Integral inequalities play a crucial role in both theoretical and applied mathematics. Because of the relevance of these notions, we have discussed a new class of introduced generalized convex function called as coordinated left and right convex interval-valued function (coordinated LR-convex IVF) using the pseudo-order relation ($ {\le }_{p} $). On interval space, this order relation is defined. First, a pseudo-order relation is used to show Hermite-Hadamard type inequality (HH type inequality) for coordinated LR-convex IVF. Second for coordinated LR-convex IVF, Some HH type inequalities are also derived for the product of two coordinated LR-convex IVFs. Furthermore, we have demonstrated that our conclusions cover a broad range of new and well-known inequalities for coordinated LR-convex IVFs and their variant forms as special instances which are defined by Zhao et al. and Budak et al. Finally, we have shown that the inclusion relation "$ \supseteq $" confidents to the pseudo-order relation "$ {\le }_{p} $" for coordinated LR-convex IVFs. The concepts and methodologies presented in this study might serve as a springboard for additional research in this field, as well as a tool for investigating probability and optimization research, among other things.
Citation: Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman. Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions[J]. AIMS Mathematics, 2022, 7(6): 10454-10482. doi: 10.3934/math.2022583
Integral inequalities play a crucial role in both theoretical and applied mathematics. Because of the relevance of these notions, we have discussed a new class of introduced generalized convex function called as coordinated left and right convex interval-valued function (coordinated LR-convex IVF) using the pseudo-order relation ($ {\le }_{p} $). On interval space, this order relation is defined. First, a pseudo-order relation is used to show Hermite-Hadamard type inequality (HH type inequality) for coordinated LR-convex IVF. Second for coordinated LR-convex IVF, Some HH type inequalities are also derived for the product of two coordinated LR-convex IVFs. Furthermore, we have demonstrated that our conclusions cover a broad range of new and well-known inequalities for coordinated LR-convex IVFs and their variant forms as special instances which are defined by Zhao et al. and Budak et al. Finally, we have shown that the inclusion relation "$ \supseteq $" confidents to the pseudo-order relation "$ {\le }_{p} $" for coordinated LR-convex IVFs. The concepts and methodologies presented in this study might serve as a springboard for additional research in this field, as well as a tool for investigating probability and optimization research, among other things.
[1] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82–97. |
[2] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 7 (1893), 171–215. |
[3] | L. Fejxer, Uber die Fourierreihen Ⅱ, Math. Naturwise. Anz. Ungar. Akad. Wiss., 24 (1906), 369–390. |
[4] | M. Z. Sarikaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integr. Transf. Spec. F., 25 (2013), 134–147. https://doi.org/10.1080/10652469.2013.824436 doi: 10.1080/10652469.2013.824436 |
[5] | S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995 |
[6] | Y. M. Chu, T. H. Zhao, Concavity of the error function with respect to Hölder means, Math. Inequal. Appl., 19 (2016), 589–595. https://doi.org/10.7153/mia-19-43 doi: 10.7153/mia-19-43 |
[7] | T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math., 5 (2020), 6479–6495. https://doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418 |
[8] | T. H. Zhao, Z. Y. He, Y. M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Meth. Funct. Th., 21 (2021), 413–426. https://doi.org/10.1007/s40315-020-00352-7 doi: 10.1007/s40315-020-00352-7 |
[9] | T. H. Zhao, M. K. Wang, Y. M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind, J. Math. Inequal., 15 (2021), 701–724. https://doi.org/10.7153/jmi-2021-15-50 doi: 10.7153/jmi-2021-15-50 |
[10] | R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs (1966). |
[11] | A. Flores-Franulic, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-valued functions, IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1459–1462. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608617 |
[12] | M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. https://doi.org/10.3934/math.2022024 doi: 10.3934/math.2022024 |
[13] | M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo order relation, Math. Meth. Appl. Sci., 2021 (2021). |
[14] | M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation. Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x |
[15] | H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions. Comput. Appl. Math., 35 (20216), 1–13. |
[16] | M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001 |
[17] | P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex. Intell. Syst., 2021 (2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w |
[18] | M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite–Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673 |
[19] | G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001 |
[20] | M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 1–18. https://doi.org/10.3390/axioms10030175 doi: 10.3390/axioms10030175 |
[21] | M. B. Khan, P. O. Mohammed, M. A. Noor, K. Abuahalnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580. https://doi.org/10.3934/mbe.2021325 doi: 10.3934/mbe.2021325 |
[22] | T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512–4528. https://doi.org/10.3934/math.2020290 doi: 10.3934/math.2020290 |
[23] | S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 2020 (2020), 647. https://doi.org/10.1186/s13662-020-03108-8 doi: 10.1186/s13662-020-03108-8 |
[24] | S. B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, Y. M. Chu, New fractional approaches for $n$-polynomial $P$-convexity with applications in special function theory, Adv. Differ. Equ., 2020 (2020), 31. https://doi.org/10.1186/s13662-020-03000-5 doi: 10.1186/s13662-020-03000-5 |
[25] | S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 12. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266 |
[26] | T. H. Zhao, Z. H. Yang, Y. M. Chu, Monotonicity properties of a function involving the psi function with applications, J. Inequal. Appl., 2015 (2015), 10. https://doi.org/10.1186/s13660-015-0724-2 doi: 10.1186/s13660-015-0724-2 |
[27] | T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 15. https://doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y |
[28] | M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30 |
[29] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[30] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856–1870. https://doi.org/10.2991/ijcis.d.210616.001 doi: 10.2991/ijcis.d.210616.001 |
[31] | H. Budak, T. Tunc, M. Z. Sarikaya, Fractional Hermite-Hadamard type inequalities for interval-valued functions. Proc. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741 |
[32] | I. Iscan, S. H. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020 |
[33] | V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005 |
[34] | D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Set. Syst., 2020 (2020), 1–27. https://doi.org/10.1016/j.fss.2019.06.002 doi: 10.1016/j.fss.2019.06.002 |
[35] | D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Set. Syst., 396 (2020), 82–101. https://doi.org/10.1016/j.fss.2019.10.006 doi: 10.1016/j.fss.2019.10.006 |
[36] | H. Budak, H. Kara, M. A. Ali, S. Khan, Y. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097. https://doi.org/10.1515/math-2021-0067 doi: 10.1515/math-2021-0067 |
[37] | D. F. Zhao, M. A. Ali, G. Murtaza, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), 570. https://doi.org/10.1186/s13662-020-03028-7 doi: 10.1186/s13662-020-03028-7 |
[38] | M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new estimates on coordinates of left and right convex interval-valued functions based upon pseudo order relation, In Press. |
[39] | H. Budak, M. Z. Sarıkaya, Hermite-Hadamard type inequalities for products of two co-ordinated convex mappings via fractional integrals, Int. J. Appl. Math. Stat., 58 (2019), 11–30. https://doi.org/10.1007/978-981-15-0430-3_13 doi: 10.1007/978-981-15-0430-3_13 |
[40] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 6–20. https://doi.org/10.1186/s13662-020-03166-y doi: 10.1186/s13662-020-03166-y |
[41] | M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-Log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math., 15 (2021), 459–470. https://doi.org/10.18576/amis/150408 doi: 10.18576/amis/150408 |
[42] | M. B. Khan, M. A. Noor, T. Abdeljawad, A. A. A. Mousa, B. Abdalla, S. M. Alghamdi, LR-preinvex interval-valued functions and Riemann–Liouville fractional integral inequalities, Fractal Fract., 5 (2021), 243. https://doi.org/10.3390/fractalfract5040243 doi: 10.3390/fractalfract5040243 |
[43] | J. E. Macías-Díaz, M. B. Khan, M. A. Noor, A. M. Abd Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236 |
[44] | M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann–Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204 |
[45] | M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063 |
[46] | M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard–Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006 |
[47] | M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, M. S. Soliman, Fractional Calculus for convex functions in interval-valued Settings and inequalities, Symmetry, 14 (2022), 341. https://doi.org/10.3390/sym14020341 doi: 10.3390/sym14020341 |
[48] | M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional Calculus for generalized pre-invex functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083 |
[49] | M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some fuzzy Riemann–Liouville fractional integral inequalities for preinvex fuzzy interval-valued functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313 |
[50] | M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611 |
[51] | M. B. Khan, G. Santos-García, H. G. Zaini, S. Treanțǎ, M. S. Soliman, Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional Calculus, Mathematics, 10 (2022), 534. https://doi.org/10.3390/math10040534 doi: 10.3390/math10040534 |
[52] | T. S. Du, C. Y. Luo, Z. J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021), 2150188. https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887 |
[53] | T. C. Zhou, Z. R. Yuan, T. S. Du, On the fractional integral inclusions having exponential kernels for interval-valued convex functions, Math. Sci., 2021. |
[54] | T. S. Du, T. C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Soliton. Fract., 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846 |