Citation: Guixin Deng, Shuxin Wang. On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1, 1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m, n} \right]\kern-0.15em\right]$[J]. AIMS Mathematics, 2021, 6(2): 1101-1109. doi: 10.3934/math.2021066
[1] | N. R. Baeth, A. Geroldinger, D. J. Grynkiewicz, D. Smertnig, A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems, J. Algebra Appl., 14 (2015), 1-42. |
[2] | P. Baginski, S. T. Chapman, R. Rodriguez, G. J. Schaeffer, Y. She, On the delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra., 214 (2010), 1334-1339. doi: 10.1016/j.jpaa.2009.10.015 |
[3] | G. Deng, X. Zeng, Long minimal zero-sum sequences over a finite set of $\mathbb{Z}$, European J. Combin., 67 (2018), 78-86. doi: 10.1016/j.ejc.2017.07.004 |
[4] | P. van Emde Boas, A combinatorial problem on finite abelian groups II, Math. Centrum Amsterdam ZW, 7 (1969), 1-60. |
[5] | P. van Emde Boas, D. Kruyswijk, A combinatorial problem on finite abelian groups III, Math. Centrum Amsterdam ZW, 8 (1969), 1-34. |
[6] | W. Gao, A. Geroldinger, Zero-sum problems in abelian groups: A survey, Expo. Math., 24 (2006), 337-369. doi: 10.1016/j.exmath.2006.07.002 |
[7] | A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009. |
[8] | A. Geroldinger, D. J. Grynkiewicz, G. J. Schaeffer, W. A. Schmid, On the arithmetic of Krull monoids with infinite cyclic class groups, J. Pure Appl. Algebra, 214 (2010), 2219-2250. doi: 10.1016/j.jpaa.2010.02.024 |
[9] | A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, Chapman & Hall/CRC, 2006. |
[10] | A. Geroldinger, R. Schneider, On Davenportis constant, J. Combin. Theory Ser. A, 61 (1992), 147-152. doi: 10.1016/0097-3165(92)90061-X |
[11] | J. Lambert, Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire, C. R. Acad. Sci. Paris Ser. I Math., 305 (1987), 39-40. |
[12] | J. E. Olson, A combinatorial problem on finite Abelian groups I, J. Number Theory, 1 (1969), 8-10. doi: 10.1016/0022-314X(69)90021-3 |
[13] | J. E. Olson, A combinatorial problem on finite Abelian groups II, J. Number Theory, 1 (1969), 195-199. doi: 10.1016/0022-314X(69)90037-7 |
[14] | A. Plagne, S. Tringali, The Davenport constant of a box, Acta Arith., 171 (2015), 197-219. doi: 10.4064/aa171-3-1 |
[15] | M. L. Sahs, P. A. Sissokho, J. N. Torf, A zero-sum theorem over Z, Integers, 13 (2013), 1-11. |
[16] | S. Savchev, F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math., 307 (2007), 2671-2679. doi: 10.1016/j.disc.2007.01.012 |
[17] | P. A. Sissokho, A note on minimal zero-sum sequences over Z, Acta Arith., 166 (2014), 279-288. doi: 10.4064/aa166-3-4 |
[18] | P. Yuan, On the index of minimal zero-sum sequences over finite cyclic groups, J. Combin. Theory Ser. A, 114 (2007), 1545-1551. doi: 10.1016/j.jcta.2007.03.003 |
[19] | X. Zeng, G. Deng, Minimal zero-sum sequences over $\left[\kern-0.15em\left[ { - m, n} \right]\kern-0.15em\right]$, J. Number Theory, 203 (2019), 230-241. doi: 10.1016/j.jnt.2019.02.029 |