Our aim is to present new expressions for the Drazin inverse of anti-triangular block matrices under some circumstances. Applying the established new formulae for anti-triangular block matrices, we derive explicit representations for the Drazin inverse of a $ 2\times2 $ complex block matrix under corresponding assumptions. We extend several well known results in the literature in this way.
Citation: Daochang Zhang, Dijana Mosić, Liangyun Chen. On the Drazin inverse of anti-triangular block matrices[J]. Electronic Research Archive, 2022, 30(7): 2428-2445. doi: 10.3934/era.2022124
Our aim is to present new expressions for the Drazin inverse of anti-triangular block matrices under some circumstances. Applying the established new formulae for anti-triangular block matrices, we derive explicit representations for the Drazin inverse of a $ 2\times2 $ complex block matrix under corresponding assumptions. We extend several well known results in the literature in this way.
[1] | C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review., 17 (1975), 443–464. https://doi.org/10.1137/1017044 doi: 10.1137/1017044 |
[2] | C. D. Meyer, The condition number of a finite Markov chains and perturbation bounds for the limitimg probabilities, SIAM J. Alg. Dis. Methods, 1 (1980), 273–283. https://doi.org/10.1137/0601031 doi: 10.1137/0601031 |
[3] | C. D. Meyer, R. J. Plemmons, Convergent powers of a matrix with applications to iterative methods for singular systems of linear systems, SIAM J. Numer. Anal., 14 (1977), 699–705. https://doi.org/10.1137/0714047 doi: 10.1137/0714047 |
[4] | Q. Xu, C. Song, L. He, Representations for the Drazin inverse of an anti-triangular block operator matrix $E$ with $ind(E)\leq2$, Linear Multilinear Algebra, 66 (2018), 1026–1045. https://doi.org/10.1080/03081087.2017.1335688 doi: 10.1080/03081087.2017.1335688 |
[5] | D. Zhang, D. Mosić, T. Tam, On the existence of group inverses of Peirce corner matrices, Linear Algebra Appl., 582 (2019), 482–498. https://doi.org/10.1016/j.laa.2019.07.033 doi: 10.1016/j.laa.2019.07.033 |
[6] | S. L. Campbell, C. D. Meyer, Generalized inverses of linear Transformations, London, Pitman, 1979, Reprint, Dover, New York, 1991. |
[7] | I. Kyrchei, Explicit formulas for determinantal representations of the Drazin inverse solutions of some matrix and differential matrix equations, Appl. Math. Comput., 219 (2013), 7632–7644. https://doi.org/10.1016/j.amc.2013.01.050 doi: 10.1016/j.amc.2013.01.050 |
[8] | I. Kyrchei, Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations, Appl. Math. Comput., 238 (2014), 193–207. https://doi.org/10.1016/j.amc.2014.03.125 doi: 10.1016/j.amc.2014.03.125 |
[9] | J. Rafael Sendra, J. Sendra, Symbolic computation of Drazin inverses by specializations, J. Comput. Anal. Appl., 301 (2016), 201–212. https://doi.org/10.1016/j.cam.2016.01.059 doi: 10.1016/j.cam.2016.01.059 |
[10] | P. S. Stanimirović, V. N. Katsikis, S. Srivastava, D. Pappas, A class of quadratically convergent iterative methods, RACSAM, 113 (2019), 3125–3146. https://doi.org/10.1007/s13398-019-00681-w doi: 10.1007/s13398-019-00681-w |
[11] | P. S. Stanimirović, M. D. Petković, D. Gerontitis, Gradient neural network with nonlinear activation for computing inner inverses and the Drazin inverse, Neural Process Lett, 48 (2018), 109–133. https://doi.org/10.1007/s11063-017-9705-4 doi: 10.1007/s11063-017-9705-4 |
[12] | D. S. Djordjević, P. S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J., 51 (2001), 617–634. https://doi.org/10.1023/A:1013792207970 doi: 10.1023/A:1013792207970 |
[13] | E. Dopazo, M. F. Martínez-Serrano, Further results on the representation of the Drazin inverse of a $2\times2 $ block matrix, Linear Algebra Appl., 432 (2010), 1896–1904. |
[14] | R. E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of a $2\times2$ block matrix, SIAM J. Matrix Anal. Appl., 27 (2006), 757–771. https://doi.org/10.1137/040606685 doi: 10.1137/040606685 |
[15] | M. Catral, D. D. Olesky, P. Van Den Driessche, Block representations of the Drazin inverse of a bipartite matrix, Electron. J. Linear Algebra, 18 (2009), 98–107. https://doi.org/10.13001/1081-3810.1297 doi: 10.13001/1081-3810.1297 |
[16] | A. S. Cvetković, G. V. Milovanović, On Drazin inverse of operator matrices, J. Math. Anal. Appl., 375 (2011), 331–335. https://doi.org/10.1016/j.jmaa.2010.08.080 doi: 10.1016/j.jmaa.2010.08.080 |
[17] | L. Guo, J. Chen, H. Zou, Representations for the Drazin inverse of the sum of two matrices and its applications, Bull. Iran. Math. Soc., 45 (2019), 683–699. https://doi.org/10.1007/s41980-018-0159-x doi: 10.1007/s41980-018-0159-x |
[18] | C. Bu, K. Zhang, The explicit representations of the Drazin inverses of a class of block matrices, Electron. J. Linear Algebra, 20 (2010), 406–418. https://doi.org/10.13001/1081-3810.1384 doi: 10.13001/1081-3810.1384 |
[19] | C. Bu, C. Feng, S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, Appl. Math. Comput., 218 (2012), 10226–10237. https://doi.org/10.1016/j.amc.2012.03.102 doi: 10.1016/j.amc.2012.03.102 |
[20] | C. Bu, J. Zhao, J. Tang, Representation of the Drazin inverse for special block matrix, Appl. Math. Comput., 217 (2011), 4935–4943. https://doi.org/10.1016/j.amc.2010.11.042 doi: 10.1016/j.amc.2010.11.042 |
[21] | N. Castro-González, E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl., 400 (2005), 253–269. https://doi.org/10.1016/j.laa.2004.12.027 doi: 10.1016/j.laa.2004.12.027 |
[22] | C. Deng, Generalized Drazin inverses of anti-triangular block matrices, J. Math. Anal. Appl., 368 (2010), 1–8. https://doi.org/10.1016/j.jmaa.2010.03.003 doi: 10.1016/j.jmaa.2010.03.003 |
[23] | E. Dopazo, M. F. Martínez-Serrano, J. Robles, Block representations for the Drazin inverse of anti-triangular matrices, Filomat, 30 (2016), 3897–3906. https://doi.org/10.2298/FIL1614897D doi: 10.2298/FIL1614897D |
[24] | J. Huang, Y. Shi, A. Chen, The representation of the Drazin inverse of anti-triangular operator matrices based on resolvent expansions, Appl. Math. Comput., 242 (2014), 196–201. https://doi.org/10.1016/j.amc.2014.05.053 doi: 10.1016/j.amc.2014.05.053 |
[25] | X. Liu, H. Yang, Further results on the group inverses and Drazin inverses of anti-triangular block matrices, Appl. Math. Comput., 218 (2012), 8978–8986. https://doi.org/10.1016/j.amc.2012.02.058 doi: 10.1016/j.amc.2012.02.058 |
[26] | C. Deng, Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431 (2009), 1910–1922. https://doi.org/10.1016/j.laa.2009.06.030 doi: 10.1016/j.laa.2009.06.030 |
[27] | C. Bu, K. Zhang, J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear Multilinear Algebra, 59 (2011), 863–877. https://doi.org/10.1080/03081087.2010.512291 doi: 10.1080/03081087.2010.512291 |
[28] | P. Patrício, R. E. Hartwig, The (2, 2, 0) Drazin inverse problem, Linear Algebra Appl., 437 (2012), 2755–2772. https://doi.org/10.1016/j.laa.2012.07.008 |
[29] | D. Zhang, D. Mosić, Explicit formulae for the generalized Drazin inverse of block matrices over a Banach algebra, Filomat, 32 (2018), 5907–5917. https://doi.org/10.2298/FIL1817907Z doi: 10.2298/FIL1817907Z |
[30] | R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965. |
[31] | R. E. Hartwig, J. M. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Aust. Math. Soc., 24 (1977), 10–34. https://doi.org/10.1017/S1446788700020036 doi: 10.1017/S1446788700020036 |
[32] | C. D. Meyer, N. J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math., 33 (1977), 1–7. https://doi.org/10.1137/0133001 doi: 10.1137/0133001 |
[33] | H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235 (2011), 1412–1417. https://doi.org/10.1016/j.cam.2010.08.027 doi: 10.1016/j.cam.2010.08.027 |