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Abstract: Let G be an abelian group and X be a nonempty subset of G. A sequence S over X is called
zero-sum if the sum of all terms of S is zero. A nonempty zero-sum sequence S is called minimal
zero-sum if all nonempty proper subsequences of S are not zero-sum. The Davenport constant of X,
denoted by D(X), is defined to be the supremum of lengths of all minimal zero-sum sequences over
X. In this paper, we study the minimal zero-sum sequences over X = [−1, 1] × [−m, n] ⊂ Z2. We
completely determine the structure of minimal zero-sum sequences of maximal length over X and
obtain that D(X) = 2(n + m).
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1. Introduction

Zero-sum theory mainly study the problem relative to minimal zero-sum sequences of abelian
groups. This theory has applications in groups theory, graph theory and factorization theory, see the
survey article [6], and the monographs [7, 9]. The study of zero-sum problems in finite abelian groups
have a long history, see for example [4, 5, 10, 12, 13, 16, 18]. In 1960s, Davenport found that the
principle ideal generated by an irreducible element in an algebraic number field F is the product of at
most n prime ideals, where n is exactly the Davenport constant of the class group of F. In general, let
H be a Krull monoid with class group G and let X ⊂ G be the set of classes containing prime divisors.
The factorization properties of H have a strong connection with zero-sum sequences over X, see [9].

The study of zero-sum problems in infinite abelian groups G mainly focus in the case that G is
the free abelian groups Zn, see for instance [2, 8]. It was difficult to compute the exact value of
Davenport constant for a general subset of an abelian group. In particular, it was suggested in [1] that
we could study the Davenport constant of subsets with simple geometric structure (e.g., the product
of integral interval). For two real numbers a, b, let [a, b] = {n ∈ Z : a ≤ n ≤ b}. For a sequence
S = x1, . . . , xn, we use ‖S ‖ to denote the number of terms appeared in S . Lambert [11] showed that
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D([−n, n]) = max{2, 2n − 1}. In [15], it was shown that if S is a minimal zero-sum sequence over Z,
then ‖S −‖ ≤ max{S } and ‖S +‖ ≤ −min{S }, where S +, (S −, resp) is the subsequence of S consisting of
positive (negative, resp) elements. As an immediate consequence, we have

D(X) ≤ diam(X) = sup
x,y∈X
|x − y|,

where X is a finite subset of Z containing both positive and negative integers. With the same notation,
Sissokho [17] showed that ‖S +‖ · ‖S −‖ is no more than the sum of all terms of S +.

In [14], the authors used a simple method to prove that

sup
x,y∈X,x<0,y>0

|x − y|
gcd(x, y)

≤ D(X) ≤ diam(X) = sup
x,y∈X
|x − y|.

The lower bound above comes from the example of minimal zero-sum sequence x, . . . , x, y, . . . , y,
where x appears y

gcd(x,y) times and y appears −x
gcd(x,y) times. The structure of minimal zero-sum sequences

over [−m, n] whose length are close to n+m was investigated in detail in [3] and [19], and it was proved
that the above lower bound is the exact value of the Davenport constant of the interval [−m, n] for all
but only finitely pairs of n,m > 0.

The exact value of Davenport constant are widely open for high dimensions. In particular, [14]
showed that D([−1, 1]2) = 4 and (2m − 1)2 ≤ D([−m,m]2) ≤ (2m + 1)(4m + 1). In this paper, we
determine the structure of minimal zero-sum sequences of maximal length over [−1, 1] × [−m, n] and
also obtain that D([−1, 1] × [−m, n]) = 2(m + n) for any positive integers m, n.

2. Preliminaries

Our notation and terminology are consistent with [6] and [9]. Let Z denote the set of integers. Let
G be an abelian group (written additively) and let X be a nonempty subset of G. A sequence over X
is an unordered finite sequence of terms from X for which repetition of terms is allowed. We always
view sequences over X as elements of the free abelian monoid F (X). A sequence S ∈ F (X) is written
in the form

S = g1 · . . . · gl =

l∏
i=1

gi =
∏
g∈X

g[vg(S )],

where vg(S ) is the times of g appeared in S , which is called the multiplicity of g in S .
We call
• ‖S ‖ = l =

∑
g∈X vg(S ) the length of S ;

• σ(S ) =
∑l

i=1 gi =
∑

g∈X vg(S )g the sum of S .
A sequence T is called a subsequence of S if vg(T ) ≤ vg(S ) for all g. For any subset Y of G, let

S |Y =
∏

g∈Y g[vg(S )] be the subsequence of S consisting of terms of S from Y , and let vY(S ) = ‖S |Y‖ =∑
g∈Y vg(S ) be the length of S |Y . In particular, if S is a sequence over Z, let S + and S − denote the

subsequence consisting of all positive (resp. negative) terms of S .
A nonempty sequence S is called
• zero-sum if σ(S ) = 0;
• minimal zero-sum if σ(S ) = 0 and σ(T ) , 0 for any nonempty proper subsequence T of S .
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The Davenport constant of X, denoted by D(X), is defined as the supremum of lengths of minimal
zero-sum sequences over X. We recall two basic results concerning minimal zero-sum sequences over
integers.

Lemma 1. ([14, Theorem 2]) Let S be a minimal zero-sum sequence over [−m, n]. Then ‖S +‖ ≤ m
and ‖S −‖ ≤ n. In particular, if ‖S ‖ = n + m, then S = (−m)[n] · n[m] and gcd(m, n) = 1.

Lemma 2. ([3, Lemma 3.2]) Let S be a minimal zero-sum sequence over [−m, n] such that ‖S +‖ = u
and ‖S −‖ = v. Then

v[v,n](S ) ≥ ‖S ‖ − n, and v[−m,−u](S ) ≥ ‖S ‖ − m.

3. Main results

We present and prove our main result as follows. Let πx, πy : Z2 −→ Z2 be the reflections such that

πx((a, b)) = (a,−b), πy((a, b)) = (−a, b).

Then the following are equivalent.
(1) S =

∏l
i=1 gi is a minimal zero-sum sequence over [−1, 1] × [−m, n];

(2) πy(S ) =
∏l

i=1 πy(gi) is a minimal zero-sum sequence over [−1, 1] × [−m, n];
(3) πx(S ) =

∏l
i=1 πx(gi) is a minimal zero-sum sequence over [−1, 1] × [−n,m].

Hence we have D([−1, 1] × [−m, n]) = D([−1, 1] × [−n,m]) and it suffices to deal with the case that
n ≥ m.

Theorem 1. Let S be a minimal zero-sum sequence over [−1, 1] × [−m, n] of length ‖S ‖ ≥ 2(n + m)
and n ≥ m. Then S or πy(S ) is one of the following:
(1) S = (−1,−m)[n] · (1,−m)[n] · (0, n)[2m], gcd(2m, n) = 1;
(2) S = (−1, n)[m] · (1, n)[m] · (0,−m)[2n], gcd(m, 2n) = 1;
(3) S = (−1, n)[m−b] · (−1,−m)[n+b] · (1, b)[n+m], − m ≤ b < m, gcd(n + m,m − b) = 1;
(4) S = (−1, n)[k] · (−1,−m)[n+m−k] · (1, n)[2m−k] · (1,−m)[n−m+k], n > m, 0 ≤ k ≤ 2m,
gcd(n + m, 2m) = 1.

Since S is zero-sum, we may write

S =

l∏
i=1

(−1, ai) ·
l∏

i=1

(1, bi) ·
t∏

j=1

(0, c j),

where ‖S ‖ = 2l + t. We see that

S θ =

l∏
i=1

(ai + bθ(i)) ·
t∏

j=1

c j

is also a minimal zero-sum sequence over Z for any permutation θ of {1, . . . , l}. The key of the proof
of the main theorem is to study the structure of S θ for some special permutations.

Lemma 3. Suppose that θ satisfies that σ(S +
θ ) ≤ σ(S +

η ) for any permutation η. Then
(1) If ai + bθ(i) > 0 and a j + bθ( j) < 0, then ai ≤ a j or bθ(i) ≤ bθ( j);
(2) Suppose that ai + bθ(i) = max1≤ j≤l{a j + bθ( j)}. Then

ak + bθ(k) ≥ −m + min{ai, bθ(i)}, k = 1, . . . , l.
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Proof. After a permutation of indices if necessary, we may assume that θ is the identity map, a1 + b1 =

max1≤i≤l{ai + bi}. We need the following two claims.
Claim 1. If ai + bi > 0 and a j + b j < 0, then one of {ai + b j, a j + bi} is positive and the other one is

negative.
Let η be the permutation which exchanges i and j and fixes other indices. If both ai + b j and a j + bi

are positive, then σ(S +
η ) − σ(S +

θ ) = (ai + b j) + (a j + bi) − (ai + bi) = a j + b j < 0. If both ai + b j and
a j + bi are negative, then σ(S +

η ) −σ(S +
θ ) = −ai − bi < 0. This contradicts to the choice of θ. Claim 1 is

true.
If ai + b j > 0 and a j + bi < 0, then σ(S +

η ) − σ(S +
θ ) = ai + b j − (ai + bi) = b j − bi ≥ 0. If ai + b j < 0

and a j + bi > 0, then σ(S +
η ) − σ(S +

θ ) = a j + bi − (ai + bi) = a j − ai ≥ 0. This proves statement (1).
Claim 2.
• If each ai + bi is positive, then ai = bi = n for i = 1, . . . , l;
• If each ai + bi is negative, then ai = bi = −m for i = 1, . . . , l.
We only deal with the former situation. If each ai + bi is positive, then S θ =

∏l
i=1(ai + bi) ·

∏t
j=1 c j

is a minimal zero-sum sequence over [−m, 2n]. By Lemma 1, we have l ≤ ‖S +
θ ‖ ≤ m. Combing with

‖S ‖ = 2l + t ≥ 2(n + m), one has ‖S θ‖ = l + t ≥ 2n + m. By Lemma 1 again,

S θ = (−m)[2n] · (2n)[m], gcd(m, 2n) = 1.

Hence, ai + bi = 2n and ai = bi = n. This finishes the proof of Claim 2.
The proof of statement (2) was divided into three cases.
If a1 + b1 < 0, then each ak + bk is negative. By Claim 2, we obtain ai = bi = −m and ak + bk =

−2m = −m + min{a1, b1}.

If a1 + b1 > 0 and ak + bk < 0, by statement (1) we have ak ≥ a1 ≥ min{a1, b1} or bk ≥ b1 ≥

min{a1, b1}. Hence,

ak + bk = min{ak, bk} + max{ak, bk} ≥ −m + min{a1, b1}.

If a1 + b1 > 0 and 0 < ak + bk < −m + min{a1, b1}, then min{a1, b1} > m. It follows that both a1 + b j

and a j + b1 are positive for any j = 1, . . . , l. By Claim 1, each a j + b j is positive. So ak = bk = n by
Claim 2. This contradicts to that ak + bk < −m + min{a1, b1}. �

Proof of Theorem 1 After a permutation of indices, we may assume that a1 + b1 ≥ a2 + b2 ≥ · · · ≥

al + bl and T =
∏l

i=1(ai + bi) ·
∏t

j=1 c j satisfies the condition in Lemma 3, that is, σ(T +) ≤ σ(S +
η ). We

also assume that a1 ≥ b1. (If a1 < b1, we could replace S by πy(S ).)
Let u = ‖T +‖ and v = ‖T−‖. We divide the proof into two major cases.
Case 1: Suppose t > 0. Since ‖S ‖ = 2l + t ≥ 2(n + m), one has

‖T‖ = u + v = l + t ≥ n + m + 1.

Subcase 1.1: Suppose b1 ≥ 0. By Lemma 3, ai + bi ≥ −m + b1 ≥ −m and T is a minimal zero-sum
sequence over [−m,max{T +}]. By Lemma 1, we obtain that u ≤ m, and thus max{T +} ≥ v ≥ n + 1.
Hence, max{T +} = max1≤i≤l{ai + bi} = a1 + b1 > n. We have

u = ‖T +‖ ≥ v[v,a1+b1](T )
≥ ‖T‖ − a1 − b1 (By Lemma 2)
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≥ (n − a1) + (m − b1) + 1 (Because ‖T‖ ≥ n + m + 1)
≥ m − b1 + 1.

Noting that a1 + b1, . . . , al + bl are contained in [−m + b1, a1 + b1]. Since T is a minimal zero-sum
sequence over [−m, a1 + b1], by Lemma 2

v[−m,−u](T ) ≥ ‖T‖ − m.

Since u ≥ m − b1 + 1, each term of T |[−m,−u] comes from c1, . . . , ct and

t ≥ v[−m,−u](T ) ≥ ‖T‖ − m = l + t − m,

so l ≤ m. Combing with 2l + t ≥ 2(n + m) and l + t ≤ a1 + b1 + m ≤ 2n + m, one has

2n + 2(m − l) ≤ t ≤ 2n + (m − l).

Hence, l = m, t = 2n and a1 = b1 = n. We obtain that T is a minimal zero-sum sequence over [−m, 2n]
of length 2n + m. By Lemma 1,

T = (−m)[2n] · (2n)[m], gcd(2n,m) = 1.

So
S = (−1, n)[m] · (1, n)[m] · (0,−m)[2n], gcd(m, 2n) = 1.

Subcase 1.2: Suppose b1 ≤ 0. Then max{T } ≤ n and we have v ≤ n by Lemma 1. Since

‖T‖ = u + v ≥ n + m + 1,

one has −m + b1 ≤ min{T } = min1≤i≤l{ai + bi} < −m. Then u ≥ n + m + 1 − v ≥ m + 1. We have

v = ‖T−‖ ≥ v[−m+b1,−u](T )
≥ ‖T‖ − m + b1 (By Lemma 2)
≥ n + b1 + 1 (Because ‖T‖ ≥ n + m + 1)
≥ a1 + b1 + 1. (Because n ≥ a1)

By Lemma 2,
v[v,n](T ) ≥ ‖T‖ − n = l + t − n.

Noting that the terms of T |[a1+b1+1,n] come from
∏t

j=1 c j. We have

t ≥ v[v,n](T ) ≥ ‖T‖ − n = l + t − n.

So l ≤ n. Combing with 2l + t ≥ 2(n + m), one has t ≥ 2m.
Since u ≥ m + 1 and all terms of T |[−m+b1,−m−1] come from

∏l
i=1(ai + bi), one has

l ≥ v[−m+b1,−u](T ) ≥ ‖T‖ − m + b1 = l + t − m + b1.
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So t ≤ m − b1 ≤ 2m. We obtain that t = 2m, b1 = −m, l = n, and T is a minimal zero-sum sequence
over [−2m, n] with length 2m + n. By Lemma 1,

T = (−2m)[n] · n[2m], gcd(2m, n) = 1.

Hence,
S = (−1,−m)[n] · (1,−m)[n] · (0, n)[2m], gcd(2m, n) = 1.

Case 2: Suppose t = 0. By Lemma 3, T is a minimal zero-sum sequence over [−m + b1, a1 + b1] of
length

‖T‖ = l ≥ n + m ≥ a1 + m.

By Lemma 1, we have a1 = n and

T = (−m + b1)[n+b1] · (n + b1)[m−b1], gcd(m − b1, n + b1) = 1.

Thus, ai + bi ∈ {−m + b1, n + b1} for any i.
We claim that: at least one of {ai, bi} is b1 for i = 1, . . . , n + m.
If a j + b j = −m + b1 < 0, by Lemma 3 we have a j ≥ a1 ≥ n or b j ≥ b1. If a j ≥ n, then

a j + b j ≥ n − m ≥ 0, contradiction. So b j ≥ b1. Combing with a j ≥ −m and a j + b j = −m + b1, we
obtain that a j = −m and b j = b1.

If a j + b j = a1 + b1 = n + b1 > 0 and max{a j, b j} < n, then min{a j, b j} > b1. By Lemma 3 again, for
any k = 1, 2, . . . , n + m

ak + bk < 0⇒ ak + bk ≥ −m + min{a j, b j} > −m + b1.

This contradicts to that ak + bk = −m + b1.
Let b = b1. We divide the remains of the proof into two subcases.
Subcase 2.1: Suppose b > −m. In this situation, we will show that

b1 = b2 = · · · = bm+n = b.

Choose a j + b j = −m + b and ai + bi = n + b, then one of {a j, b j} ({ai, bi}, resp) is b and the other one is
−m (n, resp). By Lemma 3,

a1 = n ≤ a j, or b1 = b ≤ b j.

Since n ≥ m, the situation a j ≥ n cannot happen, so b ≤ b j. Since b > −m, one has b j = b and a j = −m.
We obtain that b j = b, a j = −m if a j + b j < 0.

Since ai + bi = n + b > 0, by Lemma 3 again we have

ai ≤ a j = −m, or bi ≤ b j = b.

If ai ≤ −m, then ai = −m and bi = b by the claim and the hypothesis b , −m. It follows that
ai + bi = −m + b < 0, which contradicts to that ai + bi > 0. So bi ≤ b and ai = n. We see that in this
subcase

ai ∈ {n,−m}, b1 = b2 = · · · = bm+n = b.

Hence,
S = (−1, n)[m−b] · (−1,−m)[n+b] · (1, b)[n+m], gcd(n + m,m − b) = 1.
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Subcase 2.2: Suppose b = −m. If a j +b j = −m+b = −2m, then a j = b j = −m. If ai +bi = n−m > 0,
then one of {ai, bi} is −m and the other one is n. So ai, bi ∈ {−m, n} and n , m in this subcase. Writing

S = (−1, n)[k] · (−1,−m)[n+m−k] · (1, n)[r] · (1,−m)[n+m−r].

Since S is zero-sum, one has (k + r)n = m(2n + 2m − k − r) and thus r = 2m − k.
We show that S or πy(S ) is one of the form (1) − (4). It is straight to verify that these sequences are

all minimal zero-sum sequences. Here we only prove that (4) is a minimal zero-sum sequence. Let

R = (−1, n)[x1] · (−1,−m)[x2] · (1, n)[x3] · (1,−m)[x4]

be a nonempty zero-sum subsequence of (4). Then{
x1 + x2 = x3 + x4

n(x1 + x3) = m(x2 + x4).

Since gcd(n,m) = 1, we have {
x1 + x3 = m
x2 + x4 = n,

or
{

x1 + x3 = 2m
x2 + x4 = 2n.

If x1 + x3 = m and x2 + x4 = n, then 2(x1 + x2) = n + m, which contradicts to that gcd(n + m, 2m) = 1.
If x1 + x3 = 2m and x2 + x4 = 2n, then R = S . This shows that (4) is minimal. The proof is complete.

Corollary 1. D([−1, 1] × [−m, n]) = 2(n + m) for any positive integers n and m.

Proof. It follows immediately from Theorem 1 that either

(−1, n) · (−1,−m)[n+m−1] · (1,m − 1)[n+m]

or
(−1,−m) · (−1, n)[n+m−1] · (1,−n + 1)[n+m]

is a minimal zero-sum sequence over [−1, 1] × [−m, n] of length 2(n + m). �

4. Discussions and conclusions

The computation of the exact value of the Davenport constant of a general high-dimensional box
seems to be very difficult. Plagne and Tringali [14] constructed minimal zero-sum sequences
recursively of length (2m − 1)d over the d-dimensional box [−m,m]d. In fact, using their method one
can show that there exist minimal zero-sum sequences of length (n + m)d over [−m, n]d when
gcd(m, n) = 1. In particular, they showed that

(2m − 1)2 ≤ D([−m,m]2) ≤ (2m + 1)(4m + 1), m ≥ 2.

The following example shows that the above lower bound is not sharp.
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Example 1. Let

S p = (−m,−m)[m2−pm+p] · (m,−m + 1)[m2+pm] · (−p,m)[2m2−m], p ∈ [−m,m],

be a zero-sum sequence of length 4m2 − m + p over [−m,m]. It is easy to verify that S is minimal
zero-sum if and only if gcd(2m − 1,m + p) = gcd(m, p) = 1. By the Betrand hypothesis, there exists a
prime P such that m < P < 2m. Hence, p0 = P − m satisfies the conditions, and we obtain that

D([−m,m]2) > 4m2 − m.

In particular, if m is odd, then

(−m,−m)[3m−2] · (m,−m + 1)[2m2−2m] · (−m + 2,m)[2m2−m],

is a minimal zero-sum sequence of length 4m2 − 2 over [−m,m]2.

Another interesting problem is to study the asymptotic behavior of the Davenport constant of∏d
i=1[−mi, ni] when mi, ni are growing. In [14], it was shown that for fixed d > 0, the quantity

D([−m,m]d) grows like md. But it is not sure that a constant ad exists such that

D([−m,m]d) ∼ admd, as m −→ ∞.

In the two-dimension case, to the best of our knowledge, we believe the following is true.

Conjecture 1. Let mi, ni be positive integers, i = 1, 2. Then

D([−m1, n1] × [−m2, n2]) ≤ (m1 + n1)(m2 + n2),

and
D([−m1, n1] × [−m2, n2]) ∼ (m1 + n1)(m2 + n2),

as min{m1,m2, n1, n2} −→ ∞.
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