k < m. Let ` = m − k and g(m, k) = βm−k((−1)k − β2k)/

√
5. Then m = k + ` and

βkFm = βk

(
αk+` − βk+`

α − β

)
=

(−1)k
(
α` − β`

)
α − β

+
(−1)kβ` − β2k+`

α − β

= (−1)kF` +
β`((−1)k − β2k)

α − β
= (−1)kF` + g(m, k). (2.3)

For convenience, let A = g(m, k) throughout the remaining proof. Then

|A| ≤
|β`|(1 + β2k)
√

5
≤
|β|(1 + β2)
√

5
< 1.
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Therefore, if k and ` are even, then A = β`(1 − β2k)/
√

5 ∈ (0, 1); if k is even and ` is odd, then
A ∈ (−1, 0); if k and ` are odd, then A = −β`(1 + β2k)/

√
5 ∈ (0, 1); if k is odd and ` is even, then

A ∈ (−1, 0). These imply that

bAc = −[` ≡ k + 1 (mod 2)] and b−Ac = −[` ≡ k (mod 2)]. (2.4)

From (2.3) and (2.4), we obtain⌊
βkFm

⌋
= (−1)kF` + bAc = (−1)kF` − [` ≡ k + 1 (mod 2)], (2.5)⌊

−βkFm

⌋
= (−1)k+1F` + b−Ac = (−1)k+1F` − [` ≡ k (mod 2)]. (2.6)

Since ` = m − k, we see that (2.5) implies (ii). In addition, we obtain (iv) from (2.1) and (2.6) as

bFkα
mc = Fk+m + (−1)k+1Fm−k − [m ≡ 0 (mod 2)].

Next, we use some of the above calculation to prove (v) to (viii). We obtain from (2.1) that {Fkα
m} =

{−βkFm}, and the analysis of βkFm is already done. Suppose k ≥ m. Then |βkFm| < 1. So if k is even,
then {βkFm} = βkFm and {−βkFm} = 1−βkFm; if k is odd, then {βkFm} = 1+βkFm and {−βkFm} = −βkFm.
These imply (v) and (vi). Next, let k < m. From (2.3), we know that {βkFm} = {A}, {−βkFm} = {−A},
and the analysis of A is already done. We have

{A} = A − bAc = A + [` ≡ k + 1 (mod 2)] = A + [m ≡ 1 (mod 2)],
{−A} = −A − b−Ac = −A + [` ≡ k (mod 2)] = −A + [m ≡ 0 (mod 2)].

These imply (vii) and (viii). So the proof is complete.

Lemma 2.4. Let m and n be positive integers. Then the following statements hold.

(i) bαmc = Lm − [m ≡ 0 (mod 2)].
(ii) {αm} = −βm + [m ≡ 0 (mod 2)].

(iii) If m is odd and n < αm, then n{αm} = {nαm} and bn{αm}c = 0.
(iv) If m is even and n < αm, then {nαm} = 1 − nβm and bn{αm}c ≤ bαmc − 1.
(v) If m is odd, then bαmc {αm} = 1 − β2m, αm{αm} = 1, and dαme {αm} = 1 − β2m − βm ∈ (1, 2).

(vi) If m is even and n ∈ {bαmc , dαme}, then bn{αm}c = bαmc − 1.
(vii) If m is even, then dαme βm = 1 + β2m and bαmc βm = 1 − βm + β2m.

Proof. For (i), we obtain by Lemmas 2.1 and 2.2 that

bαmc = bLm − β
mc = Lm + b−βmc = Lm − [m ≡ 0 (mod 2)].

Substituting Lm = αm + βm = bαmc + {αm} + βm in (i) leads to (ii). For (iii), suppose m is odd and
n < αm. Then {nαm} = {n bαmc + n{αm}} = {n{αm}}. In addition, 0 < n{αm} = −nβm < −αmβm = 1, and
so {n{αm}} = n{αm} and bn{αm}c = 0. This proves (iii). For (iv), suppose m is even and n < αm. Then
similar to (iii), we have

{nαm} = {n{αm}} = {n(1 − βm)} = {−nβm} = 1 − {nβm}. (2.7)

Electronic Research Archive Volume 30, Issue 7, 2385–2405.



2390

Since 0 < nβm < αmβm = 1, we obtain {nαm} = 1−nβm. In addition, n{αm} < αm(1−βm) = αm−1, which
implies bn{αm}c ≤ bαmc − 1. For (v), suppose m is odd. Then bαmc {αm} = Lm{α

m} = (αm + βm)(−βm) =

1 − β2m, αm{αm} = −αmβm = 1, and

dαme {αm} = bαmc {αm} + {αm} = 1 − β2m − βm.

In addition, we have 0 > βm + β2m > βm ≥ β > −1. Therefore 1 − β2m − βm lies in the interval (1, 2), as
required. For (vi), suppose m is even and n = bαmc or dαme. If n = bαmc, then

n{αm} = (1 − βm) bαmc = bαmc − βm bαmc ≥ bαmc − βmαm = bαmc − 1,

which implies bn{αm}c = bαmc − 1, by (iv). Next, suppose n = dαme. Then by (i) and (ii), we obtain
n = Lm = αm +βm, {αm} = 1−βm, and so n{αm} = Lm − 1−β2m. Therefore bn{αm}c = Lm − 2 = bαmc− 1.
This proves (vi). For (vii), we have (bαmc + 1)βm = Lmβ

m = (αm + βm)βm = 1 + β2m, which implies the
first part of (vii). Subtracting both sides of the above equation by βm, we obtain the second part. This
completes the proof.

3. Combinatorial structure of B(αm)

Let A = (an)n≥1 be a sequence of real numbers. We say that C is a segment of A if C is a finite
sequence of consecutive terms of A, that is, C = (ak, ak+1, . . . , ak+m) for some k,m ∈ N. In this case, the
length of C is m + 1, and if ak = ak+1 = · · · = ak+m, then we call C a constant segment. We often refer
to the following segments:

S = (a1, a2, . . . , abαmc−1, dα
me), (3.1)

S 0 = (a1, a2, . . . , abαmc, dα
me), (3.2)

T = (b1, b2, . . . , bbαmc, bα
mc), (3.3)

T0 = (b1, b2, . . . , bbαmc−1, bα
mc), (3.4)

where ai = bαmc and bi = dαme for all i. In addition, we define Diff(A) to be the sequence of the
difference between consecutive elements of A, that is,

Diff(A) = (an+1 − an)n≥1.

In particular, Diff(B(x)) = (b(n + 1)xc − bnxc)n≥1. Our purpose in this section is to give a structure of
Diff(B(αm)) in terms of its segments. We begin with the following lemma.

Lemma 3.1. Let m ≥ 3 and n ≥ 1 be integers. Then the following statements hold.

(i) If m is odd and b(n + 1)αmc − bnαmc = dαme, then

b(n + k)αmc − b(n + k − 1)αmc = bαmc for each k = 2, 3, . . . , bαmc. (3.5)

(ii) If m is even and b(n + 1)αmc − bnαmc = bαmc, then

b(n + k)αmc − b(n + k − 1)αmc = dαme for each k = 2, 3, . . . , bαmc.
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Proof. For convenience, let ` = bαmc and u = dαme. By Lemma 2.1, the difference between consecutive
terms of B(αm) is either ` or u. For (i), suppose m is odd and b(n + 1)αmc − bnαmc = u but (3.5) does
not hold. Then

b(n + `)αmc − bnαmc =
∑̀
k=1

(b(n + k)αmc − b(n + k − 1)αmc)

≥ 2u + (` − 2) `. (3.6)

On the other hand, we obtain by Lemma 2.1 that

b(n + `)αmc − bnαmc ≤ b`αmc + 1. (3.7)

Writing αm = (` − 2) + 2 + {αm} and applying Lemmas 2.1 and 2.4, we see that the right-hand side of
(3.7) is

(` − 2) ` + 2` + b`{αm}c + 1 = (` − 2) ` + 2` + 1 < (` − 2) ` + 2u,

which contradicts (3.6). Hence (i) holds. Similarly, suppose (ii) does not hold. Since m is even, we
obtain by Lemma 2.4 that b`{αm}c = ` − 1. Similar to (3.6) and (3.7), we obtain

`2 + b`{αm}c =
⌊
`2 + `{αm}

⌋
= b`αmc ≤ b(n + `)αmc − bnαmc

=
∑̀
k=1

(b(n + k)αmc − b(n + k − 1)αmc)

≤ 2` + (` − 2)u = `2 + ` − 2,

which implies b`{αm}c ≤ ` − 2, a contradiction. Hence the proof is complete.

Lemma 3.2. Let m ≥ 3 be an integer. Then the following statements hold.

(i) If m is odd, then the list of the first bαmc elements of Diff(B(αm)) is the segment S given in (3.1).
(ii) If m is even, then the list of the first bαmc elements of Diff(B(αm)) is the segment T0 given in (3.4).

Proof. For convenience, let ` = bαmc. We first consider the case that m is odd. To prove (i), it is enough
to show that b(n + 1)αmc−bnαmc = bαmc for each n = 1, 2, . . . , `−1 and that b(` + 1)αmc−b`αmc = dαme.
So suppose that 1 ≤ n ≤ ` − 1. Then n + 1 < αm and we obtain by Lemma 2.4 that

{nαm} + {αm} = n{αm} + {αm} = (n + 1){αm} = {(n + 1)αm} < 1.

By Lemma 2.1, we obtain b(n + 1)αmc − bnαmc = bαmc. Next, suppose n = `. Again, by Lemma 2.4,
we have {nαm} = n{αm} and so

{nαm} + {αm} = (n + 1){αm} ≥ αm{αm} = 1.

Thus b(n + 1)αmc − bnαmc = dαme. This proves (i). For (ii), assume that m is even. Similar to (i), if
1 ≤ n ≤ ` − 1, then we obtain by Lemma 2.4 that

{nαm} + {αm} = 1 − nβm + 1 − βm = 2 − βm(n + 1) ≥ 2 − βm` > 2 − βmαm = 1,

and thus b(n + 1)αmc − bnαmc = dαme. Next, if n = `, then

{nαm} + {αm} = 1 − nβm + 1 − βm = 2 − βm(n + 1) < 2 − βmαm = 1,

implying b(n + 1)αmc − bnαmc = bαmc, as desired. This completes the proof.
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Lemma 3.3. Let m ≥ 3 be an integer. Then the following statements hold.

(i) If m is odd and Diff(B(αm)) contains the constant segment (bαmc, bαmc, . . ., bαmc) of length k, then
k ≤ bαmc.

(ii) If m is even and Diff(B(αm)) contains the constant segment (dαme,dαme, . . ., dαme) of length k, then
k ≤ bαmc.

Remark 1. By Theorem 3.4 to be proved later, we see that the inequality k ≤ bαmc in Lemma 3.3 is
sharp in the sense that there exists such a constant segment of length bαmc in Diff(B(αm)).

Proof of Lemma 3.3. For (i), suppose for a contradiction that m is odd but the sequence Diff(B(αm))
contains a constant segment (bαmc , bαmc , . . . , bαmc) of length k with k > bαmc. By considering a shorter
segment (if necessary), we can choose k = dαme. This implies that B(αm) contains a finite arithmetic
progression

a, a + d, a + 2d, . . . , a + kd,

where a = bnαmc for some n ∈ N, d = bαmc, a + d = b(n + 1)αmc, . . ., a + kd = b(n + k)αmc. Therefore
kd = a + kd − a, which is equal to

b(n + k)αmc − bnαmc ≥ bkαmc = k bαmc + bk{αm}c = kd + bdαme {αm}c = kd + 1,

where the last equality is obtained by using Lemma 2.4. This is a contradiction. So (i) is proved.
The proof of (ii) is similar, so we omit some details. If (ii) is not true, we would obtain an arithmetic
progression a, a + d, . . . , a + kd, where k = dαme, a = bnαmc for some n ∈ N, d = dαme, and a + kd =

b(n + k)αmc, and therefore

kd = b(n + k)αmc − bnαmc ≤ bkαmc + 1 = k bαmc + bk{αm}c + 1
= k bαmc + bαmc = k(d − 1) + d − 1 = kd − 1 < kd,

which is a contradiction. So (ii) is verified and the proof is complete.

Before proceeding further, we need to define a concept that is similar to a concatenation of words as
in combinatorics. Suppose A = (ak+1, ak+2, . . . , ak+m) and B = (b`+1, b`+2, . . . , b`+r) are finite sequences.
Then we define the concatenation of A and B, and the n copies of A by

A · B = (ak+1, ak+2, . . . , ak+m, b`+1, b`+2, . . . , b`+r) , (3.8)
A(1) = A, and A(n) = A(n−1) · A for each positive integer n ≥ 2. (3.9)

For example, (1, 2, 3)(2) = (1, 2, 3, 1, 2, 3), and ((−1)n)1≤n≤10 = (−1, 1)(5). We now give a structure of
Diff(B(αm)) in terms the segments given in (3.1) to (3.4). We first deal with the case that m is odd.

Theorem 3.4. Let m ≥ 3 be an odd integer. Then the first bαmc
2 + dαme elements of Diff(B(αm)) can be

written as
Diff(B(αm)) = (S , S , S , . . . , S , S 0, . . .), (3.10)

where S and S 0 are the segments given in (3.1) and (3.2), and there are exactly bαmc of S appearing
before S 0 in (3.10).
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Proof. By Lemma 3.2, the first bαmc elements of Diff(B(αm)) is indeed the segment S . To prove (3.10),
it is enough to show that if we write Diff(B(αm)) as

Diff(B(αm)) = (S , S , S , . . . , S︸          ︷︷          ︸
b copies of S

, . . .), (3.11)

then S follows S (b) if 1 ≤ b < bαmc, and S 0 follows S (b) if b = bαmc, where S (b) is the b copies of S
as defined in (3.9) and written in (3.11). So suppose that (3.11) holds with b < bαmc. Since the last
element of S is dαme, we obtain by Lemma 3.1 that S is followed by the constant segment (`, `, . . . , `)
of length ` − 1, where ` = bαmc. Therefore (3.11) implies that

Diff(B(αm)) = (S , S , S , . . . , S , `, `, . . . , `, x, . . .), (3.12)

where x = bαmc or dαme, and we need to show that x = dαme so that the segment (`, `, . . . , `, x) in (3.12)
is indeed S .

Before proceeding further, let us explain the idea to be used in the proof. By the definition of
Diff(B(αm)), the segment such as S implies that there exists a sequence

a, a + d, a + 2d, . . . , a + (k − 1)d, a + kd + 1,

where a = bnαmc for some n ∈ N, d = bαmc = k, a + jd = b(n + j)αmc for j = 1, 2, . . . , k − 1, and
a + kd + 1 = b(n + k)αmc. If S appears as the first segment, then we can choose n = 1; but the above
argument can be used whenever S appears. Although d = k, we think of d as the difference and k as
the number of terms.

Repeatedly applying the above argument to (3.12), we see that there exists a sequence

a, a + d, . . . , a + kd + 1, a + (k + 1)d + 1, . . . , a + (2k − 1)d + 1,
a + 2kd + 2, . . . , a + bkd + b, a + bkd + b + `, a + bkd + b + 2`, . . . ,
a + bkd + b + (` − 1)`, a + bkd + b + (` − 1)` + x, (3.13)

where a = bαmc = d = k = `, a + d = b2αmc, a + 2d = b3αmc, . . ., a + bkd + b = b(bk + 1)αmc, . . .,
a + bkd + b + (`− 1)`+ x = b(bk + ` + 1)αmc. Subtracting the last element in (3.13) by the first element
in (3.13) and substituting d = k and ` = k, we see that

bk2 + b + k2 − k + x = b(bk + k + 1)αmc − bαmc . (3.14)

Writing αm = k + {αm} and letting z = b(bk + k + 1){αm}c, we see that the right-hand side of (3.14) is
(bk + k + 1)k + z − k, which implies that b − k + x = z. To calculate z, we recall from Lemma 2.4 that
{αm} = −βm and k{αm} = 1 − β2m. Therefore z =

⌊
b + 1 − (βm + β2m + bβ2m)

⌋
. Since b ≤ bαmc − 1 <

αm − 1, we see that
βm + β2m + bβ2m < βm + β2m + (αm − 1)β2m = 0.

Therefore z ≥ b + 1. Since b − k + x = z, we obtain x ≥ k + 1 = dαme. Since x = bαmc or dαme, we
conclude that x = dαme, as required.

Next, suppose that (3.11) holds with b = bαmc. Similar to the previous case, we obtain by Lemma
3.1 that S is followed by the constant segment (`, `, . . . , `) of length ` − 1, and therefore (3.11) implies

Diff(B(αm)) = (S , S , S , . . . , S , `, `, . . . , `, x, y, . . .), (3.15)
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where ` = bαmc, the number of S in (3.15) is b = bαmc, and x, y are bαmc or dαme. By Lemma 3.1, we
know that x, y cannot be both dαme. By Lemma 3.3, x, y cannot be both bαmc. Therefore

(x = bαmc and y = dαme) or (x = dαme and y = bαmc) (3.16)

If x = bαmc and y = dαme, then the segment (`, `, . . . , `, x, y) in (3.15) is S 0, and we are done. By (3.16),
it is enough to show that x , dαme. Applying the same argument to (3.15) instead of (3.12), we can
still obtain the sequence as in (3.13). Then (3.14) holds and the calculation after (3.14) still works, and
therefore b− k + x = z. Since we now have b = k, we obtain x = z. The first part of the calculation of z
in the previous case still works too. Therefore

x = z =
⌊
b + 1 − (βm + β2m + bβ2m)

⌋
. (3.17)

Since b = bαmc, we obtain by Lemma 2.4 that

bβ2m = (b{αm}) {αm} = (1 − β2m)(−βm) = −βm + β3m,

and therefore βm + β2m + bβ2m = β2m + β3m ∈ (0, 1). So (3.17) implies that x = b , dαme, as required.
This completes the proof.

Next, we give an analogue of Theorem 3.4 when m is even.

Theorem 3.5. Let m ≥ 4 be an even integer. Then the first dαme
2
− 1 elements of Diff(B(αm)) can be

written as
Diff(B(αm)) = (T0,T,T, . . . ,T,T0, dα

me , . . .), (3.18)

where T and T0 are the segments given in (3.3) and (3.4), and there are exactly bαmc−1 of T appearing
after the first T0 in (3.18).

Proof. Since the proof of this theorem uses the same idea as that of Theorem 3.4, we sometimes skip
some details. For convenience, let ` = bαmc and u = dαme. By Lemma 3.2, the first ` elements of
Diff(B(αm)) is the segment T0. By Lemma 3.1, we know that dαme follows the segment T0, so in
particular, dαme follows the second T0 appearing in (3.18). Therefore, to prove (3.18), it is enough to
show that T follows the first T0 and if we write Diff(B(αm)) as

Diff(B(αm)) = (T0,T,T,T, . . . ,T︸           ︷︷           ︸
b copies of T

, . . .), (3.19)

then T follows T (b) if 1 ≤ b < ` − 1, and T0 follows T (b) if b = ` − 1, where T (b) is the b copies of T as
defined in (3.9) and written in (3.19).
Step 1. By Lemma 3.1, we know that T0 is followed by the constant segment (u, u, . . . , u) of length
` − 1. So we can write

Diff(B(αm)) = (T0, u, u, . . . , u, x, y, . . .), (3.20)

where x, y ∈ {`, u}. To show that x = u and y = `, we apply the same argument as in the proof of
Theorem 3.4 to obtain from (3.20) the sequence

a, a + d, a + 2d, . . . , a + (k − 1)d, a + kd − 1, a + kd − 1 + u, . . . ,
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a + kd − 1 + (` − 1)u, a + kd − 1 + (` − 1)u + x, (3.21)

where a = bαmc, d = dαme, k = bαmc, a + d = b2αmc, . . ., a + (k− 1)d = bkαmc, a + kd− 1 = b(k + 1)αmc,
. . ., a+kd−1+ (`−1)u+ x = b(k + ` + 1)αmc. Subtracting the last element in (3.21) by the first element
in (3.21), we see that

kd − 1 + (` − 1)u + x = b(k + ` + 1)αmc − bαmc . (3.22)

To calculate the right-hand side of (3.22), we first apply Lemma 2.4 to obtain

b{kαm} + {`αm} + {αm}c = b1 − kβm + 1 − `βm + 1 − βmc

=
⌊
3 − (2 − βm + β2m)

⌋
= 1.

Thus the right-hand side of (3.22) is equal to

bkαmc + b`αmc + b{kαm} + {`αm} + {αm}c = bkαmc + b`αmc + 1. (3.23)

Substituting k = `, d = ` + 1, u = ` + 1 in (3.22) and applying (3.23) and Lemma 2.4, we obtain

2`2 + ` − 2 + x = 2 b`αmc + 1 = 2(`2 + b`{αm}c) + 1 = 2(`2 + ` − 1) + 1,

which implies x = ` + 1 = u, as required. By Lemma 3.3, y cannot be u. So y = ` and the segment
(u, u, . . . , u, x, y) in (3.20) is T , as desired.
Step 2. Next, suppose that (3.19) holds with b < ` − 1. Again, we know that T is followed by the
constant segment (u, u, . . . , u) of length ` − 1. Therefore (3.19) implies that

Diff(B(αm)) = (T0,T,T, . . . ,T, u, u, . . . , u, x, y, . . .), (3.24)

where x, y ∈ {`, u} and we only need to show that x = u so that the segment (u, u, . . . , u, x, y) in (3.24)
is indeed T . For convenience, let

s = a + kd − 1 + ((k + 1)d − 1)b.

Then we obtain from (3.24) the sequence

a, a + d, . . . , a + (k − 1)d, a + kd − 1, . . . , a + 2kd − 1,
a + (2k + 1)d − 2, . . . , s, s + u, . . . , s + (` − 1)u, s + (` − 1)u + x, (3.25)

where a = bαmc, d = u, k = `, and s + (` − 1)u + x = b(bk + k + b + ` + 1)αmc. Subtracting the last
element in (3.25) by the first element in (3.25) and substituting d = u = k + 1 and ` = k, we obtain

bk2 + 2bk + 2k2 + k − 2 + x = b(bk + 2k + b + 1)αmc − bαmc . (3.26)

Writing αm = k + {αm} and letting z = b(bk + 2k + b + 1){αm}c, we see that the right-hand side of (3.26)
is bk2 + 2k2 + bk + z, and so (3.26) reduces to bk + k − 2 + x = z. By Lemma 2.4, we see that

k{αm} = (Lm − 1)(1 − βm) = Lm − 1 − βm(αm + βm − 1) = Lm − 2 + βm − β2m,
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and therefore

z = b(b + 2)k{αm} + (b + 1)(1 − βm)c

=
⌊
(b + 2)(Lm − 2) + (b + 2)(βm − β2m) + (b + 1)(1 − βm)

⌋
= (b + 2)(Lm − 2) + b +

⌊
1 + βm − (b + 2)β2m

⌋
. (3.27)

Observe that we have not used the assumption 1 ≤ b < ` − 1 in any calculation above. So far, we only
use b for the number of T appearing in (3.19). This observation will be used in Step 3 too. We now
consider the last term in (3.27). We have the equivalence

1 + βm − (b + 2)β2m ≥ 1⇔ 1 ≥ (b + 2)βm

⇔ αm ≥ b + 2
⇔ b ≤ bαmc − 2. (3.28)

It is easy to see that 1 + βm − (b + 2)β2m < 2. Therefore (3.27) and (3.28) imply

z = (b + 2)(Lm − 2) + b + 1 = (b + 2)(k − 1) + b + 1 = bk + 2k − 1.

Since bk + k − 2 + x = z, it follows that x = k + 1 = u, as desired.
Step 3. This step is similar to Step 2. Suppose (3.19) holds with b = ` − 1. As already observed in
Step 2, we did not use the assumption b < ` − 1 before the end of Step 2. Therefore (3.24) to (3.28)
still hold in this case. But we now have b = ` − 1, so (3.28) implies that 1 + βm − (b + 2)β2m < 1,
and it is easy to verify by applying Lemma 2.4 that 1 + βm − (b + 2)β2m > 0. Therefore (3.27) implies
z = (b + 2)(Lm − 2) + b = bk + 2k − 2. Since bk + k − 2 + x = z, we obtain x = k = bαmc, as desired.
This completes the proof.

4. Sumsets associated with B(αm)

In this section, we give various results on sumsets associated with B(αm). We begin with a simple
but useful result for general Beatty sequences as follows.

Theorem 4.1. If x > 1 is an irrational number, h ∈ N, and the h-fold sumset hB(x) contains dxe
consecutive integers, then (h + 1)B(x) is cofinite. More precisely, if hB(x) contains consecutive integers
m,m + 1, . . . ,m + bxc, then (h + 1)B(x) contains every integer that is larger than or equal to m + bxc.

Proof. Suppose hB(x) contains consecutive integers m,m + 1, . . . ,m + k, where k = bxc. For each
i = 0, 1, 2, . . . , k, let Ai = (m + i) + B(x). Then

⋃k
i=0 Ai is a subset of (h + 1)B(x). So it is enough to

show that
k⋃

i=0

Ai = [m + k,∞) ∩ N. (4.1)

If y ∈
⋃k

i=0 Ai, then y ∈ Ai for some i, and so y = m+ i+ bnxc for some n ∈ N, and therefore y ≥ m+ bxc.
Conversely, suppose y ∈ N and y ≥ m + k. Since

[m + k,∞) =

∞⋃
n=1

[m + bnxc ,m + b(n + 1)xc),
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we see that m + bnxc ≤ y < m + b(n + 1)xc for some n ∈ N. Recall that b(n + 1)xc − bnxc ≤ dxe for
every n ∈ N. Therefore y = m + bnxc + j for some j = 0, 1, 2, . . . , dxe − 1. Thus y ∈ A j ⊆

⋃k
i=0 Ai. This

completes the proof.

In the proof of the next theorem, we write [a, b] to denote the interval of integers, that is,

[a, b] = {x ∈ Z | a ≤ x ≤ b}.

For example, if A is a set of an arithmetic progression a, a + d, a + 2d, . . . , a + kd, then A = a + d ∗ [0, k]
and the h-fold sumset hA = ha + d ∗ [0, hk]. We would like to show that dαme B(αm) is always cofinite
for all m ≥ 1. If m ≤ 2, then we already have a proof in [6]. If m ≥ 3 and m is odd, then we have a
short proof as follows.

Theorem 4.2. Let m ≥ 3 be an odd integer and h = bαmc. Then hB(αm) contains dαme consecutive
integers. In addition, (h + 1)B(αm) is cofinite, or more precisely, (h + 1)B(αm) contains every integer
that is larger than or equal to h3 + h

⌊
(h2 + 1)αm

⌋
= h4 + h3 + 2h2.

Proof. Let k = d = bαmc. We consider d as the first k terms in the segment S 0 and k + 1 the number of
terms in S 0. By Theorem 3.4, Diff(B(αm)) contains the segment S 0. This implies that B(αm) contains
the segment a, a + d, a + 2d, . . . , a + kd, a + (k + 1)d + 1, where a = bnαmc for some n ∈ N. Let
A1 = a + d ∗ [0, k], b = a + (k + 1)d + 1, and A = A1 ∪ {b}. Then hA =

⋃h−1
`=0(`b + (h − `)A1)∪ {hb}. Let

0 ≤ ` < h be integers. Then

`b + (h − `)A1 = `b + (h − `)a + d ∗ [0, (h − `)k]
= `a + `(k + 1)d + ` + (h − `)a + d ∗ [0, (h − `)k]
= ` + `(k + 1)d + ha + d ∗ [0, (h − `)k]
= ` + ha + d ∗ [`(k + 1), hk + `]. (4.2)

Since ` ≤ h−1 and h = k, we have hk− `(k + 1) ≥ hk− (h−1)(k + 1) = 1. Therefore `(k + 1) ≤ hk−1 ≤
hk+`. By (4.2), `b+(h−`)A1 contains the integer x` where x` = `+ha+d(hk−1), and therefore x` ∈ hA.
Since 0 ≤ ` < h is arbitrary, we obtain the consecutive integers x0, x1, x2, . . . , xh−1 in hA. Furthermore,
hA1 contains the integer xh =: ha + dhk which is equal to 1 + xh−1. Therefore x0, x1, x2, . . . , xh−1, xh are
consecutive integers in hA. Since A ⊆ B(αm), we see that hB(αm) contains dαme consecutive integers
x0, x1, . . . , xh. Therefore we obtain by Theorem 4.1 that (h + 1)B(αm) is cofinite and contains every
integer that is larger than or equal to xh.

So it only remains to write xh in the desired form. First, since xh = ha + dhk and d = k = h,
we obtain xh = ha + h3. Secondly, we see from Theorem 3.4 that there are h2 elements in Diff(B(αm))
appearing before the segment S 0. Therefore a = bnαmc =

⌊
(h2 + 1)αm

⌋
. Hence xh = h3 +h

⌊
(h2 + 1)αm

⌋
.

Alternatively, we can write a =
⌊
(h2 + 1)αm

⌋
in terms of h only. Since the first k2 elements of

Diff(B(αm)) are S (k), it follows that the (k2+1)-th element of B(αm) is bαmc+(kd+1)k = k3+2k = h3+2h.
Therefore xh = ha + h3 = h(h3 + 2h) + h3 = h4 + h3 + 2h2. This completes the proof.

Theorem 4.3. Let m ≥ 4 be an even integer and h = bαmc. Then hB(αm) contains dαme consecutive
integers and (h + 1)B(αm) contains every integer that is larger than or equal to

(h − 1)
⌊
(h + 1)2αm

⌋
+ 2h = h4 + 2h3 − h2 − h + 1.
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Proof. Let a = bαmc = k and d = dαme. We consider a as the first term in B(αm), k the number of
terms in the segment T0, and d the first k elements of the segment T and also the first k − 1 elements
of the segment T0. By Theorem 3.5, we obtain the first dαme

2
− 1 elements of Diff(B(αm)), and so we

know the first dαme
2 terms of B(αm). We write these dαme

2 = (k + 1)2 terms of B(αm) as entries of a
matrix

[
ai j

]
where 0 ≤ i, j ≤ k, a0,0 = bαmc is the first term, a0,1 = b2αmc is the second term, . . ., and

ak,k =
⌊
(k + 1)2αm

⌋
is the (k + 1)2-th term of B(αm). For clarity, we write ai, j instead of ai j. So, for

instance, we have

a0,0 = a, a0,1 = a + d, . . . , a0,k−1 = a + (k − 1)d, a0,k = a + kd − 1,
a1,0 = a + (k + 1)d − 1, . . . , ak,k = a + (k2 + 2k)d − k − 1.

We write the entries in column C0, C1, C2 and Ck−2, Ck−1, Ck separately as follows:
(C0) (C1) (C2) · · ·

(R0) a a + d a + 2d · · ·

(R1) a + (k + 1)d − 1 a + (k + 2)d − 1 a + (k + 3)d − 1 · · ·

(R2) a + 2(k + 1)d − 2 a + (2k + 3)d − 2 a + (2k + 4)d − 2 · · ·

(R3) a + 3(k + 1)d − 3 a + (3k + 4)d − 3 a + (3k + 5)d − 3 · · ·

.

.

.

.

.

.

.

.

.

.

.

. · · ·

(Rk−1) a + (k − 1)(k + 1)d − (k − 1) a + k2d − (k − 1) a + (k2 + 1)d − (k − 1) · · ·

(Rk) a + k(k + 1)d − k a + (k2 + k + 1)d − k a + (k2 + k + 2)d − k · · ·

· · · (Ck−2) (Ck−1) (Ck)
(R0) · · · a + (k − 2)d a + (k − 1)d a + kd − 1
(R1) · · · a + (2k − 1)d − 1 a + 2kd − 1 a + (2k + 1)d − 2
(R2) · · · a + 3kd − 2 a + (3k + 1)d − 2 a + (3k + 2)d − 3
(R3) · · · a + (4k + 1)d − 3 a + (4k + 2)d − 3 a + (4k + 3)d − 4
.
.
. · · ·

.

.

.

.

.

.

.

.

.

(Rk−1) · · · a + (k2 + k − 3)d − (k − 1) a + (k2 + k − 2)d − (k − 1) a + (k2 + k − 1)d − k
(Rk) · · · a + (k2 + 2k − 2)d − k a + (k2 + 2k − 1)d − k − 1 a + (k2 + 2k)d − k − 1

There are two patterns that are helpful in the following calculation. First, in each row Ri for i =

0, 1, 2, . . . , k − 1, we have ai, j + d = ai, j+1 for 0 ≤ j ≤ k − 2, and ai,k−1 + d − 1 = ai,k, and in row Rk, we
have ak, j + d = ak, j+1 for 0 ≤ j ≤ k − 3, ak,k−2 + d − 1 = ak,k−1, and ak,k−1 + d = ak,k. Secondly, in each
column C j for 0 ≤ j ≤ k and j , k − 1, we have

ai, j + (k + 1)d − 1 = ai+1, j for all i = 0, 1, 2, . . . , k − 1,

and in column Ck−1, we have

ai,k−1 + (k + 1)d − 1 = ai+1,k−1 for all i = 0, 1, 2, . . . , k − 2, and
ak−1,k−1 + (k + 1)d − 2 = ak,k−1.

These two patterns are used throughout the remaining proof without further reference.
Let A = {ai, j | 0 ≤ i, j ≤ k} be the set of the first (k+1)2 elements of B(αm). We construct consecutive

integers x1, x2, . . . , xk+1 that are in the h-fold sumset hA as follows. Let x1 = (h − 1)ak,k + a0,0, which is
clearly an element of hA. Next, let x2 = x1 + 1. To write x2 as the sum of h elements of A, we observe
that for 0 ≤ j ≤ k − 3,

ak,k + a0, j + 1 = (ak,k − d − (d − 1)) + (a0, j + d + d) = ak,k−2 + a0, j+2.

Therefore x2 = (h−2)ak,k +ak,k +a0,0 +1 = (h−2)ak,k +ak,k−2 +a0,2. In general, for j = 1, 2, 3, . . . ,
⌊

k+1
2

⌋
,

let
x j = (h − j)ak,k + ( j − 1)ak,k−2 + a0,2 j−2. (4.3)
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Then, for each j = 1, 2, . . . ,
⌊

k+1
2

⌋
, we see that x j is a sum of h − j + j − 1 + 1 = h elements of A, and

so x j ∈ hA. In addition, for 2 ≤ j ≤
⌊

k+1
2

⌋
, we have

x j − x j−1 = (−ak,k + ak,k−2) + (a0,2 j−2 − a0,2 j−4) = (−2d + 1) + 2d = 1.

Therefore x1, x2, x3, . . . , xb k+1
2 c

are consecutive integers in hA. Next, we divide the construction into
two cases according to the parity of k.
Case 1. k is even. So we already have consecutive integers x1, x2, . . . , x k

2
, and we need to construct

x k
2 +1, x k

2 +2, . . . , xk, xk+1. Let x k
2 +1 = x k

2
+ 1. Observe that

ak,k + a0,k−2 + 1 = (ak,k − ((k + 1)d − 1) − (d − 1)) + (a0,k−2 + ((k + 1)d − 1) + d)
= ak−1,k−1 + a1,k−1. (4.4)

By (4.3), we have x k
2

= k
2ak,k +

(
k
2 − 1

)
ak,k−2 + a0,k−2. This and (4.4) imply that

x k
2 +1 = x k

2
+ 1 =

(
k
2
− 1

)
ak,k +

(
k
2
− 1

)
ak,k−2 + (ak,k + a0,k−2 + 1)

=

(
k
2
− 1

)
ak,k +

(
k
2
− 1

)
ak,k−2 + ak−1,k−1 + a1,k−1,

which is a sum of k
2 − 1 + k

2 − 1 + 1 + 1 = k = h elements of A, and so it is an element of hA. In general,
for 1 ≤ j ≤ k

2 , let

x k
2 + j =

(
k
2
− j

)
ak,k +

(
k
2
− j

)
ak,k−2 + (2 j − 1)ak−1,k−1 + a2 j−1,k−1. (4.5)

Clearly, x k
2 + j is a sum of k

2 − j + k
2 − j + 2 j − 1 + 1 = k = h elements of A. In addition, for 2 ≤ j ≤ k

2 ,
we have

x k
2 + j − x k

2 + j−1 = −ak,k − ak,k−2 + 2ak−1,k−1 + a2 j−1,k−1 − a2 j−3,k−1

= −(ak−1,k−1 + (d − 1) + ((k + 1)d − 1))
− (ak−1,k−1 − d + ((k + 1)d − 1)) + 2ak−1,k−1 + 2((k + 1)d − 1)

= 1.

This shows that x1, x2, . . . , x k
2
, x k

2 +1, x k
2 +2, . . . , xk are consecutive integers contained in hA. It remains to

construct xk+1. Let xk+1 = xk + 1. By (4.5), we know xk, and so

xk+1 = (k − 1)ak−1,k−1 + ak−1,k−1 + 1
= (k − 1)(ak−1,k−1 + (k + 1)d − 2) + (ak−1,k−1 − (k − 1)((k + 1)d − 1)) + k

= (k − 1)ak,k−1 + a0,k−1 + k

= (k − 1)ak,k−1 + a0,k,

which is a sum of k − 1 + 1 = k = h elements of A. Hence, we obtain consecutive integers
x1, x2, x3, . . . , xk+1 in hA, as desired.
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Case 2. k is odd. So we already have k+1
2 consecutive integers x1, x2, x3, . . . , x k+1

2
in hA. Therefore we

need to construct x k+1
2 +1, x k+1

2 +2, . . . , xk+1. Let x k+1
2 +1 = x k+1

2
+ 1. By (4.3), we know x k+1

2
, and so we know

that

x k+1
2 +1 =

(
k − 1

2

)
ak,k +

(
k − 1

2

)
ak,k−2 + a0,k−1 + 1

=

(
k − 1

2
− 1

)
ak,k +

(
k − 1

2
− 1

)
ak,k−2 + 2ak−1,k−1

+ ak,k + ak,k−2 − 2ak−1,k−1 + a0,k−1 + 1. (4.6)

For 0 ≤ j ≤ k − 3, we have

ak,k + ak,k−2 − 2ak−1,k−1 + a j,k−1 + 1
= (ak−1,k−1 + (d − 1) + (k + 1)d − 1) + (ak−1,k−1 − d + (k + 1)d − 1)
− 2ak−1,k−1 + (a j,k−1 + 1)

= a j,k−1 + 2((k + 1)d − 1)
= a j+2,k−1. (4.7)

From (4.6) and (4.7), we obtain

x k+1
2 +1 =

(
k − 1

2
− 1

)
ak,k +

(
k − 1

2
− 1

)
ak,k−2 + 2ak−1,k−1 + a2,k−1,

which is a sum of k−1
2 −1+ k−1

2 −1+2+1 = k = h elements of A. In general, for each j = 1, 2, 3 . . . , k−1
2 ,

let

x k+1
2 + j =

(
k − 1

2
− j

)
ak,k +

(
k − 1

2
− j

)
ak,k−2 + 2 jak−1,k−1 + a2 j,k−1. (4.8)

Clearly, x k+1
2 + j is a sum of k−1

2 − j + k−1
2 − j + 2 j + 1 = k = h elements of A for every j = 1, 2, 3, . . . , k−1

2 .
In addition, for 2 ≤ j ≤ k−1

2 , we obtain from (4.8) and (4.7) that

x k+1
2 + j − x k+1

2 + j−1 = −(ak,k + ak,k−2 − 2ak−1,k−1) + a2 j,k−1 − a2 j−2,k−1

= −(ak,k + ak,k−2 − 2ak−1,k−1 + a2 j−2,k−1 + 1) + a2 j,k−1 + 1
= 1.

This shows that x1, x2, . . . , xk are consecutive integers in hA. So it remains to construct xk+1. Let
xk+1 = xk + 1. By (4.8), we know xk, and so we obtain

xk+1 = (k − 1)ak−1,k−1 + ak−1,k−1 + 1
= (k − 1)(ak−1,k−1 + (k + 1)d − 2) + (ak−1,k−1 − (k − 1)((k + 1)d − 1)) + k

= (k − 1)ak,k−1 + a0,k−1 + k

= (k − 1)ak,k−1 + a0,k,

which is a sum of k − 1 + 1 = k = h elements of A. Hence, we obtain consecutive integers
x1, x2, x3, . . . , xk+1, as desired.
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In both cases, we obtain dαme consecutive integers in hA. Since A ⊆ B(αm), we see that hB(αm)
contains dαme consecutive integers. By Theorem 4.1, (h+1)B(αm) is cofinite and contains every integer
that is larger than or equal to

xk+1 = x1 + k = (h − 1)ak,k + a0,0 + k.

Recall that ak,k is the (k + 1)2-th element of B(αm) and a0,0 is the first element of B(αm), and k = h.
Therefore ak,k =

⌊
(h + 1)2αm

⌋
, a0,0 = bαmc = h, and xk+1 = (h − 1)

⌊
(h + 1)2αm

⌋
+ 2h. Alternatively, we

know from the list of ai, j that a0,0 = a = h, ak,k = a + (k2 + 2k)d − k − 1 = (h2 + 2h)(h + 1) − 1, and
therefore xk+1 = h4 + 2h3 − h2 − h + 1. This completes the proof.

We can use the argument from the proof of Theorem 4.3 to get a sharper version of Theorem 4.2 as
follows.

Theorem 4.4. Let m ≥ 3 be an odd integer and h = bαmc. Then (h + 1)B(αm) contains every integer
that is larger than or equal to 2h3 + 2h.

Proof. Since the proof of this theorem is similar to that of Theorem 4.3, we skip some details. Let
a = bαmc = k = d and consider a as the first term in B(αm), k the number of terms in the segment S ,
and d the first k terms of S 0 (and the first k − 1 terms of S ). By Theorem 3.4, we can write the first
bαmc

2 + dαme + 1 elements of B(αm) as entries of the matrix
[
ai j

]
as follows.

(C0) (C1) (C2) · · · (Ck−1)
(R0) a a + d a + 2d · · · a + (k − 1)d
(R1) a + kd + 1 a + (k + 1)d + 1 a + (k + 2)d + 1 · · · a + (2k − 1)d + 1
(R2) a + 2kd + 2 a + (2k + 1)d + 2 a + (2k + 2)d + 2 · · · a + (3k − 1)d + 2
(R3) a + 3kd + 3 a + (3k + 1)d + 3 a + (3k + 2)d + 3 · · · a + (4k − 1)d + 3
.
.
.

.

.

.

.

.

.

.

.

. · · ·

.

.

.

(Rk−1) a + (k − 1)kd + k − 1
.
.
.

.

.

. · · ·

.

.

.

(Rk) a + k2d + k
.
.
.

.

.

. · · · a + (k2 + k − 1)d + k
(Rk+1) a + (k2 + k)d + k a + (k2 + k + 1)d + k + 1 X · · · X

For instance, in row R0, we have

a0,0 = a, a0,1 = a + d, . . . , a0,k−1 = a + (k − 1)d,

and in row Rk+1, we have

ak+1,0 = a + (k2 + k)d + k, ak+1,1 = a + (k2 + k + 1)d + k + 1,

and for j = 2, 3, . . . , k − 1, the number ak+1, j is unspecified and is not used in the proof. The patterns
that are helpful in the following calculation are as follows.

First, in each row Ri for i = 0, 1, . . . , k, we have ai, j + d = ai, j+1 for 0 ≤ j ≤ k− 2 and ai,k−1 + d + 1 =

ai+1,0 if i , k, and ak,k−1 + d = ak+1,0. In row Rk+1, we have ak+1,0 + d + 1 = ak+1,1. Secondly, in
each column C j for j = 0, 1, 2, . . . , k − 1, we have ai, j + kd + 1 = ai+1, j for i = 0, 1, 2, . . . , k − 1, and
ak,0 + kd = ak+1,0, and ak,1 + kd + 1 = ak+1,1.

Let A = {ai, j | 0 ≤ i ≤ k and 0 ≤ j ≤ k − 1} ∪ {ak+1,0, ak+1,1} be the first k2 + k + 2 elements of B(αm)
given above. We construct consecutive integers x0, x1, . . . , xk as follows. Let

x0 = ak+1,0 + (h − 2)a0,k−1 + a0,k−2
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and for j = 1, 2, . . . , k − 2, let

x j = ak+1,1 + (h − 2 − j)a0,k−1 + ( j − 1)a0,0 + a j−1,k−1 + a0,k−2− j.

It is easy to see that x j is a sum of h elements of A for every j = 0, 1, 2, . . . , k − 2. In addition, x1 − x0

is equal to
(ak+1,1 − ak+1,0) + (a0,k−3 − a0,k−2) = d + 1 − d = 1.

Furthermore, for j = 2, 3, . . . , k − 2, we have

x j − x j−1 = −a0,k−1 + a0,0 + (a j−1,k−1 − a j−2,k−1) + (a0,k−2− j − a0,k−1− j)
= −(k − 1)d + (kd + 1) + (−d) = 1.

Therefore x0, x1, x2, . . . , xk−2 are consecutive integers in hA. Next, let xk−1 = 1 + xk−2, which is equal to

1 + ak+1,1 + (h − 2)a0,0 + ak−3,k−1

= (ak+1,1 − (kd + 1) − d) + (h − 2)a0,0 + (ak−3,k−1 + kd + 1 + d + 1)
= ak,0 + (h − 2)a0,0 + ak−1,0,

and therefore xk−1 ∈ hA. Next, let xk = 1 + xk−1, which is equal to

ak,0 + kd + (h − 2)(a0,0 + (k − 1)d) + (ak−1,0 − (k − 1)(kd + 1) + (k − 1)d)
= ak+1,0 + (h − 2)a0,k−1 + a0,k−1,

and thus xk ∈ hA. Hence x0, x1, x2, . . . , xk are consecutive integers in hA. By Theorem 4.1, (h+1)B(αm)
contains every integer that is larger than or equal to xk. We have

xk = ak+1,0 + (h − 1)a0,k−1

= a + (k2 + k)d + k + (k − 1)(a + (k − 1)d)
= 2k3 + 2k = 2h3 + 2h.

This completes the proof.

Remark 2. The integer x = x(m, h) = h4 +2h3−h2−h+1 in Theorem 4.3, and the integer x = x(m, h) =

2h3 + 2h in Theorem 4.4 are best possible when m ≤ 5. For example, if m = 3, then x(m, h) in Theorem
4.4 is equal to 2h3 + 2h = 136, and so 5B(α3) contains every integer that is larger than or equal to 136.
Then we can either straightforwardly check or use a computer to verify that 135 < 5B(αm), and thus
136 is best possible.

More generally, for a cofinite proper subset A of N, let G(A) = N \ A, g(A) = |G(A)|, f (A) =

max G(A), and c(A) = f (A) + 1. Although this may be slightly different from a more restrictive
definition in algebraic geometry or numerical semigroup theory, we may call G(A) the set of gaps of
A, g(A) the genus of A, f (A) the Frobenius number of A, and c(A) the conductor of A. Then Theorems
4.3 and 4.4 actually give some information on the genus, the Frobenius number, and the conductor of
dαme B(αm). We record these as a corollary.
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Corollary 1. Let m be a positive integer and h(m) = bαmc. Let g(m), f (m), c(m) be the genus, the
Frobenius number, and the conductor of the (h + 1)-fold sumset (h + 1)B(αm), respectively, as defined
in Remark 2. Then the following statements hold:

g(1) = 2, f (1) = 3, c(1) = 4,
g(2) = 11, f (2) = 26, c(2) = 27,
g(3) = 47, f (3) = 135, c(3) = 136,
g(4) = 251, f (4) = 1686, c(4) = 1687,
g(5) = 747, f (5) = 2683, c(5) = 2684.

Furthermore, if m ≥ 6 and m is even, then f (m) ≤ h4 + 2h3 − h2 − h; if m ≥ 6 and m is odd, then
f (m) ≤ 2h3 +2h−1. In particular, the values of f (m) and c(m) obtained from (or implied by) Theorems
4.3 and 4.4 are best possible for 3 ≤ m ≤ 5. In fact, simply substituting h = h(1) = bαc = 1 in Theorem
4.4 and h = h(2) =

⌊
α2

⌋
= 2 in Theorem 4.3, and comparing them with the results in [6], we see that

they are also best possible for m = 1, 2.

Proof. When m = 1 or 2, we obtain this corollary from Theorems 3.1 and 3.8 in [6]. For 3 ≤ m ≤ 5,
we apply Theorems 4.3 and 4.4 to obtain an explicit constant N = N(m) depending only on m such that
the dαme-fold sumset dαme B(αm) contains every integer that is larger than or equal to N. Then we can
either straightforwardly check or use a computer to verify that N − 1 is not in dαme B(αm). So N is the
smallest integer such that [N,∞) ∩ Z is contained in dαme B(αm). This completes the proof.

We conclude this paper with the following conjecture.

Conjecture 1. Let h = bαmc for each m ≥ 3. Then the integers h4 + 2h3 − h2 − h + 1 and 2h3 + 2h given
in Theorems 4.3 and 4.4 are best possible for all m ≥ 3. In other words, the Frobenius number f (m) of
dαme B(αm) satisfies

f (m) =

h4 + 2h3 − h2 − h, if m is even;
2h3 + 2h − 1, if m is odd.

Conjecture 2. For each m ∈ N, the number dαme is the smallest positive integer such that dαme B(αm)
is cofinite.

Question 1. Numerical evidence suggests (but does not prove) that there are infinitely many Fibonacci
numbers that are not an element of bαmc B(αm). Is this true in a more general situation? If α > 0 > β,
|α| > max{1, |β|}, and α, β are roots of the characteristic polynomial x2 − ax − b of the Lucas sequence
of the first kind (Un(a, b))n≥1, is there an interesting connection between the sumsets of B(αm) and Un?
Here Un is defined by the recurrence relation U0 = 0, U1 = 1, and Un = aUn−1 + bUn−2 for n ≥ 2,
where a, b are fixed integers, (a, b) = 1, and a2 + 4b > 0.
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