Although scholars have proven the existence of a pair of homoclinic orbits to the origin, or a pair of heteroclinic orbits to the origin along with a pair of nontrivial equilibria in symmetric Lorenz, Chen, and Lü systems, they have rarely dealt with asymmetric ones of the corresponding asymmetric analogues, to the best of our knowledge. To clarify this subject, this work revisited an asymmetric Chen system and reveals a single/a pair of asymmetric heteroclinic/homoclinic orbits, which are justified with numerical experiments.
Citation: Jun Pan, Haijun Wang, Feiyu Hu. Revealing asymmetric homoclinic and heteroclinic orbits[J]. Electronic Research Archive, 2025, 33(3): 1337-1350. doi: 10.3934/era.2025061
Although scholars have proven the existence of a pair of homoclinic orbits to the origin, or a pair of heteroclinic orbits to the origin along with a pair of nontrivial equilibria in symmetric Lorenz, Chen, and Lü systems, they have rarely dealt with asymmetric ones of the corresponding asymmetric analogues, to the best of our knowledge. To clarify this subject, this work revisited an asymmetric Chen system and reveals a single/a pair of asymmetric heteroclinic/homoclinic orbits, which are justified with numerical experiments.
[1] |
T. Li, G. Chen, G. Chen, On homoclinic and heteroclinic orbits of the Chen's system, Int. J. Bifurcation Chaos, 16 (2006), 3035–3041. https://doi.org/10.1142/S021812740601663X doi: 10.1142/S021812740601663X
![]() |
[2] |
H. Wang, C. Li, X. Li, New heteroclinic orbits coined, Int. J. Bifurcation Chaos, 26 (2016), 1650194. https://doi.org/10.1142/S0218127416501947 doi: 10.1142/S0218127416501947
![]() |
[3] |
H. Wang, X. Li, Infinitely many heteroclinic orbits of a complex Lorenz system, Int. J. Bifurcation Chaos, 27 (2017), 1750110. https://doi.org/10.1142/S0218127417501103 doi: 10.1142/S0218127417501103
![]() |
[4] |
H. Wang, X. Li, A novel hyperchaotic system with infinitely many heteroclinic orbits coined, Chaos, Solitons Fractals, 106 (2018), 5–15. https://doi.org/10.1016/j.chaos.2017.10.029 doi: 10.1016/j.chaos.2017.10.029
![]() |
[5] |
H. Wang, F. Zhang, Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1791–1820. https://doi.org/10.3934/dcdsb.2020003 doi: 10.3934/dcdsb.2020003
![]() |
[6] |
H. Wang, H. Fan, J. Pan, Complex dynamics of a four-dimensional circuit system, Int. J. Bifurcation Chaos, 31 (2021), 2150208. https://doi.org/10.1142/S0218127421502084 doi: 10.1142/S0218127421502084
![]() |
[7] |
H. Wang, G. Ke, J. Pan, Q. Su, G. Dong, H. Fan, Revealing the true and pseudo-singularly degenerate heteroclinic cycles, Indian J. Phys., 97 (2023), 3601–3615. https://doi.org/10.1007/s12648-023-02689-w doi: 10.1007/s12648-023-02689-w
![]() |
[8] |
H. Wang, G. Ke, J. Pan, F. Hu, H. Fan, Multitudinous potential hidden Lorenz-like attractors coined, Eur. Phys. J. Spec. Top., 231 (2022), 359–368. https://doi.org/10.1140/epjs/s11734-021-00423-3 doi: 10.1140/epjs/s11734-021-00423-3
![]() |
[9] |
H. Wang, G. Ke, J. Pan, F. Hu, H. Fan, Q. Su, Two pairs of heteroclinic orbits coined in a new sub-quadratic Lorenz-like system, Eur. Phys. J. B, 96 (2023), 1–9. https://doi.org/10.1140/epjb/s10051-023-00491-5 doi: 10.1140/epjb/s10051-023-00491-5
![]() |
[10] |
Z. Li, G. Ke, H. Wang, J. Pan, F. Hu, Q. Su, Complex dynamics of a sub-quadratic Lorenz-like system, Open Phys., 21 (2023), 20220251. https://doi.org/10.1515/phys-2022-0251 doi: 10.1515/phys-2022-0251
![]() |
[11] |
G. Ke, J. Pan, F. Hu, H. Wang, Dynamics of a new four-thirds-degree sub-quadratic Lorenz-like system, Axioms, 13 (2024), 625. https://doi.org/10.3390/axioms13090625 doi: 10.3390/axioms13090625
![]() |
[12] |
H. Wang, J. Pan, G. Ke, Revealing more hidden attractors from a new sub-quadratic Lorenz-like system of degree $\frac{6}{5}$, Int. J. Bifurcation Chaos, 34 (2024), 2450071. https://doi.org/10.1142/S0218127424500718 doi: 10.1142/S0218127424500718
![]() |
[13] | H. Wang, J. Pan, G. Ke, F. Hu, A pair of centro-symmetric heteroclinic orbits coined, Adv. Contin. Discrete Models, 2024 (2024). https://doi.org/10.1186/s13662-024-03809-4 |
[14] |
H. Wang, G. Ke, F. Hu, J. Pan, G. Dong, G. Chen, Pseudo and true singularly degenerate heteroclinic cycles of a new 3D cubic Lorenz-like system, Results Phys., 56 (2024), 107243. https://doi.org/10.1016/j.rinp.2023.107243 doi: 10.1016/j.rinp.2023.107243
![]() |
[15] |
H. Wang, G. Ke, J. Pan, Q. Su, Modeling, dynamical analysis and numerical simulation of a new 3D cubic Lorenz-like system, Sci. Rep., 13 (2023), 6671. https://doi.org/10.1038/s41598-023-33826-4 doi: 10.1038/s41598-023-33826-4
![]() |
[16] | H. Wang, G. Ke, J. Pan, Q. Su, Conjoined Lorenz-like attractors coined, Miskolc Math. Notes, 13 (2023). |
[17] |
H. Wang, J. Pan, G. Ke, Multitudinous potential homoclinic and heteroclinic orbits seized, Electron. Res. Arch., 32 (2024), 1003–1016. https://doi.org/10.3934/era.2024049 doi: 10.3934/era.2024049
![]() |
[18] | H. Wang, J. Pan, F. Hu, G. Ke, Asymmetric singularly degenerate heteroclinic cycles, Int. J. Bifurcation Chaos, 2025, In press. |
[19] | L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, Singapore, 2001. https://doi.org/10.1142/4221 |
[20] | S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, 2$^{nd}$ edition, Springer, New York, 2003. https://doi.org/10.1007/978-1-4757-4067-7 |
[21] | J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3$^{rd}$ edition, Springer, Berlin, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[22] |
G. Tigan, D. Turaev, Analytical search for homoclinic bifurcations in the Shimizu-Morioka model, Phys. D, 240 (2011), 985–989. https://doi.org/10.1016/j.physd.2011.02.013 doi: 10.1016/j.physd.2011.02.013
![]() |
[23] |
G. A. Leonov, Fishing principle for homoclinic and heteroclinic trajectories, Nonlinear Dyn., 78 (2014), 2751–2758. https://doi.org/10.1007/s11071-014-1622-8 doi: 10.1007/s11071-014-1622-8
![]() |
[24] |
G. Haller, S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case, Phys. D, 66 (1993), 298–346. https://doi.org/10.1016/0167-2789(93)90071-8 doi: 10.1016/0167-2789(93)90071-8
![]() |
[25] |
R. J. Escalante-González, E. Campos, Multistable systems with hidden and self-excited scroll attractors generated via piecewise linear systems, Complexity, 2020 (2020), 7832489. https://doi.org/10.1155/2020/7832489 doi: 10.1155/2020/7832489
![]() |
[26] |
A. Anzo-Hernández, E. Campos-Cantón, M. Nicol, Itinerary synchronization between PWL systems coupled with unidirectional links, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 102-124. https://doi.org/10.1016/j.cnsns.2018.10.020 doi: 10.1016/j.cnsns.2018.10.020
![]() |
[27] |
W. S. Koon, M. W. Lo, J. E. Marsden, S. D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 10 (2000), 427–469. https://doi.org/10.1063/1.166509 doi: 10.1063/1.166509
![]() |
[28] |
D. Wilczak, P. Zgliczyński, Heteroclinic connections between periodic orbits in planar restricted circular three body problem-A computer assisted proof, Commun. Math. Phys., 234 (2003), 37–75. https://doi.org/10.1007/s00220-002-0709-0 doi: 10.1007/s00220-002-0709-0
![]() |
[29] |
D. Wilczak, P. Zgliczyński, Heteroclinic connections between periodic orbits in planar restricted circular three body problem. part Ⅱ, Commun. Math. Phys., 259 (2005), 561–576. https://doi.org/10.1007/s00220-005-1471-x doi: 10.1007/s00220-005-1471-x
![]() |
[30] |
B. Aulbach, D. Flockerzi, The past in short hypercycles, J. Math. Biol., 27 (1989), 223–231. https://doi.org/10.1007/BF00276104 doi: 10.1007/BF00276104
![]() |
[31] |
R. M. May, W. Leonard, Nonlinear aspect of competition between three species, SIAM J. Appl. Math., 29 (1975), 243–253. https://doi.org/10.1137/0129022 doi: 10.1137/0129022
![]() |
[32] |
J. Hofbauer, K. Sigmund, On the stabilizing effect of predator and competitors on ecological communities, J. Math. Biol., 27 (1989), 537–548. https://doi.org/10.1007/BF00288433 doi: 10.1007/BF00288433
![]() |
[33] |
B. Y. Feng, The heteroclinic cycle in the model of competition between n species and its stability, Acta Math. Appl. Sin., 14 (1998), 404–413. https://doi.org/10.1007/BF02683825 doi: 10.1007/BF02683825
![]() |
[34] |
G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. Ahmerwaddee, C. J., Budd, et al., Cellular buckling in long structures, Nonlinear Dyn., 21 (2000), 3–29. https://doi.org/10.1023/A:1008398006403 doi: 10.1023/A:1008398006403
![]() |
[35] |
N. J. Balmforth, Solitary waves and homoclinic orbits, Annu. Rev. Fluid Mech., 27 (1995), 335–373. https://doi.org/10.1146/annurev.fl.27.010195.002003 doi: 10.1146/annurev.fl.27.010195.002003
![]() |
[36] |
J. Lü, T. Zhou, G. Chen, S. Zhang, The compound structure of Chen's attractor, Int. J. Bifurcation Chaos, 12 (2002), 855–858. https://doi.org/10.1142/S0218127402004735 doi: 10.1142/S0218127402004735
![]() |
[37] | J. Liu, J. Lu, X. Wu, Dynamical analysis for the compound structure of Chen's system, in ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 3 (2004), 2250–2253. https://doi.org/10.1109/ICARCV.2004.1469781 |
[38] |
Q. Yang, Y. Chen, Complex dynamics in the unified Lorenz-type system, Int. J. Bifurcation Chaos, 24 (2014), 1450055. https://doi.org/10.1142/S0218127414500552 doi: 10.1142/S0218127414500552
![]() |