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Abstract: In the manuscript, we deal with a type of pseudo orbit tracing property and hyperbolicity
about a vector field (or a divergence free vector field). We prove that a vector field (or a divergence
free vector field) of a smooth closed manifold M has the robustly ergodic pseudo orbit tracing property
then it does not contain any singularities and it is Anosov. Additionally, there is a dense and open set
R in the set of C1 a vector field (or a divergence free vector field) of a smooth closed manifold M such
that given a vector field (or a divergence free vector field) has the ergodic pseudo orbit tracing property
then it does not contain singularities and it is Anosov.
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1. Introduction

In smooth dynamical systems, various pseudo trajectory(orbit) tracing properties have been studied
to investigate hyperbolic systems (see [1–21]). About the ergodic pseudo orbit tracing property (see
[22]), Barzanouni and Honary [23] and Lee [24–26] studied that a C1 diffeomorphism f of a smooth
closed manifold M has a hyperbolic structure if f has the robustly ergodic pseudo orbit tracing property.
The results are a version of discrete smooth dynamic system. In general, many results of discrete
smooth dynamic systems can be extended for continuous smooth dynamic systems. However, the
results of discrete dynamic systems can not directly lead to the results of successive smooth dynamic
systems (see [27,28]). For instance, Sakai [19] proved that a diffeomorphism f has the robustly pseudo
orbit tracing property if and only if it is structural stable. But, for continuous dynamical systems, it is
still open problem if the system having sinuglar points (see [6]). In the paper, we consider an extended
version, that is, continuous dynamic systems, of the result for the ergodic pseudo orbit tracing property
of a C1 diffeomorphism f of a smooth closed manifold M.
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2. Basic notions and results

2.1. Vector fields

Assume that Mn = M is smooth closed n(≥ 3) dimensional manifold with Riemannian metric d(·, ·).
The flow φ : R × M → M satisfies the followings: (i) φ0(x) = x, ∀x ∈ M, and (ii) φs(φt(x)) = φs+t(x)
∀x ∈ M and all s, t ∈ R. Denote by X(M) the set of C1-vector fields on M. For any x ∈ M, the
Orb(x, φ) = {φt(x) : t ∈ R} is called the orbit of φ through x. Let Rep = {h : R → R : h is an oriented
homeomorphism with h(0) = 0}. For any ϵ > 0, we define Rep(ϵ) as follows:

Rep(ϵ) =
{
h ∈ Rep :

∣∣∣∣h(t) − h(s)
t − s

− 1
∣∣∣∣ < ϵ(t , s)

}
.

Let ξ = {(xi, ti) : ti ≥ τ, i ∈ Z}, and Γδ(ξ) = {i ∈ Z : d(φti(xi), xi+1) ≥ δ}. Then a sequence of points
{(xi, ti) : ti ≥ τ, i ∈ Z} is called (δ, τ)-ergodic pseudo orbit of φ if for i ∈ Z, ti ≥ τ,

lim
n→∞

#(Γδ(ξ) ∩ {0, . . . , n − 1})
n

= 0, and

lim
n→∞

#(Γδ(ξ) ∩ {0,−1, . . . ,−n + 1})
−n

= 0,

where #(A) is the number of the elements of A. Let s0 = 0, sn =
∑n−1

i=0 ti, and sn = −
∑−1

i=−n ti, n =
1, 2, . . . . Then we define

Γϵ(ξ, x)+ =
{
i ∈ N ∪ {0} :

∫ si+1

si

d(φh(t)(x), φt−si(xi))dt ≥ ϵ
}
, and

Γϵ(ξ, x)− =
{
i ∈ N :

∫ s−i+1

s−i

d(φh(t)(x), φt−s−i(xi))dt ≥ ϵ
}
.

We set Γϵ(ξ, x) = Γϵ(ξ, x)+ ∪ Γϵ(ξ, x)−.

Definition 2.1. A vector field φ has the ergodic pseudo orbit tracing property if for any positive ϵ > 0,
we can find positive δ > 0 such that for any (δ, τ)-ergodic pseudo orbit ξ = {(xi, ti) : ti ≥ τ, i ∈ Z} there
are a point z ∈ M and h ∈ Rep(ϵ) for which

lim
|n|→∞

#(Γϵ(ξ, z) ∩ {0, 1, . . . , n − 1})
n

= 0.

Denote by ES P the set of all vector fields possessing the ergodic pseudo orbit tracing property and
by int(ES P) the set of all C1 interior of the set of all vector fields possessing the ergodic pseudo orbit
tracing property. A closed φt-invariant set Λ ⊂ M is called hyperbolic for φt if

(a) Λ have a continuous Dφ-invariant tangent bundle decomposition TΛM = E s
Λ
⊕ F ⊕ Eu

Λ
,

(b) ∥Dφt|Es
x∥ ≤ Ce−λt, ∀x ∈ Λ and every t ≥ 0, and

(c) m(Dφt|Eu
x ) ≥ Ceλt, ∀x ∈ Λ and every t ≥ 0,

where m(T ) = inf∥v∥=1 ∥T (v)∥ is the minimum norm of a linear operator T, and F is generated by X(x).
We say that φ ∈ X(M) is Anosov if M is hyperbolic for φ. Let S ing(φ) = {x ∈ M : φ(x) = 0} and
P(φ) = {x ∈ M : there is T > 0 such that φT (x) = x}. Denote by Crit(φ) = S ing(φ) ∪ P(φ).

Theorem A Let φ ∈ X(M). we have the followings:
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(a) If φ ∈ int(ES P) then S ing(φ) = ∅ and φ is Anosov.
(b) There is a dense and open set R in X(M) such that given φ ∈ R, if φ ∈ ES P then S ing(φ) = ∅ and
φ is Anosov.

2.2. Divergence free vector fields

Let Mn = M be a smooth closed n(≥ 3)-dimensional Riemannian manifold endowed with a volume
form µ(Lebesgue measure). A vector field φ is divergence-free if its divergence is zero. Notice that,
by Liouville formula, a flow φt is volume-preserving means that it is the corresponding divergence-free
vector field φ. Let Xµ(M) denote the space of C1 divergence-free vector fields on M and we consider
the usual C1 Whitney topology on this space. Lee proved in reference [8] that a volume preserving
diffeomorphism f of a smooth compact manifold M has the robustly the ergodic pseudo orbit tracing
property is equivalent to Anosov, and there is a dense and open setM in the set of all volume preserving
diffeomorphisms of a smooth compact manifold M such that given f ∈ M, f has the the ergodic pseudo
orbit tracing property is equivalent to Anosov. It is a discrete version of volume preserving dynamical
systems.

Denote by ES Pµ the set of all divergence-free vector fields possessing the ergodic pseudo orbit
tracing property and by int(ES P)µ the set of all C1 interior of the set of all divergence-free vector fields
possessing the ergodic pseudo orbit tracing property.

According the result and the previous results, we have the following.

Theorem B Let φ ∈ Xµ(M). We have the followings:

(a) If φ ∈ int(ES P)µ then it is Anosov.
(b) There is a dense and open setM in Xµ(M) such that given φ ∈ M, if φ ∈ ES Pµ then it is Anosov.

3. Proof of Theorem A

3.1. Proof of item(a) of Theorem A

Let M be as before, and let φ ∈ Xµ(M). Given δ > 0 and τ > 0, a sequence of points {(xi, ti) : ti ≥

τ, i ∈ Z} is called (δ, τ)-pseudo orbit of φ if ti ≥ τ and d(φti(xi), xi+1) < δ ∀i ∈ Z. For x, y ∈ M, a finite
(δ, τ)-pseudo orbit {(xi, ti) : ti ≥ τ, i = 0, 1, . . . , n} of φ is said to be a (δ, τ)-chain of φ from x to y with
length n + 1 if x0 = x and xn = y. A φ ∈ X(M) is said to be chain transitive if M is a chain transitive
set. Let U,V be non-empty open subsets of M. A vector field φ is transitive if φT (U) ∩ V , ∅, for
some T > 0. Obviously, if φ is transitive then it is chain transitive (see [31, Proposition 3.3.2]). A
closed φt-invariant set Λ ⊂ M is attracting if Λ equals

⋂
t≥0 φt(U) for some neighborhood U satisfying

φt(U) ⊂ U, ∀t > 0. An attractor of φ is a transitive attracting set of φ and a repeller is an attractor for
−φ. A closed φt-invariant set Λ ⊂ M is a proper attractor or repeller if ϕ , Λ , M. In [18, Proposition
3], a vector field φ is chain transitive in an isolated set Λ if and only if Λ has no proper attractor
for φ. Here Λ is isolated if there exists an open set U of Λ which is called isolated block for which⋂

t∈R φt(U) = Λ.
A vector field φ has the pseudo orbit tracing property if for any positive η > 0, one can find δ > 0

such that any (δ, 1)-pseudo orbit {(xi, ti) : ti ≥ T, i ∈ Z}, there are a point y ∈ M and h ∈ Rep(ϵ) having
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the following property;
d(φh(t)(y), φt−si(xi)) < η,

∀i ∈ Z and si ≤ t < si+1, where s0 = 0, si = t0 + t1 + . . . + ti for i > 0 and si = −(t−1 + t−2 + . . . + t−i) for
i > 0.

Lemma 3.1. If a vector field φ ∈ ES P then φ has the finite pseudo orbit tracing property.

Proof. Firstly, we show that φ is chain transitive. To prove, it is enough to show that Λ is a proper
attractor. Since Λ is compact, one can take a positive η > for which Λ ⊂ B(η,Λ). Set ϵ = η/4 and
U = B(η,Λ). We take two points a ∈ Λ and b ∈ M \ U. Let δ > 0 be the number of the definition
of the ergodic pseudo orbit tracing property. Then we construct a (δ, 1)-ergodic pseudo orbit of φ
as follows: for i ∈ Z and ti = 1, (i) φi(a) = xi for i ≤ 0, and (ii) φi(b) = xi for i > 0. Clearly,
ζ = {(xi, ti) : ti = 1, i ∈ Z} is (δ, 1)-ergodic pseudo orbit of φ. Since φ ∈ ES P, there are a point z ∈ M
and h ∈ Rep(ϵ) having the following property;

lim
|n|→∞

#(Γϵ(ζ, z) ∩ {0, 1, . . . , n − 1})
n

= 0.

Then we can find τ > 0 such that φh(−τ)(z) ∈ U. Since Λ is an attractor, φt(φh(−τ)(z)) ∈ U, ∀t > 0. Set
φh(−τ)(z) = z′. Then we know that

d(φt(z′), φt(b)) > η

∀t > 0. Since d(φt(z′), φt(b)) > η ∀t > 0 and by ergodic pseudo orbit ζ, we have∫ i+1

i
d(φh(t)(z′), φt−i(xi))dt > ϵ,

∀i ∈ N ∪ {0}. Thus one can see that

lim
|n|→∞

#(Γϵ(ζ, z) ∩ {0, 1, . . . , n − 1})
n

, 0.

This is a contradiction.
Now, we prove that φ has the finite pseudo orbit tracing property.
For any n ∈ N, the finite sequence ξn = {(xn

i , ti) : ti ≥ 1, 0 ≤ i ≤ n} is a (1/n, 1)-pseudo orbit of φ.
Since φ ∈ ES P, as the above, for any n ∈ N, there is a (1/n, 1)-chain ζn = {(yn

i , ti) : ti ≥ 1, 0 ≤ i ≤ n}
such that ξnζnξn+1 is a 1/n-pseudo orbit. Clearly, the sequence

τ = {ξ1ζ1ξ2ζ2 · · · } = {x1
0, x

1
1, . . . , x

1
n, y

1
0, y

2
0, . . . , y

1
n, . . . , }

is a (1/n, 1)-ergodic pseudo orbit of φ.We denote τ = {(wi, ti) : ti ≥ 1, i ≥ 0}. Since φ ∈ ES P, there are
a point z ∈ M and h ∈ Rep(ϵ) having the following property;

lim
n→∞

#(Γϵ(τ, z) ∩ {0, 1, . . . , n − 1})
n

= 0.

Then there are t′ ∈ R and w j ∈ τ for which d(φt′(z),w j) < ϵ. Thus we can find a finite (1/n, 1)-pseudo
orbit ξn ⊂ τ such that ξn is ϵ-pseudo orbit traced by the point φt′(z). Thus φ has the finite pseudo orbit
tracing property which is a contradiction. □

Electronic Research Archive Volume 30, Issue 7, 2406–2416.



2410

Notice that Thomas proved in [21] that if a flow φt has no singular points then φt has the finite pseudo
orbit tracing property with respect to h ∈ Rep if and only if φt has the pseudo orbit tracing property
with respect to h ∈ Rep. However, if a flow φt has a singular point then it is not true (see [33]). On the
other hand, the flow φt has the finite pseudo orbit tracing property if and only if φt has the pseudo orbit
tracing property, for some h ∈ Rep(ϵ).

Remark 3.2. If vector field φ ∈ ES P then by Lemma 3.1, it has the pseudo orbit tracing property.
Then we can easily show that it is transitive.

Indeed, since φ ∈ ES P, φ is chain transitive and by Lemma 3.1, φ has the pseudo orbit tracing
property. Let U,V be given non-empty open sets. We take x ∈ U and y ∈ V and choose a positive
ϵ small enough such that Bϵ(x) ⊂ U and Bϵ(y) ⊂ V . Let δ(ϵ) > 0 be the number of the pseudo
orbit tracing property of φ. Then there is a finite (δ, 1)-pseudo orbit {(xi, ti) : ti ≥ 1, 0 ≤ i ≤ n} such
that x0 = x and xn = y. Since φ has the pseudo orbit tracing property, there are a point z ∈ M and
h ∈ Rep(ϵ) for which d(φh(t)(z), xt−si)) < ϵ for all 0 ≤ i ≤ n and s0 = 0, si = t0 + t1 + · · · + tn. Then we
know φh(t)(z) ∈ V. Put h(t) = T. Then φT (U) ∩ V , ∅ which means that φ is transitive. □

Let γ ∈ P(φ) be hyperbolic, and let p ∈ γ be such that φπ(p)(p) = p. The stable manifold V s(γ) of
γ and the unstable manifold Vu(γ) of γ are defined as follows: V s(γ) = {y ∈ M : d(φt(y), φt(γ)) →
0 as t → ∞}, and Vu(γ) = {y ∈ M : d(φt(y), φt(γ)) → 0 as t → −∞}. For any small η > 0, the local
stable manifold V s

η(p)(p) of p and the local unstable manifold Vu
η(p)(p) of p are defined by V s

η(p)(p) =
{y ∈ M : d(φt(y), φt(p)) < η(p), if t ≥ 0}, and Vu

η(p)(p) = {y ∈ M : d(φt(y), φt(p)) < η(p), if t ≤ 0}. Let
σ ∈ S ing(φ) be a hyperbolic. Then such as the hyperbolic periodic orbits, the stable/unstable manifold,
and local stable/unstable manifold are defined for σ ∈ S ing(φ).

Lemma 3.3. Let γ, σ ∈ Crit(φ) be hyperbolic. If a vector field φ ∈ ES P then V s(σ) ∩ Vu(γ) , ∅ and
V s(γ) ∩ Vu(σ) , ∅.

Proof. To prove, we consider that γ, σ ∈ P(φ) are hyperbolic(other case is similar). Since φ ∈ ES P,
by Remark 3.2, it is transitive. Thus one can take a point x ∈ M for which Orb(x) = M. Let ϵ(σ) > 0
and ϵ(γ) > 0 be as before with respect to σ and γ. Set η = min{ϵ(σ), ϵ(γ)}. Since, by Lemma 3.1, φ has
the pseudo orbit tracing property, we let 0 < δ = δ(η) < η be the number of the pseudo orbit tracing
property of φ. For a finite (δ, 1)-pseudo orbit {(xi, ti) : ti ≥ 1, i = 0, . . . , n}. Let ti = 1(i = 0, . . . , n).
Since φ is transitive, there are positive t and s such that

d(φt(x), σ) < δ and d(φs(x), γ) < δ.

Then there are natural number k, l ∈ N such that k ≤ t < k + 1 and l ≤ s < l + 1, and so d(φk(x), σ) < δ
and d(φl(x), γ) < δ.

Take p ∈ σ and q ∈ γ such that d(φ1(p), φk(x)) < δ and d(φl(x), q) < δ.We may assume that l > k.
Then we have a finite (δ, 1)-pseudo orbit of φ such that

{p, φk(x), φk+1(x), . . . , φl−1(x), q}.

Assume that l = k + j for some j ∈ R. Then we construct a (δ, 1)-pseudo orbit {(xi, ti) : ti = 1, i ∈ Z} =
{(xi, 1) : i ∈ Z} as follows: (i) xi = φi(p) for i ≤ 0, (ii) xi+1 = φk+i(x) for 0 ≤ i < j, and (iii) xi = φl+i(q)
for i ≥ 1. Then

{(xi, ti) : ti = 1, i ∈ Z}
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= {. . . , φ−1(p), x0(= p), φk(x), φk+1(x), . . . , φk+ j−1(x), q, . . . , }
= {. . . , x−1, x0(= p), x1, . . . , x j, x j+1(= q), . . .}

is a (δ, 1)-pseudo orbit of φ. Since φ has the pseudo orbit tracing property, there exist a point z ∈ M and
h ∈ Rep(ϵ) such that

d(φh(t)(z), φt−si(xi)) < η ∀i ∈ Z,

where s0 = 0, si = t0 + t1 + . . .+ ti for i > 0 and s−i = t−1 + t−2 + . . .+ t−i for i > 0. Then d(z, p) < η and

d(φh(t)(z), φt−s−i(p)) = d(φh(t)(z), φt+i(p)) = d(φh(t)(z), φt(φi(p))) < η

for i ≥ 0 and s−i ≤ t < s−i+1. Thus if t → −∞ then z ∈ Vuu
η (p) ⊂ Vu(σ).

Similarly, we obtain z ∈ V s(γ). Indeed, for s j+1 ≤ t < s j+2 we know that

d(φh(t)(z), φt−s j+1(x j+1)) = d(φh(t)(z), φt−s j+1(q)) < η.

Let φh(t)(z) = z′. Then by Lemma 3.1, d(φs(z′), φs(φt−s j+1(q))) < η for s → ∞. One can see that
z′ ∈ Vuu

η (q) ⊂ Vu(γ). Thus Orb(φ, z) ⊂ Vu(σ) ∩ Vu(γ) and so Vu(σ) ∩ V s(γ) , ∅. □
A set Λ ⊂ M is robustly transitive if Λ is closed φt-invariant, and there exist a neighborhoodU(φ)

of φ and a neighborhood U of Λ such that for any ϕ ∈ U(φ), Λϕ(U) =
⋂

t∈R ϕt is transitive. A vector
field φ is robustly transitive if Λ = M.

Remark 3.4. Let φ ∈ X(M) ∈ int(ES P). Since φ ∈ ES P, by Remark 3.2, φ is transitive. Thus if
φ ∈ int(ES P) then φ is robustly transitive. According to Vivier’s result [35, Theorem 1], φ has no
singularity. Thus if φ ∈ int(ES P) then S ing(φ) = ∅.

For a hyperbolic γ ∈ Crit(φ), we denote index(γ) = dimV s(γ). Note that if γ ∈ Crit(φ) is hyperbolic
then there are a neighborhood U(φ) of φ and a neighborhood U of γ such that for any ϕ ∈ U(φ), ϕ
has a critical hyperbolic orbit γϕ ∈ U and index(γ) = index(γϕ), where γϕ is called the continuation of
γ.We say that a vector field φ is Kupka-Smale if every p ∈ Crit(φ) is hyperbolic and their stable and
unstable manifolds intersect transversally. It is well known that the Kupka-Smale vector fields form a
dense and open set in X(M) (see [29]). Denote by KS the set of all Kupka-Smale vector fields.

Proposition 3.5. Let φ ∈ int(ES P). Then the index of all hyperbolic γ ∈ P(φ) is constant.

Proof. LetU(φ) ⊂ X(M) be a neighborhood of φ. Since φ ∈ ES P, by Theorem 3.2 φ is transitive, and
so, φ does not admit sink and source. As in the proof of Arbieto, Senos and Sodero [1], assume that
there exist two hyperbolic γ, τ ∈ P(φ) such that index(γ) , index(τ). Then we can use Kupka-Smale
vector fields and so, we will derive a contradiction. Indeed, assume index(γ) = i and index(τ) = j. If
j < i, then we have

dimV s(γ) + dimVu(τ) ≤ dimM.

Since φ ∈ int(ES P), we can take ϕ ∈ KS ∩U(φ) such that ϕ ∈ ES P. Then there exist two hyperbolic
γϕ, τϕ ∈ P(ϕ) such that index(γ) = index(γϕ) and index(τ) = index(τϕ). Thus we know

dimV s(γϕ) + dimVu(τϕ) ≤ dimM.

We consider the case dimV s(γϕ) + dimVu(τϕ) < dimM. Then we know V s(γϕ) ∩ Vu(τϕ) = ∅.
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We consider other case dimV s(γϕ) + dimVu(τϕ) = dimM. Since ϕ ∈ ES P, by Lemma 3.3, we may
assume that x ∈ V s(γϕ) ∩ Vu(τϕ). Then as in the proof of Arbieto, Senos and Sodero [1], we have

dim(Tx(V s(γϕ)) + Tx(Vu(τϕ))) < dimV s(γϕ) + dimVu(τϕ) = dimM.

This means that V s(γϕ) is not transverse to Vu(τϕ). Since ϕ ∈ KS, we know V s(γ) ∩ Vu(τ) = ∅. This is
a contradiction.

Finally, we consider j > i. Then as the above arguments, we can get a contradiction. □

Lemma 3.6. [1, Theorem 4.3.] Let φ ∈ int(ES P). If a periodic orbit γ is not hyperbolic then there is
ϕ C1-close to φ for which ϕ has two hyperbolic periodic orbits γ1, γ2 with different indices.

A vector field φ is star if there exists a neighborhood U(φ) ⊂ X(M) such that for any ϕ ∈ U(φ),
every γ ∈ Crit(ϕ) is hyperbolic. Denote by G(M) the set of all star vector fields and G∗(M) the set of
all non-singular star vector fields. Note that if φ ∈ G∗(M) then φ is Axiom A without cycles (see [27])
and so φ is Anosov if transitive φ ∈ G∗(M).

Proposition 3.7. If a vector field φ ∈ int(ES P), then φ ∈ G∗(M).

Proof. Since φ ∈ int(ES P), by Remark 3.4 we have S ing(φ) = ∅. Assume that φ < G∗(M). Then
there is ϕ C1-close to φ such that ϕ has a non-hyperbolic periodic orbit γ. By Lemma 3.6, there is
ϕ1 C1 close to ϕ (also, C1 close to φ) such that ϕ1 has two hyperbolic periodic orbits γ1, γ2 with
index(γ1) , index(γ2). Since φ ∈ int(ES P), by Proposition 3.5, we have index(γ1) = index(γ2). This is
a contradiction. □

End of the proof of Item (a). Since φ ∈ int(ES P), by Remark 3.4, φ is robustly transitive and
S ing(φ) = ∅. By Proposition 3.5, for any hyperbolic γ, η ∈ P(φ), we know index(γ) = index(η). By
Proposition 3.7, φ ∈ G∗(M). According to Remark 3.2, φ is transitive Anosov. □

3.2. Proof of item(b) of Theorem A

Lemma 3.8. [1, Lemma 3.4] Let φ ∈ KS and let γ, τ ∈ Crit(φ). If dimV s(γ)+dimVu(τ) ≤ dimM then
V s(γ) ∩ Vu(τ) = ∅.

Lemma 3.9. There is an dense and open set G1 ⊂ X(M) such that given φ ∈ G1, if φ ∈ ES P then
S ing(φ) = ∅ and the index of all γ ∈ P(φ) is constant.

Proof. We first show that S ing(φ) = ∅. Let φ ∈ G1 = KS, φ ∈ ES P and let γ ∈ P(φ) be hyperbolic
with index(γ) = j. Assume that there exists a hyperbolic σ ∈ S ing(φ) such that index(σ) = i. We
consider two cases: (i) j < i, and (ii) j > i. However, the cases (i) and (ii) have

dimV s(γ) + dimVu(σ) ≤ dimM and dimVu(γ) + dimV s(σ) ≤ dimM.

By Lemma 3.8, this is a contradiction. Thus if a vector field φ ∈ G1 and φ ∈ ES P then S ing(φ) = ∅.
Finally, we show that index(γ) = index(η), for any hyperbolic γ, η ∈ P(φ). Let γ, η ∈ P(φ) be

hyperbolic. Assume that index(γ) , index(η). Then we have dimV s(γ) + dimVu(τ) ≤ dimM. This is a
contradiction by Lemma 3.8. □

For any positive δ > 0, a point p ∈ γ ∈ P(φ) is δ-hyperbolic if the derivative of the Poincaré map of
φ has an eigenvalue λ of p such that (1 − δ) < |λ| < (1 + δ).
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Lemma 3.10. [1, Lemma 5.1, Lemma 5.3] There is a dense and open set G2 ⊂ X(M) such that given
φ ∈ G2,

(a) if any neighborhood U(φ) of φ one can take ϕ ∈ U(φ) for which ϕ has two hyperbolic periodic
orbits γ1, τ1 with different indices then φ has two hyperbolic periodic orbits γ, τ with different
indices.

(b) for any positive δ > 0, if any neighborhood U(φ) of φ one can take ϕ ∈ U(φ) for which g has a
δ-hyperbolic periodic orbit γ1 then φ has a 2δ-hyperbolic periodic orbit γ.

Note that if p ∈ γ ∈ P(φ) is a δ- hyperbolic then by [34, Lemma 1.3], one can take ϕ C1-close to φ
for which Dϕπ(p)(p) has 1 as an eigenvalue, where π(p) is the period of p.

Lemma 3.11. There is a dense and open set G3 ⊂ X(M) such that given φ ∈ G3, if φ ∈ ES P then one
can find a positive δ such that every γ ∈ P(φ) is not δ-hyperbolic.

Proof. Let φ ∈ G3 = G2 ∩ G1 and φ ∈ ES P. To derive a contradiction, we may assume that for any
δ > 0, one can take γ ∈ P(φ) for which γ is a δ-hyperbolic. Then by [34, Lemma 1.3] and Lemma
3.6, one can take ϕ C1-close to φ such that ϕ has two hyperbolic η1, τ1 ∈ P(ϕ) with different indices.
By Lemma 3.10(a), φ has two hyperbolic η, τ ∈ P(φ) with different indices. This is a contradiction by
Lemma 3.9. □

Proposition 3.12. For φ ∈ G3, if φ has ESP then φ ∈ G(M).

Proof. Let φ ∈ G3 and φ ∈ ES P. By Lemma 3.9, S ing(φ) = ∅. To prove, it is enough to show that
φ ∈ G∗(M), that is, for any ϕC1 close to φ, every γ ∈ P(ϕ) is hyperbolic. Assume that φ < G∗(M). Then
one can take ϕ C1 close to φ such that ϕ has a periodic orbit γ which is not hyperbolic. As [34, Lemma
1.3], one can take ϕ1 C1 close to ϕ(also C1 close to φ) for which ϕ1 has a δ/2-hyperbolic γϕ1 ∈ P(ϕ1).
Since φ ∈ G2, φ has a δ-hyperbolic γ′ ∈ P(φ). This is a contradiction by Lemma 3.11. □
End of the proof of Item (b). Let φ ∈ G3 and φ ∈ ES P. Since φ ∈ ES P, by Remark 3.2, it is enough
to show that φ ∈ G∗(M). By Lemma 3.9 and Proposition 3.12, every γ ∈ P(φ) is hyperbolic, and so,
φ ∈ G∗(M). Thus φ is transitive Anosov. □

4. Proof of Theorem B

Remark 4.1. Let φ ∈ Xµ(M). By Zuppa’s Theorem [30], we can find ϕ C1-close to φ such that ϕ ∈
X∞µ (M), ϕπ(p)(p) = p and Pπ(p)

ϕ (p) has an eigenvalue λ with |λ| = 1.

A φ ∈ Xµ(M) is a divergence-free star if there exists a neighborhoodU(φ) of φ in Xµ(M) such that
every point in Crit(ϕ) is hyperbolic, for any ϕ ∈ U(φ) ⊂ Xµ(M). The set of divergence-free star vector
fields is denoted by Gµ(M). Then we get the following.

Theorem 4.2. [32, Theorem 1] If φ ∈ Gµ(M) then S ing(φ) = ∅ and φ is Anosov.

Proof of Theorem B. To prove Theorem B, it is enough to show that φ ∈ Gµ(M). At first, we assume
that φ ∈ int(ES P)µ. As in the proof of Theorem A, we can easily show that φ ∈ Gµ(M). Thus φ
is transitive Anosov. Finally, there is a dense and open set M in Xµ(M) such that given φ ∈ M, we
assume that φ ∈ ES Pµ. As in the proof of Theorem A, we can show that φ ∈ Gµ(M). Thus φ is
transitive Anosov. □
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