Research article Special Issues

Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions

  • Received: 23 January 2022 Revised: 23 February 2022 Accepted: 11 March 2022 Published: 28 March 2022
  • MSC : Primary 26A33, 26A51, 26D07, 26D10; Secondary 26D15, 26D20

  • Integral inequalities play a crucial role in both theoretical and applied mathematics. Because of the relevance of these notions, we have discussed a new class of introduced generalized convex function called as coordinated left and right convex interval-valued function (coordinated LR-convex IVF) using the pseudo-order relation ($ {\le }_{p} $). On interval space, this order relation is defined. First, a pseudo-order relation is used to show Hermite-Hadamard type inequality (HH type inequality) for coordinated LR-convex IVF. Second for coordinated LR-convex IVF, Some HH type inequalities are also derived for the product of two coordinated LR-convex IVFs. Furthermore, we have demonstrated that our conclusions cover a broad range of new and well-known inequalities for coordinated LR-convex IVFs and their variant forms as special instances which are defined by Zhao et al. and Budak et al. Finally, we have shown that the inclusion relation "$ \supseteq $" confidents to the pseudo-order relation "$ {\le }_{p} $" for coordinated LR-convex IVFs. The concepts and methodologies presented in this study might serve as a springboard for additional research in this field, as well as a tool for investigating probability and optimization research, among other things.

    Citation: Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman. Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions[J]. AIMS Mathematics, 2022, 7(6): 10454-10482. doi: 10.3934/math.2022583

    Related Papers:

  • Integral inequalities play a crucial role in both theoretical and applied mathematics. Because of the relevance of these notions, we have discussed a new class of introduced generalized convex function called as coordinated left and right convex interval-valued function (coordinated LR-convex IVF) using the pseudo-order relation ($ {\le }_{p} $). On interval space, this order relation is defined. First, a pseudo-order relation is used to show Hermite-Hadamard type inequality (HH type inequality) for coordinated LR-convex IVF. Second for coordinated LR-convex IVF, Some HH type inequalities are also derived for the product of two coordinated LR-convex IVFs. Furthermore, we have demonstrated that our conclusions cover a broad range of new and well-known inequalities for coordinated LR-convex IVFs and their variant forms as special instances which are defined by Zhao et al. and Budak et al. Finally, we have shown that the inclusion relation "$ \supseteq $" confidents to the pseudo-order relation "$ {\le }_{p} $" for coordinated LR-convex IVFs. The concepts and methodologies presented in this study might serve as a springboard for additional research in this field, as well as a tool for investigating probability and optimization research, among other things.



    加载中


    [1] C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82–97.
    [2] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 7 (1893), 171–215.
    [3] L. Fejxer, Uber die Fourierreihen Ⅱ, Math. Naturwise. Anz. Ungar. Akad. Wiss., 24 (1906), 369–390.
    [4] M. Z. Sarikaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integr. Transf. Spec. F., 25 (2013), 134–147. https://doi.org/10.1080/10652469.2013.824436 doi: 10.1080/10652469.2013.824436
    [5] S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
    [6] Y. M. Chu, T. H. Zhao, Concavity of the error function with respect to Hölder means, Math. Inequal. Appl., 19 (2016), 589–595. https://doi.org/10.7153/mia-19-43 doi: 10.7153/mia-19-43
    [7] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math., 5 (2020), 6479–6495. https://doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
    [8] T. H. Zhao, Z. Y. He, Y. M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Meth. Funct. Th., 21 (2021), 413–426. https://doi.org/10.1007/s40315-020-00352-7 doi: 10.1007/s40315-020-00352-7
    [9] T. H. Zhao, M. K. Wang, Y. M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind, J. Math. Inequal., 15 (2021), 701–724. https://doi.org/10.7153/jmi-2021-15-50 doi: 10.7153/jmi-2021-15-50
    [10] R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs (1966).
    [11] A. Flores-Franulic, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-valued functions, IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1459–1462. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608617
    [12] M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. https://doi.org/10.3934/math.2022024 doi: 10.3934/math.2022024
    [13] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo order relation, Math. Meth. Appl. Sci., 2021 (2021).
    [14] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation. Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x
    [15] H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions. Comput. Appl. Math., 35 (20216), 1–13.
    [16] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [17] P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex. Intell. Syst., 2021 (2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w
    [18] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite–Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673
    [19] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [20] M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 1–18. https://doi.org/10.3390/axioms10030175 doi: 10.3390/axioms10030175
    [21] M. B. Khan, P. O. Mohammed, M. A. Noor, K. Abuahalnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580. https://doi.org/10.3934/mbe.2021325 doi: 10.3934/mbe.2021325
    [22] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512–4528. https://doi.org/10.3934/math.2020290 doi: 10.3934/math.2020290
    [23] S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 2020 (2020), 647. https://doi.org/10.1186/s13662-020-03108-8 doi: 10.1186/s13662-020-03108-8
    [24] S. B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, Y. M. Chu, New fractional approaches for $n$-polynomial $P$-convexity with applications in special function theory, Adv. Differ. Equ., 2020 (2020), 31. https://doi.org/10.1186/s13662-020-03000-5 doi: 10.1186/s13662-020-03000-5
    [25] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 12. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [26] T. H. Zhao, Z. H. Yang, Y. M. Chu, Monotonicity properties of a function involving the psi function with applications, J. Inequal. Appl., 2015 (2015), 10. https://doi.org/10.1186/s13660-015-0724-2 doi: 10.1186/s13660-015-0724-2
    [27] T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 15. https://doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y
    [28] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30
    [29] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [30] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856–1870. https://doi.org/10.2991/ijcis.d.210616.001 doi: 10.2991/ijcis.d.210616.001
    [31] H. Budak, T. Tunc, M. Z. Sarikaya, Fractional Hermite-Hadamard type inequalities for interval-valued functions. Proc. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [32] I. Iscan, S. H. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [33] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [34] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Set. Syst., 2020 (2020), 1–27. https://doi.org/10.1016/j.fss.2019.06.002 doi: 10.1016/j.fss.2019.06.002
    [35] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Set. Syst., 396 (2020), 82–101. https://doi.org/10.1016/j.fss.2019.10.006 doi: 10.1016/j.fss.2019.10.006
    [36] H. Budak, H. Kara, M. A. Ali, S. Khan, Y. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097. https://doi.org/10.1515/math-2021-0067 doi: 10.1515/math-2021-0067
    [37] D. F. Zhao, M. A. Ali, G. Murtaza, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), 570. https://doi.org/10.1186/s13662-020-03028-7 doi: 10.1186/s13662-020-03028-7
    [38] M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new estimates on coordinates of left and right convex interval-valued functions based upon pseudo order relation, In Press.
    [39] H. Budak, M. Z. Sarıkaya, Hermite-Hadamard type inequalities for products of two co-ordinated convex mappings via fractional integrals, Int. J. Appl. Math. Stat., 58 (2019), 11–30. https://doi.org/10.1007/978-981-15-0430-3_13 doi: 10.1007/978-981-15-0430-3_13
    [40] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 6–20. https://doi.org/10.1186/s13662-020-03166-y doi: 10.1186/s13662-020-03166-y
    [41] M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-Log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math., 15 (2021), 459–470. https://doi.org/10.18576/amis/150408 doi: 10.18576/amis/150408
    [42] M. B. Khan, M. A. Noor, T. Abdeljawad, A. A. A. Mousa, B. Abdalla, S. M. Alghamdi, LR-preinvex interval-valued functions and Riemann–Liouville fractional integral inequalities, Fractal Fract., 5 (2021), 243. https://doi.org/10.3390/fractalfract5040243 doi: 10.3390/fractalfract5040243
    [43] J. E. Macías-Díaz, M. B. Khan, M. A. Noor, A. M. Abd Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236
    [44] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann–Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204
    [45] M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063
    [46] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard–Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006
    [47] M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, M. S. Soliman, Fractional Calculus for convex functions in interval-valued Settings and inequalities, Symmetry, 14 (2022), 341. https://doi.org/10.3390/sym14020341 doi: 10.3390/sym14020341
    [48] M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional Calculus for generalized pre-invex functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083
    [49] M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some fuzzy Riemann–Liouville fractional integral inequalities for preinvex fuzzy interval-valued functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313
    [50] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611
    [51] M. B. Khan, G. Santos-García, H. G. Zaini, S. Treanțǎ, M. S. Soliman, Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional Calculus, Mathematics, 10 (2022), 534. https://doi.org/10.3390/math10040534 doi: 10.3390/math10040534
    [52] T. S. Du, C. Y. Luo, Z. J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021), 2150188. https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887
    [53] T. C. Zhou, Z. R. Yuan, T. S. Du, On the fractional integral inclusions having exponential kernels for interval-valued convex functions, Math. Sci., 2021.
    [54] T. S. Du, T. C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Soliton. Fract., 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1591) PDF downloads(92) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog