ERA, 33(3): 1337-1350.

EE Elect . DOI: 10.3934/era.2025061
AIMS ectronic Received: 11 February 2025

@ Research Archive Revised: 26 February 2025

Accepted: 28 February 2025
https://www.aimspress.com/journal/era Published: 07 March 2025

Research article

Revealing asymmetric homoclinic and heteroclinic orbits

Jun Pan'*, Haijun Wang”*and Feiyu Hu®

' School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China

2 School of Electronic and Information Engineering (School of Big Data Science), Taizhou University,
Taizhou 318000, China

3 College of Sustainability and Tourism, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan

* Correspondence: Email: panjun@zust.edu.cn, 2021033 @tzc.edu.cn.

Abstract: Although scholars have proven the existence of a pair of homoclinic orbits to the origin, or a
pair of heteroclinic orbits to the origin along with a pair of nontrivial equilibria in symmetric Lorenz,
Chen, and Lii systems, they have rarely dealt with asymmetric ones of the corresponding asymmetric
analogues, to the best of our knowledge. To clarify this subject, this work revisited an asymmetric Chen
system and reveals a single/a pair of asymmetric heteroclinic/homoclinic orbits, which are justified with
numerical experiments.
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1. Introduction

In 2006, Li et al. revisited the Chen system and revealed that there exists a pair of symmetric
heteroclinic orbits to the origin and a pair of nontrivial equilibria by utilizing the tools of Lyapunov
function and a-/w-limit set [1]. Due to the advantage of concentrating solely on how to construct an
appropriate Lyapunov function rather than the mutual disposition between unstable and stable manifolds
of a closed orbit or saddle, such result opened the floodgates to the study of heteroclinic orbits of
other Lorenz-like analogues, such as the united Lorenz-type Lorenz system [2], the complex Lorenz
system [3], the 5D hyperchaotic system [4], the unified hyperchaotic Lorenz-type system [5], the
four-dimensional circuit system [6], the four-dimensional chaotic system [7], the four-thirds-degree
Lorenz-like system [8—11], the six-fifths-degree Lorenz-like system [12], the five-thirds-degree Lorenz-
like analogue [13], the cubic Lorenz-like analogues [14, 15], the periodically forced Lorenz-like
analogues [16, 17], and the quadratic one [18].

As defined in [19, 20], an orbit x(¢) of a dynamical system is a homoclinic (resp. heteroclinic)
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orbit if and only if tl_l)ﬂgg x(t) = x; (or Ly), }Lrglo x(t) = xp or Ly (or Ly), x; = x, (or Ly = L) (resp.
X1 # x (or Ly # L)), where x;, and L, , are equilibria and closed orbits, respectively. In the sense
of Shilnikov, chaos occurring in 3D autonomous differential systems may be divided into Shilnikov
homoclinic or heteroclinic orbit-type chaos or hybrid-type chaos [19]. In the study of homoclinic and
heteroclinic orbits, various powerful tools have been developed, such as contraction map and boundary
problems [19], Poincaré map [20], Melnikov method [21], tracking stable and unstable manifolds [22],
and fishing principle [23], among others. Particularly, Haller and Wiggins formulated methods to
study the existence of homoclinic or heteroclinic obits to periodic orbits, hyperbolic fixed points, or
combinations of hyperbolic fixed points and/or periodic orbits in a class of two-degree-of-freedom-
integrable Hamiltonian systems subject to arbitrary Hamiltonian perturbations [24]. Escalante-Gonzélez
and E. Campos created a double-scroll attractor that emerges from a heteroclinic loop [25, Figure 1, p.5]
and further developed an approach to designing multistable piecewise linear systems with self-excited
and hidden multiscroll attractors. Anzo-Herndndez et al. also considered the itinerary synchronization
between piecewise linear systems coupled with unidirectional links [26]. In the restricted circular three-
body problem, planetary scientists and engineers must consider heteroclinic connections between period
orbits for space missions [27-29]. For other practical applications, such as biomathematics [30-33],
cell signaling [34], and fluid mechanics [35], homoclinic and heteroclinic orbits play an important role.

However, as we all know, little attention has been given to the scenario of asymmetric heteroclinic
orbits in neighboring Lorenz-like systems. One cannot help but wonder whether the aforementioned
method is applicable to proving the existence of a pair of asymmetric heteroclinic orbits of Lorenz-like
systems (if they exist), i.e., the asymmetric Chen system [36, 37]. In this effort, we reexamine this
system and present the following contributions:

(1) Proving the existence of a pair of asymmetric heteroclinic orbits and a single heteroclinic orbit
using two different Lyapunov functions.

(i1) Proving the existence of a pair of asymmetric homoclinic orbits and a single homoclinic orbit
using a Hamiltonian function.

The following, Section 2 summarizes the main results on the homoclinic and heteroclinic orbits of the
asymmetric Chen system. Then, we provide the corresponding detail proofs and numerical simulations
in Section 3. Section 4 draws conclusions and discusses future work.

2. Asymmetric Chen system and main results

In 2002, Lii et al. introduced the following asymmetric Chen system [36]:
XxX=aly—-x),y=(c—ax—-—xz+cy+m,z=—-bz+ xy,am # 0,b,c € R, 2.1

performed a mirror operation to merge together two single-scroll attractors, and ultimately found
the so-called compound structure of the Chen attractor, which unfortunately cannot reflect Lyapunov
exponents and Lyapunov dimensions of the Chen attractor [37]. Numerical experiments demonstrated
other dynamical behaviors of system (2.1), such as symmetry with respect to m = 0, bifurcation, and
period-doubling to chaos. In contrast, analytical work involving homoclinic and heteroclinic orbits is
still absent, as far as we know.

First, based on the Cardano formula, the following assertions hold, where A = (}’7’")2 - (@)3.
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Theorem 2.1. (i) I[fA =0, b2c —a) =0 (resp b(ZC —a) # 0) and bm # 0, then system (2.1) has a
single equilibrium point D, = (Nbm, \bm v ) (resp. two ones S| = (2482, 23[bm 42 (bm)2 and

2°b
Sy = (32, e 1)),
\ 2
(ii) If A > O, then system (2.1) has a unique equilibrium point G, = (t,1t, %), where t? - bQ2c -
a)ty —bm = 0.
2
(iii) If A < O, then E; = (h;, h;, %") i = 1,2,3 are three different equilibria of system (2.1), where

o b(2c a) 2i=lym 1)7r 1 3 V3m
h =2 cos (0 + =5—)and 6 = arccos (2(2c a)\/m)

Second, we derive the asymmetric heteroclinic orbits to £, and E53 and to S| and S, in system (2.1)
in the following. The proofs will be outlined in Section 3.

Theorem 2.2. Seta>0,b—-2a>0,2c—a>0,a—c >0, 2c—a)ym # 0, mh; > 0 and mh, < 0.

(a) If (%’")2 - (@)3 < 0, then there exists a pair of asymmetric heteroclinic orbits connecting E|
and E5 in system (2.1).

(b) If(%m)2 = (@)3, then there exists a single heteroclinic orbit joining S| and S, in system (2.1).

At last, we formulate the asymmetric homoclinic orbits to E3 and to S, in the following theorem and
prove their existence in Section 3.

4
Theorem 2.3. Seta =c, b =2a, A = x> — % + mx and A, = h% - :% + mhs.
(i) If (am)? — (E)3 < 0, then there exists a pair of asymmetric homoclinic orbits to E3 in system
3 p Y Y
(2.1): y = x+ \JA - A,
(i) If (am)* — (2“2 Y} = 0, then system (2.1) has a single homoclinic orbit to S ,: —axy + o + 5 =
y 8 Y 2 8a

2V . \/( )
_tl 2am am _mv—

am

For the sake of readability, the following denotations are introduced:

(@) ¢:(q3) = (x(t; x3), y(1;¥9), 2(t; 23)): an orbit starting from the initial condition ¢ = (x3, 3, z3) for
system (2.1).

(b) ¥ = {d:(qDIp:(q3) = (x(t; x5), y(t; ¥9), 2(t: 23)) € W*(E3)}, t € R: any one branch of W*(E3) for
x(t; x3)<0 m>0(resp x(t; x3)>0 m<0)ast— —oo,

©) VI(8(g3) = 31bb = 2a)(y = ) + (=bz + ) + B2(=h} + ) + 220 (—hy + x)?], and
VA($i(q)) = Lbb - 2a)(y — x)* + (=bz + ¥2)? + BH(-h3 + x*)? - bm(,ij“)( —hy N x)?] for b — 2a > 0,
V3 (@(gD) = 5[0 = )7 + g2 (=17 + ) + 2 (=hy + X)Z], V3(:(q3) = 5[0 = x)* + = (=3 + x*)* -
hzﬂa(—hz +x)*]forb—2a=0andz = g: the Lyapunov functions fora > 0, 2c —a > 0,a — ¢ > 0,
2c —a)ym # 0, mh; > 0 and mh, < 0.

3. Asymmetric homoclinic and heteroclinic orbits

In this section, first we compute the derivatives of V1 1, along ¢:(q3):

v} (@(q?

2] 11, = ~b(=bz + 2 = bb — 2a)(a - )y - x)? (3.1)

Electronic Research Archive Volume 33, Issue 3, 1337-1350.



1340

and .
AV, ($i(gd))
e oy = —(@=00 - x)2. (3.2

Utilizing Lyapunov functions V>

12
Here, we only study the case of (%) — (@)3 < 0. The case of (%)* = (@)3 is similar and is
omitted.

First, one needs to derive the following statements.

we give the proof of Theorem 2.2, as shown below.

Theorem 3.1. When b > 2a > 0, 2¢ > a > ¢, 2c—a)m # 0, mhy > 0, mh, < 0 and ()% — (2293 < 0,
one comes to the following conclusions:

(i) When t, < t, and V5(¢,(g3)) = V| 5(¢1,(43), 43 € {E1, Es, E3}.
(ii) When 1im,_,_o ¢:(q3) = E3 and 4 # E3, V|5(E3) > V|5 (¢:(q3))-

Proof. (i) For b > 2a > 0,2¢ > a > ¢, (2c —aym # 0, mh; > 0, mh, < 0 and (22)? — (222} < 0,

dV!3(¢(qd) . .. )
"zd—tt%| o < 0 holds. According to the assumed conditions, V¢ € (¢, 1), we arrive at the

dv,5(@i(g3)
dt 2.1)

the fact

conclusion = (0 and thus

i(1; x9) = y(t:y9) = 2(;2) = 0, (3.3)

i.e., ¢ is a fixed point. Exactly speaking, x(#;x3) = a(y — x) = O for all # € R yields x(r) = xJ and
y(t;y3) = 0.

For b = 2a, the invariant algebraic surface Q(gb,(qg)) =z- % = 0 together with gb,(qg) e{y—-x=0}
leads to (3.3).

(ii) The fact that V| 3(E3) > V,3(#,(qg3) easily follows from reductio. In fact, 1y € R, such
that 0 < V:,’ZQ(E3) < Vllz2 (¢,(¢3)). Based on the first conclusion, ¢ € {E|, E,, E3}. In addition,
qg # E3, which contradicts the assumed condition gb,(qg) — E; for t — —oo. Hence, it follows that
Vi3(E3) > Vi3(¢i(g)), Vi € R, O

In light of Theorem 3.1, we prove Theorem 2.2(a).

1,2 0
Proof. (a.1) Since “202| < 0 for b >2a > 0,2¢ > a> ¢, 2c — aym # 0, mhy > 0, mhy < 0 and
()% — (2293 < 0, we have
0 < V{5(¢(g9) < V5(g)), (3.4)

Yt € R, ie., lim_, e Vllj(@(qg)) = (Vll”zz)*(qg) exist. Meanwhile, it also leads to the boundedness
of ¢,(q3) for all + > 0. Define w-limit set of ¢,(¢3) by Q(g3). Namely, V§ € Q(q)), ¢.(3) € Q4.
In addition, Jr, — oo, n — oo, we arrive at V5(¢(9)) = lim V,5(¢,,(49) = (V;3)"(¢3) = const.
Therefore, V1, < 1, such that V,5(¢,,(§)) = V,5(¢,(4)). From Theorem 3.1, § € {E}, E,, E3}.

(a.2) Suppose p(t, ¢") are homoclinic orbits to E; through initial conditions ¢? & {E;}, i.e., lim,,.c

1,2 0
p(t, %) = ki, ki € {Ej), i = 1,2,3. Because of 2%

- < 0, one has

@n —
0 < Vi5(k) = Vi3(p(=00,q0)) < Vi5(p(t.q))) < V,5(p(e0,q))) = V5 (ko (3.5)
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ie., Vll”zz(p(t, q?)) = Vll”zz(k,-), Vt € R, which suggests q? € {E;} and a contradiction occurs. Namely,
system (2.1) has no homoclinic orbits when b > 2a > 0, 2¢ > a > ¢, 2c — a)ym # 0, mh; > 0, mh, < 0.
From the first conclusion (a.1), all branches of W*(E3) belong to the w-limit set {E}, E,, E3}.

34
34
| /]
2.5+ 51:(4\215 ,4.2154,1.9744) 25 EI:(-4.2154,»4,2154,1.9744) /
VLN

2 ’\g\ 24

N \\

\

E,¥(-2:523,-2.523,0.7073)

~

05 By=(16924,1692403182) g 054
0+
10 5 - -10
5 0 2 0 -5
0 5 2, 0
5 10 - 6 5
X y X y
(@) m=2 (b) m=-2

Figure 1. For (a,c,b) = (4.5,3,9) and (a) m = 2, (x(l),y(l),z(l)) = (-1.6925,-1.6923,0.3182),
(x(z),yé,z(l)) = (-1.6923, -1.6925,0.3182), (b) m = -2, (xg,yg,z(l)) = (1.6925,1.6923,0.3182),
(xg, yg, z(l)) = (1.6923,1.6925,0.3182), a pair of asymmetric heteroclinic orbits to E; ; and Ej
of system (2.1) for b = 2a.

N 2
N 2
1
14
0
0\
-1 4l
10 : a4 -10
5 5 5
0 s 0 0 s 0
5 10 10 5
X y X y
(@) m=3 (b) m=-3

Figure 2. For (a,c,b) = (4,3,9) and (a) m = 3, (xg,yg,zé) = (—1.8542,-1.8540,0.382),
(9,18,22) = (~1.8540, —1.8542,0.382), (b) m = -3, (x.yl.22) = (1.8542,1.8540,0.382),
(x5, 8,25) = (1.8540, 1.8542,0.382), a pair of asymmetric heteroclinic orbits to E;» and E3 of
system (2.1) for b > 2a.

Due to V,3(E12) < V{5(E3) with b > 2a > 0, 2c > a > ¢, (2c — a)ym # 0, mh; > 0, mh, < 0 and
(2?2 - (@)3 < 0, g has to be either E, or E,. Because of the asymmetry of system (2.1), p(¢,¢3)
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tending to E| , creates a pair of asymmetric heteroclinic orbits connecting E ; and Ej3, as depicted in

Figures 1-4. O
35
35
3
3
25 25
§,=(4.2426,4.2426,2 , §,=(4.2426,-4.2426,2)
2
N
N 15
15 8,=(2.1213,2.1213,0.5)
1
1
05 §,7(-2.1213,-2.1213,0/5) 05
0.l g N
10 )
5
0 2 4 6 5 , o 2 4
0 R 4
5 4 2 10 6
y X y X
(a) m=3v2/2 (b) m=-3+2/2

Figure 3. For (a, ¢, b) = (4.5,3,9) and (a) m = 3V2/2, (x5, Yo, 20) = (-2.1214,-2.1212,0.5),

(b) m = =32/2, (v, z) = (2.1214,2.1212,0.5), a single heteroclinic orbit to Sy and S,

of system (2.1).

S,=(4.899,4.899,2.6667)

S,=(-4.899,-4.899,2.6667.

N 2~ N 24

1 2:(-2.4495,-2.4495,0.6667) 14 SZ:(2.4495,2.449 6.6667)

04 0

10 -1 =
0 s S s
5 0 0 5 0
5 -5 -0 5
y X X y
(a) m=4+v6/3 (b) m=-4+6/3
Figure 4. For (a,c,b) = (43,9 and (@ m = 4vV6/3, (xlyLzh =

(=2.4496, —2.4494,0.6667), (b) m = —4V6/3, (x(lf,y(l)z,zé) = (2.4496,2.4494,0.6667), a
single heteroclinic orbit to S| and S, of system (2.1).

Lastly, we prove Theorem 2.3, i.e., the existence of a pair of asymmetric homoclinic orbits to E3 and a
single homoclinic orbit to S ,. At this time, system (2.1) reduces into the following two-dimensional one:

3
)’c:a(y—x),y:(c—a)x—;—+cy+m, 3.6)
a
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which is a Hamiltonian function for a = ¢:
4 2
H(x,y) = all —mx—axy+ﬂ. 3.7
8a 2

From Eq (3.7), we can easily obtain Theorem 2.3 and omit it here.
Evidently, system (3.6) has the following equilibrium points: P; = (x;, x;), x, — 2a*x; — 2am = 0,
i=1,2,3.

12 ‘ ; ‘ ‘ ‘ : 6
10t ] al
81 2
P,=(1.5338,15338
6l P = (4.7962,47962) ] ol 3™ —7 |
& P,=(3.2624,3.2624)
A 1 2F ]
> >
2 ] al
P,= (-1.5338,-1.5338) F€— P, =(/4.7962,-4.7962)
or / 1 6
ot | 8l
g P,= (-3.2624,-3.2624)
AT 1 10}
6 12
6 4 2 0 2 4 6 8 -8 6 4 2 o 2 4 6
X X
(@ m=4 (b) m=-4

Figure 5. When (a, ¢) = (3, 3), (a) m = 4, (b) m = —4, a pair of asymmetric homoclinic orbits
to P; of system (3.6).

10 10
E,=(-4.7962,-4.7962,3.8339)
E,=(-3.2624,-3.2624,1.7739)

6 E,=(4.7962,4.7962,3.8339) 6 E,=(3.2624,3.2624,1.7739)

N gt N
4 4
2 E3:(-1.5338,-1.5338,0.3921\ 2 E,=(1.5338,1.5338,0/3921)

5 0 -10 -10
5 0 5
0 10 0
5 15 10 s

X y y X

(@) m=4 (b) m=-4

Figure 6. When (a,c,b) = (3,3,6), (a) m = 4, (b) m = —4, a pair of asymmetric homoclinic
orbits to E5 of system (2.1).

1) (a,m) = (3,+4). System (3.6) (resp. (2.1)) has three equilibria: P; = (£4.7962, +4.7962),
P, = (¥3.2624,%3.26242), P; = (¥1.5338, ¥1.5338) (resp. E| = (£4.7962, +4.7962,3.8339), E, =
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(¥3.2624,¥3.26242,1.7739), E; = (¥1.5338,F1.5338,0.3921)) with the corresponding eigenvalues:
A1 = £5.0503i, £2.6391i, +2.3391 (resp. (42, 43) = (£5.0503i, —6), (+2.6391i, —6), (£2.3391, -6)).
Figure 5 (resp. Figure 6) depicts a pair of asymmetric homoclinic orbits to P (resp. E3) of system (3.6).

2) (a,m) = (=3,+4). System (3.6) (resp. (2.1)) has three equilibria: P; = (¥4.7962,F4.7962),
P, = (£3.2624, +3.2624), P; = (£1.5338, +1.5338) (resp. E; = (¥4.7962,%4.7962,-3.8339), E, =
(£3.2624, +3.26242, —-1.7739), E5 = (£1.5338, +1.5338, —0.3921)) with the corresponding eigenvalues:
A1 = +5.05034, +2.63914, +2.3391 (resp. (412, A3) = (£5.05034, 6), (£2.63911, 6), (+2.3391, 6)). Figure
7 (resp. Figure 8) illustrates a pair of asymmetric homoclinic orbits to Ps (resp. E3).

6 12
P,=(3.2624,3.2624)
4r pre 1 10
2t 1 8
P, =(4.7962,4/7962)
0 1 6 1
P,=(1.5338,1.5338) \ﬁ
2F . 4+
- P, #(-4.7962,-4.7962) >

at ¥ ] o
. |

P,=(-1.5338,-1.5338)

-8 2
(& P,=(-3.2624,-3.2624)
-0t ] 4t
12 ‘ ‘ ‘ ‘ ‘ ‘ 6
-8 -6 -4 -2 0 2 4 6 -6 4 2 0 2 4 6 8
X X
(@) m=4 (b) m=-4

Figure 7. When (a,c) = (-3, -3), (a) m = 4, (b) m = —4, a pair of asymmetric homoclinic
orbits to P3 of system (3.6).

\ E,=(-1.5338,-1:5338,-0.3921)
E,=(1.5338,1.5338,-0.3921 2 !

N
N E,=(3.2624,3.2624,-1.7739) . E,=(-3.2624,-3.2624,-1.7789)
-6
E,=(-4.7962,-4/7962,-3.8339) E,=(4.7962,4.7962,-3.8339)

-8
84

-10

-10 10 20

-10 . 0 10 . 10
o -10 0 0
5 -20 10 5
X y y X
(a) m=4 (b) m=-4

Figure 8. When (a,c,b) = (-3,-3,-6), (a) m = 4, (b) m = —4, a pair of asymmetric
homoclinic orbits to E3 of system (2.1).
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3) (a,m) = (3,+2 \/6). System (3.6) (resp. (2.1)) has two equilibria: P; = (+4.899, £4.899),
P, = (F2.4495,%2.4495) (resp. S| = (+4.899,+4.899,4), S, = (¥2.4495,7F2.4495, 1)) with the
corresponding eigenvalues: A;, = £5.1962i, 0,0 (resp. (4,2, 43) = (£5.1962i, —6), (0,0, —6)). Figure 9
(resp. Figure 10) shows a single homoclinic orbit to P, (resp. S»).

12 T T T T T 4
101 1 27
8 0

P, =(2/4495,2.4495)
P,=(4.899/4.899) 2

6f \% | ol
P,=(-4.899,-4.899)

> 4 1 > 4 i

P,=(-2.4495,-2,4495)

4 -12 :
4 2 0 2 4 6 8 -8 6 4 -2 0 2 4
X X
(a) m=2+v6 (b) m=-2v6

Figure 9. When (a,c) = (3,3), (a)ym =2 V6, (by m = =26, a single homoclinic orbit to P,
of system (3.6).

10

8
8
6
$,=(4.899,4.899,4)
6 S,=(-4.899,-4.899,4)
N 1
. N n
4
2
SZ=(-2.4495,—2.4495,1) > 32=(2,4495,2,4495,1)
A N
20 0.
10 10 -10
5 5
0 ° 0 5 0
0 -10
-10 5 5 15
y X X y
(a) m=2v6 (b) m=-2V6

Figure 10. When (a, ¢, b) = (3,3, 6), (a) m = 2 V6, (b) m = =2 V6, a single homoclinic orbit
to S, of system (2.1).

4) (a,m) = (=3,£2 \/6). System (3.6) (resp. (2.1)) has three equilibria: Py = (¥4.899, ¥4.899),
P53 = (£2.4495, £2.4495) (resp. S| = (¥4.899,74.899, —4), §, = (£2.4495, £2.4495, —1)) with the
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corresponding eigenvalues: 4;, = £5.1962i, 0,0 (resp. (1,2, 43) = (£5.1962i, 6), (0,0, 6)). Figure 11
(resp. Figure 12) displays a single homoclinic orbit to P, (resp. S;) of system (3.6) (resp. (2.1)).

4 12

2 10

ol P,=(2.4495,2.4495) gl

) | ol P, =(4.899/4.899)

P/ =(-4.899,-4.899) \*
> 4t i ] > 4}

6 2

8 O P,=(-2.4495/-2.4495)
;101 ] 2 /
12 ‘ ‘ ‘ ‘ ‘ 4

-8 6 -4 -2 0 2 4 -4 2 0 2 4 6 8
X X
(a) m=2+v6 (b) m=-2v6

Figure 11. When (a,c) = (-3,-3), (a)m =2 V6, b)ym=-2 V6, a single homoclinic orbit to
P, of system (3.6).

0
-2 §,=(2/4495,2.4495 -1)
2 S,=(4.899,4.899,-4)
-4
) ¥
N
N
6 S,=(-4.899,-4.999 -4) 5 §,=(-2.4495,-2.4495 -1)
-8 -8
-10 =l -10
10 20 10
0 5 10 5
-10 0 0
20 0 K 10 5 °
y X y X
(a) m=2+6 (b) m=-2v6

Figure 12. When (a,c,b) = (-3,-3,-6),(a) m =2 \/6, b)ym=-2 \/6, a single homoclinic
orbit to §, of system (2.1).

Remark 1. When m = 0, the results on the symmetric heteroclinic/homoclinic orbits [1, 38] are not
derived from Theorems 2.2 and 2.3.

Remark 2. For (a,c,m,b) = (1,0.8,+0.01, 1.17), Figure 13 shows a pair of asymmetric homoclinic
orbits to E5 in the non-Hamiltonian scenario of system (2.1).
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Figure 13. When (a,c,b) = (1,0.8,1.17), (a) m = 0.01, (b) m = —0.01, a pair of asymmetric
homoclinic orbits to E3 of system (2.1).

4. Conclusions

To the best of our knowledge, whether the asymmetric Chen system has heteroclinic orbits is
unknown. If they exist, is the method of Lyapunov function and a-/w-limit set applicable to it, as the
symmetric Lorenz system family? In this endeavor, we revisited an asymmetric perturbation of the Chen
system and proved the existence of a single/a pair of asymmetric heteroclinic orbits by constructing
suitable Lyapunov functions. With the help of a Hamiltonian function, we also proved that there exists
a single/a pair of asymmetric homoclinic orbits. These homoclinic and heteroclinic orbits cast mirror
images from the parameter —m to m.

In the future, we hope to deal with other important issues, i.e., the rigorous proof of homoclinic
orbits to E3 in the non-Hamiltonian scenario, asymmetric hidden attractors and practical applications.
Meanwhile, it is expected that the obtained results will shed light on the study of homoclinic and
heteroclinic orbits of other asymmetric Lorenz-type systems.
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