In this article, we propose some novel results on the existence and uniqueness of generalized Caputo-type initial value problems with delay by using fixed point theory. The characteristics of space of continuous and measurable functions are the main basis of our results. The proposed results are very useful to prove the existence of a unique solution for the various types of fractional-order systems defined under the generalized Caputo fractional derivative consisting of delay terms.
Citation: Pushpendra Kumar, V. Govindaraj, Zareen A. Khan. Some novel mathematical results on the existence and uniqueness of generalized Caputo-type initial value problems with delay[J]. AIMS Mathematics, 2022, 7(6): 10483-10494. doi: 10.3934/math.2022584
In this article, we propose some novel results on the existence and uniqueness of generalized Caputo-type initial value problems with delay by using fixed point theory. The characteristics of space of continuous and measurable functions are the main basis of our results. The proposed results are very useful to prove the existence of a unique solution for the various types of fractional-order systems defined under the generalized Caputo fractional derivative consisting of delay terms.
[1] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
[2] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Elsevier, 1998. |
[3] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[4] | K. N. Nabi, H. Abboubakar, P. Kumar, Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives, Cha. Soli. Fra., 141 (2020), 110283. https://doi.org/10.1016/j.chaos.2020.110283 doi: 10.1016/j.chaos.2020.110283 |
[5] | H. Gunerhan, H. Dutta, M. A. Dokuyucu, W. Adel, Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators, Cha. Soli. Fra., 139 (2020), 110053. https://doi.org/10.1016/j.chaos.2020.110053 doi: 10.1016/j.chaos.2020.110053 |
[6] | C. T. Deressa, S. Etemad, S. Rezapour, On a new four-dimensional model of memristor-based chaotic circuit in the context of nonsingular Atangana-Baleanu-Caputo operators, Adv. Diff. Equ., 2021 (2021), 1–24. https://doi.org/10.1186/s13662-021-03600-9 doi: 10.1186/s13662-021-03600-9 |
[7] | M. Vellappandi, P. Kumar, V. Govindaraj, W. Albalawi, An optimal control problem for mosaic disease via Caputo fractional derivative, Alex. Eng. Jour., 61 (2022), 8027–8037. https://doi.org/10.1016/j.aej.2022.01.055 doi: 10.1016/j.aej.2022.01.055 |
[8] | P. Kumar, V. S. Erturk, Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative, Cha. Soli. Fra., 144 (2021), 110672. https://doi.org/10.1016/j.chaos.2021.110672 doi: 10.1016/j.chaos.2021.110672 |
[9] | P. Kumar, V. S. Erturk, R. Banerjee, M. Yavuz, V. Govindaraj, Fractional modeling of plankton-oxygen dynamics under climate change by the application of a recent numerical algorithm, Phy. Scr., 96 (2021), 124044. https://doi.org/10.1088/1402-4896/ac2da7 doi: 10.1088/1402-4896/ac2da7 |
[10] | V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, A. Jajarmi, Novel Fractional-Order Lagrangian to Describe Motion of Beam on Nanowire, Act. Phy. Pol. A, 140 (2021), 265–272. https://doi.org/10.12693/aphyspola.140.265 doi: 10.12693/aphyspola.140.265 |
[11] | P. Kumar, V. S. Erturk, M. Murillo-Arcila, A complex fractional mathematical modeling for the love story of Layla and Majnun, Cha. Soli. Fra., 150 (2021), 111091. https://doi.org/10.1016/j.chaos.2021.111091 doi: 10.1016/j.chaos.2021.111091 |
[12] | Z. Odibat, D. Baleanu, Numerical simulation of initial value problems with generalized caputo-type fractional derivatives, App. Num. Math., 156 (2020), 94–105. https://doi.org/10.1016/j.apnum.2020.04.015 doi: 10.1016/j.apnum.2020.04.015 |
[13] | P. Kumar, V. S. Erturk, A. Kumar, A new technique to solve generalized Caputo type fractional differential equations with the example of computer virus model, J. Math. Ext., 15 (2021). https://www.ijmex.com/index.php/ijmex/article/view/2052/646 |
[14] | P. Kumar, V. S. Erturk, A. Yusuf, S. Kumar, Fractional time-delay mathematical modeling of Oncolytic Virotherapy, Cha. Soli. Fra., 150 (2021), 111123. https://doi.org/10.1016/j.chaos.2021.111123 doi: 10.1016/j.chaos.2021.111123 |
[15] | Z. Odibat, V. S. Erturk, P. Kumar, V. Govindaraj, Dynamics of generalized Caputo type delay fractional differential equations using a modified Predictor-Corrector scheme, Phy. Scr., 96 (2021), 125213. https://doi.org/10.1088/1402-4896/ac2085 doi: 10.1088/1402-4896/ac2085 |
[16] | S. Abbas, Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron. J. Differ. Eq., 2011 (2011), 1–11. |
[17] | Y. Jalilian, R. Jalilian, Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10 (2013), 1731–1747. https://doi.org/10.1007/s00009-013-0281-1 doi: 10.1007/s00009-013-0281-1 |
[18] | F. F. Wang, D. Y. Chen, X. G. Zhang, Y. Wu, The existence and uniqueness theorem of the solution to a class of nonlinear fractional order system with time delay, Appl. Math. Lett., 53 (2016), 45–51. https://doi.org/10.1016/j.aml.2015.10.001 doi: 10.1016/j.aml.2015.10.001 |
[19] | N. D. Cong, H. T. Tuan, Existence, uniqueness, and exponential boundedness of global solutions to delay fractional differential equations, Mediterr. Jour. Math., 14 (2017), 1–12. https://doi.org/10.1007/s00009-017-0997-4 doi: 10.1007/s00009-017-0997-4 |
[20] | A. Abdalmonem, A. Scapellato, Intrinsic square functions and commutators on Morrey‐Herz spaces with variable exponents, Math. Meth. Appl. Sci., 44 (2021), 12408–12425. https://doi.org/10.1002/mma.7487 doi: 10.1002/mma.7487 |
[21] | R. P. Agarwal, O. Bazighifan, M. A. Ragusa, Nonlinear neutral delay differential equations of fourth-order: oscillation of solutions, Entropy, 23 (2021), 129. https://doi.org/10.3390/e23020129 doi: 10.3390/e23020129 |
[22] | A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. https://doi.org/10.3390/math9020122 doi: 10.3390/math9020122 |
[23] | A. K. Omran, M. A. Zaky, A. S. Hendy, V. G. Pimenov, An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/5922853 doi: 10.1155/2021/5922853 |
[24] | T. Jin, H. Xia, S. Gao, Reliability analysis of the uncertain fractional-order dynamic system with state constraint, Math. Meth. Appl. Sci., 45 (2021), 2615–2637. https://doi.org/10.1002/mma.7943 doi: 10.1002/mma.7943 |
[25] | T. Jin, H. Xia, Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type, J. Amb. Intel. Hum. Comp., (2021), 1–14. https://doi.org/10.1007/s12652-021-03516-y doi: 10.1007/s12652-021-03516-y |
[26] | H. Gunerhan, E. Celik, Analytical and approximate solutions of fractional partial differential-algebraic equations, App. Math. Non. Sci., 5 (2020), 109–120. https://doi.org/10.2478/amns.2020.1.00011 doi: 10.2478/amns.2020.1.00011 |
[27] | H. Gunerhan, Exact Traveling Wave Solutions of the Gardner Equation by the Improved-Expansion Method and the Wave Ansatz Method, Math. Prob. Eng., 2020 (2020). https://doi.org/10.1155/2020/5926836 doi: 10.1155/2020/5926836 |
[28] | Z. Bouazza, M. S. Souid, H. Gunerhan, Multiterm boundary value problem of Caputo fractional differential equations of variable order, Adv. Diff. Equ., 2021 (2021), 1–17. https://doi.org/10.1186/s13662-021-03553-z doi: 10.1186/s13662-021-03553-z |
[29] | Z. Yang, J. Cao, Initial value problems for arbitrary order fractional differential equations with delay, Comm. Nonl. Sci. Num. Sim., 18 (2013), 2993–3005. https://doi.org/10.1016/j.cnsns.2013.03.006 doi: 10.1016/j.cnsns.2013.03.006 |
[30] | V. S. Erturk, P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Cha. Soli. Fra., 139 (2020), 110280. https://doi.org/10.1016/j.chaos.2020.110280 doi: 10.1016/j.chaos.2020.110280 |
[31] | U. N. Katugampola, New approach to a generalized fractional integral, App. Math. Comp., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[32] | U. N. Katugampola, A new approach to generalised fractional derivatives, Bull. Math. Anal. Appl., 6 (2014). https://doi.org/10.48550/arXiv.1106.0965 doi: 10.48550/arXiv.1106.0965 |