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Abstract: Our aim is to present new expressions for the Drazin inverse of anti-triangular block ma-
trices under some circumstances. Applying the established new formulae for anti-triangular block
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1. Introduction

The Drazin inverse is a very useful tool in various fields of applied mathematics such as Markov
chains, control theory, iterative methods in numerical linear algebra, singular differential and difference
equations [1–3]. There are many researches about finding expressions of the Drazin inverse of a block
matrix under certain conditions [4,5], but it is still an open problem proposed by Campbell and Meyer
[6] in 1979.

It is well known that the Drazin inverse of a square complex matrix A is the unique matrix Ad for
which the following equations hold

AAd = AdA, AdAAd = Ad, Ak = Ak+1Ad,

where k is the index of A (i.e., the smallest non-negative integer such that rank(Ak) = rank(Ak+1)) and
denoted by ind(A). Recall that Ae = AAd, and Aπ = I−Ae is the spectral idempotent of A corresponding
to {0}. Because A0 = I, for the identity matrix I of the proper size, and (Ad)n = (An)d for any non-
negative integer n, we adopt the conventions that Adn = And = (Ad)n. Some interesting results related
to the Drazin inverse can be found in [7–11].
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Under adequate restrictions, various representations for the Drazin inverse of a 2× 2 complex block
matrix

M =
[
A B
C D

]
(1.1)

are proved and we list some of them:

1. in [12], BC = 0, BD = 0 and DC = 0;
2. in [13], BC = 0, BDC = 0 and BD2 = 0;
3. in [14], BC = 0,DC = 0 (or BD = 0) and D is nilpotent;
4. in [15], A = 0 and D = 0;
5. in [16], ABC = 0,DC = 0 and BD = 0 (or BC is nilpotent, or D is nilpotent);
6. in [17], ABC = 0,CBC = 0 and BD = 0;
7. in [18], ABC = 0 and BD = 0 (or DC = 0).

Let us recall that the solutions to singular systems of differential equations are determined by the
formula for the Drazin inverse of an anti-triangular block matrix. We consider the following anti-
triangular block matrices:

N̄ =
[
A B
I 0

]
(1.2)

and

N =
[
A B
C 0

]
. (1.3)

Several interesting investigations related to the Drazin inverse of the anti-triangular block matrix N
partitioned as in the form (1.3) can be seen in [19–25]. Under assumptions AB = 0 and ABC = 0, the
formulae for the Drazin inverse of the anti-triangular block matrix N given by (1.3), were respectively

proved in [26]. Also, note that the Drazin inverse of Ñ =
[
A I
B 0

]
was studied in [27–29].

The first goal of this paper is to present a new formula for the Drazin inverse of N̄ in the case that
A3B = 0, BAB = 0 and BA2B = 0. Applying this new formula and the splitting of N in terms of N̄,
we get the expression for Nd which recovers some earlier results from [26]. Then, using the obtained
formula for the Drazin inverse of N, we obtain explicit expressions for the Drazin inverse of M under
corresponding assumptions and extend several results in the literature in this manner.

The symbol Cm×n presents the set of all m × n complex matrices and all matrices are proper sizes
over Cm×n in this paper. If the lower limit of a sum is greater than its upper limit, we define the sum to

be 0, i.e., for example, the sum
−1∑

n=0
∗ = 0. Notice that [x] stands for the truncates integer of x.

2. Key lemma

Some auxiliary results concerning the Drazin inverse, which will be often used, are given in this
section.

Firstly, the so-called Cline’s formula is stated.

Lemma 2.1. [30] (Cline’s Formula) For A ∈ Cm×n and B ∈ Cn×m, (BA)d = B[(AB)2d]A.
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We cite one important result about the Drazin inverse of anti-triangular block matrices as follows.

Lemma 2.2. [31, 32] Let M =

[
A B
0 D

]
and N =

[
D 0
B A

]
∈ Cn×n, where A and D are square

matrices such that r = ind(A) and s = ind(D). Then

Md =

[
Ad X
0 Dd

]
and Nd =

[
Dd 0
X Ad

]
,

where

X =
s−1∑
i=0

A(i+2)dBDiDπ + Aπ
r−1∑
i=0

AiBD(i+2)d − AdBDd.

The following expressions for the Drazin inverse of the sum of two matrices proved in [33], are very
useful.

Lemma 2.3. [33, Theorem 2.2] Let QPQ = 0 and P2Q = 0, where P,Q ∈ Cn×n, ind(P) = r and
ind(Q) = s. Then

(P + Q)d = Qπ
s−1∑
i=0

QiP(i+1)d +

r−1∑
i=0

Q(i+1)dPiPπ + P
r−1∑
i=0

Q(i+2)dPiPπ + PQπ
s−2∑
i=0

Qi+1P(i+3)d

− PQdPd − PQQdP2d. (2.1)

Lemma 2.4. [33, Theorem 2.1] Let PQP = 0 and PQ2 = 0, where P,Q ∈ Cn×n, ind(P) = r and
ind(Q) = s. Then

(P + Q)d = Qπ
s−1∑
i=0

QiP(i+1)d +

r−1∑
i=0

Q(i+1)dPiPπ + Qπ
s−1∑
i=0

QiP(i+2)dQ +
r−2∑
i=0

Q(i+3)dPi+1PπQ

− QdPdQ − Q2dPPdQ. (2.2)

3. Main results

The aim of this section is to derive the representations for the Drazin inverse of N expressed by
(1.3) under new conditions in the literature. To establish the representations of Nd, we obtain our first
main result considering the Drazin inverse of N̄, which is given as in (1.2), in the case that A3B = 0,
BAB = 0 and BA2B = 0.

Theorem 3.1. Let N̄ be a matrix of the form (1.2), where A and B are square matrices of the same size
such that ind(A) = r and ind(B) = s. If

A3B = 0, BAB = 0 and BA2B = 0,

then

N̄d =

[
E1 A2Bd + BBd

E3 ABd

]
,
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where

E1 = ABπ
s−1∑
i=0

BiA(2i+2)d + A2Bπ
s−1∑
i=0

BiA(2i+3)d + Bπ
s−1∑
i=0

BiA(2i+1)d

+ A2
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ + A
[ r

2 ]∑
i=0

B(i+1)dA2iAπ +
[ r

2 ]∑
i=1

BidA2i−1Aπ

− A2BdAd − 2Ad,

E3 = Bπ
s−1∑
i=0

BiA(2i+2)d + ABπ
s−1∑
i=0

BiA(2i+3)d + A2Bπ
s−1∑
i=0

BiA(2i+4)d

+

[ r
2 ]∑

i=0

B(i+1)dA2iAπ + A
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ + A2
[ r

2 ]∑
i=0

B(i+2)dA2iAπ

− ABdAd − A2BdA2d − 2A2d.

Proof. The next splitting of N̄2 will be used:

N̄2 =

[
A2 + B AB

A B

]
=

[
A2 0
A 0

]
+

[
B AB
0 B

]
:= P + Q.

By Lemma 2.2, we get

Pd =

[
A2d 0
A3d 0

]
and Qd =

[
Bd ABd

0 Bd

]
.

Then we verify that

Pπ =
[

Aπ 0
−Ad I

]
and Qπ =

[
Bπ −ABe

0 Bπ

]
.

For any n ≥ 1, we observe that

Pn =

[
A2n 0

A2n−1 0

]
, Qn =

[
Bn ABn

0 Bn

]
,

and

Pnd =

[
A(2n)d 0

A(2n+1)d 0

]
, Qnd =

[
Bnd ABnd

0 Bnd

]
.

Since ind(A) = r and ind(B) = s, it is clearly that r and s are respectively the least nonnegative integers
as follows

ArAπ = 0, BsBπ = 0.

One can observe that

r − 2 ≤ 2[
r
2

] − 1 ≤ r − 1, r − 1 ≤ 2[
r
2

] ≤ r and r ≤ 2[
r
2

] + 1 ≤ r + 1
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for any nonnegative integer r. Notice that, for i ≥ 1,

PiPπ =
[

A2i 0
A2i−1 0

] [
Aπ 0
−Ad I

]
=

[
A2iAπ 0

A2i−1Aπ 0

]
,

and

QiQπ =
[
Bi ABi

0 Bi

] [
Bπ −ABe

0 Bπ

]
=

[
BiBπ ABiBπ

0 BiBπ

]
.

So, we conclude that ind(P) = [ r
2 ]+1 and ind(Q) = s. Because the assumptions P2Q = 0 and QPQ = 0

of Lemma 2.3 are satisfied, we calculate the following terms as in (2.1):

Qπ
s−1∑
i=0

QiP(i+1)d =


Bπ

s−1∑
i=0

BiA(2i+2)d + A
s−1∑
i=1

BiA(2i+3)d − ABe
s−1∑
i=0

BiA(2i+3)d 0

Bπ
s−1∑
i=0

BiA(2i+3)d 0

 ,
[ r

2 ]∑
i=0

Q(i+1)dPiPπ =


[ r

2 ]∑
i=0

B(i+1)dA2iAπ + A
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ − ABdAd ABd

[ r
2 ]∑

i=1
B(i+1)dA2i−1Aπ − BdAd Bd

 ,

P
[ r

2 ]∑
i=0

Q(i+2)dPiPπ =


A2

[ r
2 ]∑

i=0
B(i+2)dA2iAπ 0

A
[ r

2 ]∑
i=0

B(i+2)dA2iAπ + A2
[ r

2 ]∑
i=1

B(i+2)dA2i−1Aπ − A2B2dAd A2B2d

 ,

PQπ
s−2∑
i=0

Qi+1P(i+3)d =


A2Bπ

s−2∑
i=0

Bi+1A(2i+6)d 0

ABπ
s−2∑
i=0

Bi+1A(2i+6)d + A2Bπ
s−2∑
i=0

Bi+1A(2i+7)d 0

 ,
PQdPd =

[
A2BdA2d 0

ABdA2d + A2BdA3d 0

]
and

PQQdP2d =

[
A2BBdA4d 0

ABBdA4d + A2BBdA5d 0

]
.

Substituting the above expressions into (2.1), we get

N̄2d = (P + Q)d =

[
α β

γ δ

]
,

where

α = Bπ
s−1∑
i=0

BiA(2i+2)d + A
s−1∑
i=1

BiA(2i+3)d − ABe
s−1∑
i=0

BiA(2i+3)d + A2Bπ
s−2∑
i=0

Bi+1A(2i+6)d
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+ A
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ + A2
[ r

2 ]∑
i=0

B(i+2)dA2iAπ +
[ r

2 ]∑
i=0

B(i+1)dA2iAπ

− A2BdA2d − A2BBdA4d − ABdAd,

β = ABd,

γ = Bπ
s−1∑
i=0

BiA(2i+3)d + ABπ
s−2∑
i=0

Bi+1A(2i+6)d + A2Bπ
s−2∑
i=0

Bi+1A(2i+7)d

+

[ r
2 ]∑

i=1

B(i+1)dA2i−1Aπ + A
[ r

2 ]∑
i=0

B(i+2)dA2iAπ + A2
[ r

2 ]∑
i=1

B(i+2)dA2i−1Aπ

− ABdA2d − A2BdA3d − ABBdA4d − A2BBdA5d − A2B2dAd − BdAd,

δ = Bd + A2B2d.

Computing N̄d = N̄N̄2d, we obtain

N̄d =

[
E1 E2

E3 E4

]
,

where

E1 = ABπ
s−1∑
i=0

BiA(2i+2)d + A2
s−1∑
i=1

BiA(2i+3)d − A2Be
s−1∑
i=0

BiA(2i+3)d + Bπ
s−1∑
i=0

Bi+1A(2i+3)d

+ A2
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ +
[ r

2 ]∑
i=1

BidA2i−1Aπ + A
[ r

2 ]∑
i=0

B(i+1)dA2iAπ − A2BdAd − BeAd,

E2 = A2Bd + BBd,

E3 = Bπ
s−1∑
i=0

BiA(2i+2)d + A
s−1∑
i=1

BiA(2i+3)d − ABe
s−1∑
i=0

BiA(2i+3)d + A2Bπ
s−2∑
i=0

Bi+1A(2i+6)d

+ A
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ + A2
[ r

2 ]∑
i=0

B(i+2)dA2iAπ +
[ r

2 ]∑
i=0

B(i+1)dA2iAπ

− A2BdA2d − A2BBdA4d − ABdAd,

E4 = ABd.

We finish this proof by modulating appropriately the upper and lower limits of the corresponding
sums. □

By direct calculations, we can obtain the following corollary using Theorem 3.1.

Corollary 3.2. Let N̄ be a matrix of the form (1.2), where A and B are square matrices of the same
size such that ind(A) = r and ind(BC) = s. If A2B = 0 and BAB = 0, then

N̄d =

[
E1 BBd

E3 ABd

]
,
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where

E1 = ABπ
s−1∑
i=0

BiA(2i+2)d + Bπ
s−1∑
i=0

BiA(2i+1)d + A
[ r

2 ]∑
i=0

B(i+1)dA2iAπ +
[ r

2 ]∑
i=1

BidA2i−1Aπ − Ad,

E3 = Bπ
s−1∑
i=0

BiA(2i+2)d + ABπ
s−1∑
i=0

BiA(2i+3)d +

[ r
2 ]∑

i=0

B(i+1)dA2iAπ + A
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ

− ABdAd − A2d.

A natural motivation is from the Drazin inverse of N̄ to give a new expression for the Drazin inverse
of N.

Theorem 3.3. Let N be a matrix of the form (1.3), where A and BC are square matrices of the same
size such that ind(A) = r and ind(BC) = s. If

A3BC = 0, BCABC = 0 and BCA2BC = 0,

then

Nd =

[
F1 F2

F3 F4

]
, (3.1)

where

F1 = A(BC)π
s−1∑
i=0

(BC)iA(2i+2)d + A2(BC)π
s−1∑
i=0

(BC)iA(2i+3)d + (BC)π
s−1∑
i=0

(BC)iA(2i+1)d

+ A
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ + A2
[ r

2 ]∑
i=0

(BC)(i+2)dA2i+1Aπ +
[ r

2 ]∑
i=0

(BC)(i+1)dA2i+1Aπ

− A2(BC)dAd − 2Ad,

F2 = A(BC)π
s−1∑
i=0

(BC)iA(2i+3)dB + (BC)π
s−1∑
i=0

(BC)iA(2i+2)dB + A2(BC)π
s−1∑
i=0

(BC)iA(2i+4)dB

+ A
[ r

2 ]∑
i=1

(BC)(i+1)dA2i−1AπB + A2
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπB +
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπB

− 2A2dB − A2(BC)dA2dB − A(BC)dAdB,

F3 = CA(BC)π
s−1∑
i=0

(BC)iA(2i+3)d +CA2
s−1∑
i=0

(BC)i(BC)πA(2i+4)d +C(BC)π
s−1∑
i=0

(BC)iA(2i+2)d

+ C
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ +CA2
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπ +CA
[ r

2 ]∑
i=0

(BC)(i+2)dA2i+1Aπ

− 2CA2d −CA(BC)dAd −CA2(BC)dA2d,

F4 = CA(BC)π
s−1∑
i=0

(BC)iA(2i+4)dB +CA2
s−1∑
i=0

(BC)i(BC)πA(2i+5)dB +C(BC)π
s−1∑
i=0

(BC)iA(2i+3)dB
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+ C
[ r

2 ]∑
i=1

(BC)(i+1)dA2i−1AπB +CA2
[ r

2 ]∑
i=1

(BC)(i+2)dA2i−1AπB +CA
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπB

− 2CA3dB −C(BC)dAdB −CA(BC)dA2dB −CA2(BC)2dAdB −CA2(BC)dA3dB.

Proof. We denote by P and Q, respectively, the left matrix and the right matrix of the right-hand side
of the next splitting of N:

N =
[
I 0
0 C

] [
A B
I 0

]
.

Thus,

QP =
[
A BC
I 0

]
,

and, applying Theorem 3.1, we have

(QP)d =

[
λ µ

ν ξ

]
,

where ind(A) = r, ind(BC) = s,

λ = A(BC)π
s−1∑
i=0

(BC)iA(2i+2)d + A2(BC)π
s−1∑
i=0

(BC)iA(2i+3)d + (BC)π
s−1∑
i=0

(BC)iA(2i+1)d

+ A2
[ r

2 ]∑
i=1

(BC)(i+1)dA2i−1Aπ + A
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ +
[ r

2 ]∑
i=1

(BC)idA2i−1Aπ

− A2(BC)dAd − 2Ad,

µ = A2(BC)d + BC(BC)d,

ν = (BC)π
s−1∑
i=0

(BC)iA(2i+2)d + A(BC)π
s−1∑
i=0

(BC)iA(2i+3)d + A2(BC)π
s−1∑
i=0

(BC)iA(2i+4)d

+

[ r
2 ]∑

i=0

(BC)(i+1)dA2iAπ + A
[ r

2 ]∑
i=1

(BC)(i+1)dA2i−1Aπ + A2
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπ

− A(BC)dAd − A2(BC)dA2d − 2A2d,

ξ = A(BC)d.

According to Lemma 2.1, notice that

Nd = P(QP)2dQ =
[
λ2A + µνA + λµ + µξ λ2B + µνB

CνλA +CξνA +Cνµ +Cξ2 CνλB +CξνB

]
. (3.2)

By direct computations, we obtain ξ2 = 0, µξ = 0,

λ2 = A(BC)π
s−1∑
i=0

(BC)iA(2i+3)d + A2
s−1∑
i=1

(BC)iA(2i+4)d − A2(BC)e
s−1∑
i=0

(BC)iA(2i+4)d
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+

s−1∑
i=0

(BC)i+1(BC)πA(2i+4)d + A
[ r

2 ]∑
i=1

(BC)(i+1)dA2i−1Aπ

− A(BC)dAd − A2(BC)dA2d − (BC)eA2d,

µν = A2
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπ +
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ,

λµ = A(BC)d,

νλ = A(BC)π
s−1∑
i=0

(BC)iA(2i+4)d + A2
s−1∑
i=0

(BC)i(BC)πA(2i+5)d + (BC)π
s−1∑
i=0

(BC)iA(2i+3)d

+

[ r
2 ]∑

i=1

(BC)(i+1)dA2i−1Aπ + A2
[ r

2 ]∑
i=1

(BC)(i+2)dA2i−1Aπ

− 2A3d − (BC)dAd − A(BC)dA2d − A2(BC)2dAd − A2(BC)dA3d,

νµ = (BC)d + A2(BC)2d,

ξν = A
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπ.

The proof is finished by substituting the above expressions into (3.2). □

Several particular consequences of our main result are investigated now. We combine Theorem 3.3
and routine computations to obtain the following expressions for the Drazin inverse of N as in (1.3).

Corollary 3.4. Let N be a matrix of the form (1.3), where A and BC are square matrices of the same
size such that ind(A) = r and ind(BC) = s. If A2BC = 0 and CABC = 0, then

Nd =

[
F1 F2

F3 F4

]
,

where

F1 = A(BC)π
s−1∑
i=0

(BC)iA(2i+2)d + (BC)π
s−1∑
i=0

(BC)iA(2i+1)d

+ A
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ +
[ r

2 ]∑
i=0

(BC)(i+1)dA2i+1Aπ − Ad,

F2 = A(BC)π
s−1∑
i=0

(BC)iA(2i+3)dB + (BC)π
s−1∑
i=0

(BC)iA(2i+2)dB

+ A
[ r

2 ]∑
i=1

(BC)(i+1)dA2i−1AπB +
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπB

− A(BC)dAdB − A2dB,
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F3 = C(BC)π
s−1∑
i=0

(BC)iA(2i+2)d +C
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ,

F4 = C(BC)π
s−1∑
i=0

(BC)iA(2i+3)dB +C
[ r

2 ]∑
i=1

(BC)(i+1)dA2i−1AπB −C(BC)dAdB.

The following corollary presents a special case of Corollary 3.4.

Corollary 3.5. Let N be a matrix of the form (1.3), where A and BC are square matrices of the same
size such that ind(A) = r and ind(BC) = s. If A2B = 0 and CAB = 0, then

Nd =

[
F1 (BC)dB
F3 0

]
,

where

F1 = A(BC)π
s−1∑
i=0

(BC)iA(2i+2)d + (BC)π
s−1∑
i=0

(BC)iA(2i+1)d

+ A
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ +
[ r

2 ]∑
i=0

(BC)(i+1)dA2i+1Aπ − Ad,

F3 = C(BC)π
s−1∑
i=0

(BC)iA(2i+2)d +C
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ.

We can easily check that Corollary 3.4 extend both [26, Theorem 3.1] and [26, Theorem 3.3] as
follows.

Corollary 3.6. Let N be a matrix of the form (1.3), where A and BC are square matrices of the same
size such that ind(A) = r and ind(BC) = s.

(i) [26, Theorem 3.3] If ABC = 0, then

Nd =

[
XA XB
CX C[XAd + (BC)d(XA − Ad)]B

]
;

(ii) [26, Theorem 3.1] If AB = 0, then

Nd =

[
XA (BC)dB
CX 0

]
,

where

X = (BC)π
s−1∑
i=0

(BC)iA(2i+2)d +

[ r
2 ]∑

i=0

(BC)(i+1)dA2iAπ. (3.3)
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4. Applications to express Md

Under new conditions, applying the formulae for the Drazin inverse of anti-triangular block matrices
proved in Section 3, we present several representations for the Drazin inverse of a 2 × 2 block matrix
M and generalize a series of results, most of whom are from the references.

Theorem 4.1. Let M be a matrix of the form (1.1) and N be a matrix of the form (1.3), where A, D and
BC are square matrices such that A and BC are of the same size. If

A3BC = 0, BCABC = 0, BCA2BC = 0, BDC = 0 and BD2 = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d

+

r−1∑
i=0

[
0 0
0 D(i+1)d

]
N i

[
(BC)π − F1A − A2(BC)d −F1B
−F3A −CA(BC)d I − F3B

]

+

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+2)d

[
0 0
0 D

]

+

r−2∑
i=0

[
0 0
0 D(i+3)d

]
N i+1
[
0 −F1BD
0 (I − F3B)D

]
−

[
0 0
0 DdF4D + D2dCF2D

]
,

where Nd and Fn, n = 1, 4, are represented as in (3.1), ind(N) = r and ind(D) = s.

Proof. We can write M = N + Q, where

N =
[
A B
C 0

]
and Q =

[
0 0
0 D

]
.

Hence,

Qd =

[
0 0
0 Dd

]
and Qπ =

[
I 0
0 Dπ

]
.

Using Theorem 3.3, Nd is represented as in (3.1) and so

Nπ =
[
I − F1A − F2C −F1B
−F3A − F4C I − F3B

]
.

From the equalities

F2C = A2(BC)d + (BC)dBC,

F4C = CA(BC)d,

we have

Nπ =
[
I − F1A − A2(BC)d − (BC)dBC −F1B

−F3A −CA(BC)d I − F3B

]
.

Because NQN = 0 and NQ2 = 0, the rest is clear by Lemma 2.4. □
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In order to illustrate the width of Theorem 4.1, we only need to list the results generalized through
whose following corollary.

Corollary 4.2. Let M be a matrix of the form (1.1) and N be a matrix of the form (1.3), where A, D
and BC are square matrices such that A and BC are of the same size. If

A2BC = 0, CABC = 0, BDC = 0 and BD2 = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d

+

r−1∑
i=0

[
0 0
0 D(i+1)d

]
N i

[
(BC)π − F1A −F1B
−F3A I − F3B

]

+

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+2)d

[
0 0
0 D

]

+

r−2∑
i=0

[
0 0
0 D(i+3)d

]
N i+1
[
0 −F1BD
0 (I − F3B)D

]
−

[
0 0
0 DdF4D + D2dCF2D

]
,

where Nd and Fn, n = 1, 4, are represented as in Corollary 3.4, ind(N) = r and ind(D) = s.

We can verify that Corollary 4.2 generalizes and unifies the following conditions about the expres-
sion for Md:

1. BC = 0, BD = 0 and DC = 0 (see [12, Theorem 5.3]);
2. BC = 0, BD = 0 and D is nilpotent (see [14, Corollary 2.3]);
3. ABC = 0,CBC = 0 and BD = 0 (see [17, Corollary 3.3]);
4. ABC = 0 and BD = 0 (see [18, Theorem 2.3]).

In addition, we utilize Corollary 4.2 to obtain the following expression for Md as in [13, Corollary
2.3].

Corollary 4.3. [13, Corollary 2.3] Let M be a matrix of the form (1.1), where A, D and BC are square
matrices such that A and BC are of the same size. If

BC = 0, BDC = 0 and BD2 = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i [
Ad A2dB

CA2d CA3dB

]i+1

+

r−1∑
i=0

[
0 0
0 D(i+1)d

]
N i

[
Aπ −AdB
−CAd I −CA2dB

]

+

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i [
Ad A2dB

CA2d CA3dB

]i+2 [
0 0
0 D

]

+

r−2∑
i=0

[
0 0
0 D(i+3)d

]
N i+1
[
0 −AdBD
0 (I −CA2dB)D

]
−

[
0 0
0 DdCA3dBD + D2dCA2dBD

]
,

where ind(N) = r and ind(D) = s.
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Utilizing Corollary 4.2, we also obtain the following expression for Md.

Corollary 4.4. Let M be a matrix of the form (1.1), where A, D and BC are square matrices such that
A and BC are of the same size. If

A2B = 0, CAB = 0, BDC = 0 and BD2 = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d

+

r−1∑
i=0

[
0 0
0 D(i+1)d

]
N i

[
(BC)π − F1A −F1B
−F3A I − F3B

]

+

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+2)d

[
0 0
0 D

]

+

r−2∑
i=0

[
0 0
0 D(i+3)d

]
N i+1
[
0 −F1BD
0 (I − F3B)D

]
−

[
0 0
0 D2dC(BC)dBD

]
,

where F1, F3 and Nd are given as in Corollary 3.5, ind(N) = r and ind(D) = s.

Utilizing Corollary 4.2, we obtain the expression for Md as in [16, Theorem 1].

Corollary 4.5. [16, Theorem 1] Let M be a matrix of the form (1.1), where A, D and BC are square
matrices such that A and BC are of the same size. If

ABC = 0, BD = 0 and DC = 0,

then

Md =

[
XA XB
CX Dd +C[XAd + (BC)d(XA − Ad)]B

]
,

where X is represented by (3.3).

We note that Corollary 4.5 generalizes the next formula proved in [15, Theorem 2.1].

Corollary 4.6. [15, Theorem 2.1] Let M be a matrix of the form (1.1), where A, D and BC are square
matrices such that A and BC are of the same size. If

A = 0 and D = 0,

then

Md =

[
0 (BC)dB

C(BC)d 0

]
.

The following formula, which is a dual version of Theorem 4.1, can be proved similarly.
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Theorem 4.7. Let M be a matrix of the form (1.1) and N be a matrix of the form (1.3), where A, D and
BC are square matrices such that A and BC are of the same size. If

A3BC = 0, BCABC = 0, BCA2BC = 0, DCA = 0 and DCB = 0,

then

Md =

[
(BC)π − F1A − A2(BC)d −F1B
−F3A −CA(BC)d I − F3B

] r−1∑
i=0

N i

[
0 0

D(i+2)dC D(i+1)d

]

+

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
+

s−2∑
i=0

N(i+3)d
[

0 0
Di+1DπC 0

]
−

[
F2DdC 0
F4DdC 0

]
− N2d

[
0 0

DDdC 0

]
,

where Nd and Fn, n = 1, 4, are given by (3.1), ind(N) = r and ind(D) = s.

Proof. Notice that QNQ = 0 and QN2 = 0, where Q and N are given as in the proof of Theorem 4.1.
As in the proof of Theorem 4.1, this proof can be finished by using Theorem 3.3 and Lemma 2.4. □

Applying Theorem 4.7, we prove the next formula for Md.

Corollary 4.8. Let M be a matrix of the form (1.1) and N be a matrix of the form (1.3), where A, D
and BC are square matrices such that A and BC are of the same size. If

A2BC = 0, CABC = 0, DCA = 0 and DCB = 0,

then

Md =

[
−F1A + (BC)π −F1B
−F3A I − F3B

] r−1∑
i=0

N i

[
0 0

D(i+2)dC D(i+1)d

]

+

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
+

s−2∑
i=0

N(i+3)d
[

0 0
Di+1DπC 0

]
−

[
F2DdC 0
F4DdC 0

]
− N2d

[
0 0

DDdC 0

]
,

where Nd and Fn, n = 1, 4, are given as in Corollary 3.4, ind(N) = r and ind(D) = s.

It is worth mentioning that Corollary 4.8 recovers the formulae for the Drazin inverse of M under
the following assumptions:

1. ABC = 0 and DC = 0 (see [18, Theorem 2.2]);
2. ABC = 0, DC = 0 and BC is nilpotent (or D is nilpotent) (see [16, Theorem 2, Theorem 3]);
3. BC = 0, DC = 0 and D is nilpotent (see [14, Lemma 2.2]).
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5. An example

In this section, we give an example to illustrate our results. Precisely, we present matrices N and
M whose blocks are 4 × 4 complex matrices A, B, C and D which do not satisfy the conditions of [26,
Theorem 3.1 and Theorem 3.3], [12, Theorem 5.3], [14, Corollary 2.3] and [18, Theorem 2.3], but the
assumptions of Theorem 3.3 (or Corollary 3.4) and Theorem 4.1 (or Corollary 4.4) are met, which
allows us to find Nd and Md.

Example 5.1. Let M be a matrix of the form (1.1) and N be a matrix of the form (1.3), where A, B, C
and D are 4 × 4 complex matrices given by

A =


0 0 0 0
a 0 0 0
0 b 0 0
0 0 c 0

 , B =


0 0 0 0
e 0 0 0
0 f 0 0
0 0 g 0

 ,

C =


0 0 0 0
u 0 0 0
0 v 0 0
0 0 t 0

 and D =


0 0 0 0
0 0 0 0
0 0 0 0
d d d 1

 ,
where 0 < {a, b, c, d, e, f , g, u, v, t}. Notice that

BC =


0 0 0 0
0 0 0 0
f u 0 0 0
0 gv 0 0

 , 0,

AB =


0 0 0 0
0 0 0 0
be 0 0 0
0 c f 0 0

 , 0 and ABC =


0 0 0 0
0 0 0 0
0 0 0 0

c f u 0 0 0

 , 0.

The conclusions above imply that [26, Theorem 3.1 and Theorem 3.3], [12, Theorem 5.3], [14, Corol-
lary 2.3] and [18, Theorem 2.3] can not be applied. We note that the equalities A2BC = 0, CABC = 0
and BD = 0 are satisfied, and utilize Theorem 3.3 (or Corollary 3.4) to obtain

Nd =



0 0 0 0 0 0 0 0
a 0 0 0 e 0 0 0
0 b 0 0 0 f 0 0
0 0 c 0 0 0 g 0
0 0 0 0 0 0 0 0
u 0 0 0 0 0 0 0
0 v 0 0 0 0 0 0
0 0 t 0 0 0 0 0



d

= 0.
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Since D = D2 = D#, we apply Theorem 4.1 (or Corollary 4.2) to get

Md =



0 0 0 0 0 0 0 0
a 0 0 0 e 0 0 0
0 b 0 0 0 f 0 0
0 0 c 0 0 0 g 0
0 0 0 0 0 0 0 0
u 0 0 0 0 0 0 0
0 v 0 0 0 0 0 0
0 0 t 0 d d d 1



d

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

d(u + va) + t(ba + f u) dv + tb t 0 d + (dv + tb)e d + t f d 1


.
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