The class of $ B_1 $-matrices is a subclass of $ P $-matrices and introduced as a generalization of $ B $-matrices. In this paper, we present several properties for $ B_1 $-matrices. Then, the infinity norm upper bound for the inverse of $ B_1 $-matrices is obtained. Furthermore, the error bound for the linear complementarity problem of $ B_1 $-matrices is presented. Finally, some numerical examples are given to illustrate our results.
Citation: Yan Li, Yaqiang Wang. Some new results for $ B_1 $-matrices[J]. Electronic Research Archive, 2023, 31(8): 4773-4787. doi: 10.3934/era.2023244
The class of $ B_1 $-matrices is a subclass of $ P $-matrices and introduced as a generalization of $ B $-matrices. In this paper, we present several properties for $ B_1 $-matrices. Then, the infinity norm upper bound for the inverse of $ B_1 $-matrices is obtained. Furthermore, the error bound for the linear complementarity problem of $ B_1 $-matrices is presented. Finally, some numerical examples are given to illustrate our results.
[1] | B. C. Eaves, The Linear complementarity problem, Manage. Sci., 17 (1971), 507–660. https://doi.org/10.1287/mnsc.17.9.612 doi: 10.1287/mnsc.17.9.612 |
[2] | H. B. Li, T. Z. Huang, H. Li, On some subclasses of $P$-matrices, Numer. Linear Algebra Appl., 14 (2007), 391–405. https://doi.org/10.1002/nla.524 doi: 10.1002/nla.524 |
[3] | X. J. Chen, S. H. Xiang, Computation of error bounds for $P$-matrix linear complementarity problems, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9 |
[4] | R. Mathias, J. S. Pang, Error bounds for the linear complementarity problem with a $P$-matrix, Linear Algera Appl., 132 (1990), 123–136. https://doi.org/10.1016/0024-3795(90)90058-K doi: 10.1016/0024-3795(90)90058-K |
[5] | C. M. Ara$\acute{u}$jo, J. R. Torregrosa, Some results on $B$-matrices and doubly $B$-matrices, Linear Algebra Appl., 459 (2014), 101–120. https://doi.org/10.1016/j.laa.2014.06.048 doi: 10.1016/j.laa.2014.06.048 |
[6] | F. Wang, D. S. Sun, New error bound for linear complementarity problems for $B$-matrices, Linear Multilinear Algebra, 66 (2018), 2156–2167. https://doi.org/10.1080/03081087.2017.1389847 doi: 10.1080/03081087.2017.1389847 |
[7] | P. F. Dai, C. J. Lu, Y. T. Li, New error bounds for the linear complementarity problem with an $SB$-matrix, Numerical Algorithms, 64 (2013), 741–757. https://doi.org/10.1007/s11075-012-9691-6 doi: 10.1007/s11075-012-9691-6 |
[8] | P. F. Dai, Error bounds for linear complementarity problems of $DB$-matrices, Linear Algebra Appl., 434 (2011), 830–840. https://doi.org/10.1016/j.laa.2010.09.049 doi: 10.1016/j.laa.2010.09.049 |
[9] | Z. Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM J. Matrix Anal. Appl., 21 (1999). https://doi.org/10.1137/S0895479897324032 doi: 10.1137/S0895479897324032 |
[10] | M. Esnaola, J. Pe$\tilde{n}$a, $B-Nekrasov$ matrices and error bounds for linear complementarity problems, Numerical Algorithms, 72 (2016), 435–445. https://doi.org/10.1007/s11075-015-0054-y doi: 10.1007/s11075-015-0054-y |
[11] | L. Gao, An alternative error bound for linear complementarily problems involving $B^{S}$-matrices, J. Inequal. Appl., 2018 (2018). https://doi.org/10.1186/s13660-018-1618-x doi: 10.1186/s13660-018-1618-x |
[12] | Y. X. Zhao, L. L. Liu, F. Wang, Error bounds for linear complementarity problems of $SDD_{1}$ matrices and $SDD_{1}-B$ matrices, AIMS Math., 7 (2022), 11862–11878. |
[13] | C. Q. Li, Schur complement-based infinity norm bounds for the inverse of $SDD$ matrices, Bull. Malays. Math. Sci. Soc., 43 (2020), 3829–3845. https://doi.org/10.1007/s40840-020-00895-x doi: 10.1007/s40840-020-00895-x |
[14] | J. M. Pe$\tilde{n}$a, Diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 32 (2011), 357–373. https://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5 |
[15] | R. Bru, C. Corral, I. Gimenez, J. Mas, Classes of general $H$-matrices, Linear Algebra Appl., 429 (2008), 2358–2366. https://doi.org/10.1016/j.laa.2007.10.030 doi: 10.1016/j.laa.2007.10.030 |
[16] | X. Y. Chen, Y. T. Li, L. Liu, Y. Q. Wang, Infinity norm upper bounds for the inverse of $SDD_1$ matrices, AIMS Math., 2022 (2022), 8847–8860. |