Research article

On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1, 1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m, n} \right]\kern-0.15em\right]$

  • Received: 10 September 2020 Accepted: 28 October 2020 Published: 10 November 2020
  • MSC : 11B30, 11P70

  • Let $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$, denoted by $\textsf{D}(X)$, is defined to be the supremum of lengths of all minimal zero-sum sequences over $X$. In this paper, we study the minimal zero-sum sequences over $X = \left[\kern-0.15em\left[ { - 1, 1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m, n} \right]\kern-0.15em\right]\subset\mathbb{Z}^2$. We completely determine the structure of minimal zero-sum sequences of maximal length over $X$ and obtain that $\textsf{D}(X) = 2(n+m).$

    Citation: Guixin Deng, Shuxin Wang. On the Davenport constant of a two-dimensional box $\left[\kern-0.15em\left[ { - 1, 1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m, n} \right]\kern-0.15em\right]$[J]. AIMS Mathematics, 2021, 6(2): 1101-1109. doi: 10.3934/math.2021066

    Related Papers:

  • Let $G$ be an abelian group and $X$ be a nonempty subset of $G$. A sequence $S$ over $X$ is called zero-sum if the sum of all terms of $S$ is zero. A nonempty zero-sum sequence $S$ is called minimal zero-sum if all nonempty proper subsequences of $S$ are not zero-sum. The Davenport constant of $X$, denoted by $\textsf{D}(X)$, is defined to be the supremum of lengths of all minimal zero-sum sequences over $X$. In this paper, we study the minimal zero-sum sequences over $X = \left[\kern-0.15em\left[ { - 1, 1} \right]\kern-0.15em\right] \times \left[\kern-0.15em\left[ { - m, n} \right]\kern-0.15em\right]\subset\mathbb{Z}^2$. We completely determine the structure of minimal zero-sum sequences of maximal length over $X$ and obtain that $\textsf{D}(X) = 2(n+m).$


    加载中


    [1] N. R. Baeth, A. Geroldinger, D. J. Grynkiewicz, D. Smertnig, A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems, J. Algebra Appl., 14 (2015), 1-42.
    [2] P. Baginski, S. T. Chapman, R. Rodriguez, G. J. Schaeffer, Y. She, On the delta set and catenary degree of Krull monoids with infinite cyclic divisor class group, J. Pure Appl. Algebra., 214 (2010), 1334-1339. doi: 10.1016/j.jpaa.2009.10.015
    [3] G. Deng, X. Zeng, Long minimal zero-sum sequences over a finite set of $\mathbb{Z}$, European J. Combin., 67 (2018), 78-86. doi: 10.1016/j.ejc.2017.07.004
    [4] P. van Emde Boas, A combinatorial problem on finite abelian groups II, Math. Centrum Amsterdam ZW, 7 (1969), 1-60.
    [5] P. van Emde Boas, D. Kruyswijk, A combinatorial problem on finite abelian groups III, Math. Centrum Amsterdam ZW, 8 (1969), 1-34.
    [6] W. Gao, A. Geroldinger, Zero-sum problems in abelian groups: A survey, Expo. Math., 24 (2006), 337-369. doi: 10.1016/j.exmath.2006.07.002
    [7] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009.
    [8] A. Geroldinger, D. J. Grynkiewicz, G. J. Schaeffer, W. A. Schmid, On the arithmetic of Krull monoids with infinite cyclic class groups, J. Pure Appl. Algebra, 214 (2010), 2219-2250. doi: 10.1016/j.jpaa.2010.02.024
    [9] A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, Chapman & Hall/CRC, 2006.
    [10] A. Geroldinger, R. Schneider, On Davenportis constant, J. Combin. Theory Ser. A, 61 (1992), 147-152. doi: 10.1016/0097-3165(92)90061-X
    [11] J. Lambert, Une borne pour les générateurs des solutions entières positives d'une équation diophantienne linéaire, C. R. Acad. Sci. Paris Ser. I Math., 305 (1987), 39-40.
    [12] J. E. Olson, A combinatorial problem on finite Abelian groups I, J. Number Theory, 1 (1969), 8-10. doi: 10.1016/0022-314X(69)90021-3
    [13] J. E. Olson, A combinatorial problem on finite Abelian groups II, J. Number Theory, 1 (1969), 195-199. doi: 10.1016/0022-314X(69)90037-7
    [14] A. Plagne, S. Tringali, The Davenport constant of a box, Acta Arith., 171 (2015), 197-219. doi: 10.4064/aa171-3-1
    [15] M. L. Sahs, P. A. Sissokho, J. N. Torf, A zero-sum theorem over Z, Integers, 13 (2013), 1-11.
    [16] S. Savchev, F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math., 307 (2007), 2671-2679. doi: 10.1016/j.disc.2007.01.012
    [17] P. A. Sissokho, A note on minimal zero-sum sequences over Z, Acta Arith., 166 (2014), 279-288. doi: 10.4064/aa166-3-4
    [18] P. Yuan, On the index of minimal zero-sum sequences over finite cyclic groups, J. Combin. Theory Ser. A, 114 (2007), 1545-1551. doi: 10.1016/j.jcta.2007.03.003
    [19] X. Zeng, G. Deng, Minimal zero-sum sequences over $\left[\kern-0.15em\left[ { - m, n} \right]\kern-0.15em\right]$, J. Number Theory, 203 (2019), 230-241. doi: 10.1016/j.jnt.2019.02.029
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2788) PDF downloads(116) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog