Correction

Correction: Generalized primal topological spaces

  • Correction of: AIMS Mathematics 8: 24162-24175
  • Received: 06 June 2024 Revised: 06 June 2024 Accepted: 06 June 2024 Published: 06 June 2024
  • MSC : 54A05, 54A10, 54A20

  • The purpose of this note is to give some mistyping corrections for our published article in [1].

    Citation: Hanan Al-Saadi, Huda Al-Malki. Correction: Generalized primal topological spaces[J]. AIMS Mathematics, 2024, 9(7): 19068-19069. doi: 10.3934/math.2024928

    Related Papers:

    [1] Hanan Al-Saadi, Huda Al-Malki . Generalized primal topological spaces. AIMS Mathematics, 2023, 8(10): 24162-24175. doi: 10.3934/math.20231232
    [2] Murad ÖZKOÇ, Büşra KÖSTEL . On the topology $ \tau^{\diamond}_R $ of primal topological spaces. AIMS Mathematics, 2024, 9(7): 17171-17183. doi: 10.3934/math.2024834
    [3] Ahmad Al-Omari, Mesfer H. Alqahtani . Some operators in soft primal spaces. AIMS Mathematics, 2024, 9(5): 10756-10774. doi: 10.3934/math.2024525
    [4] Ohud Alghamdi, Ahmad Al-Omari, Mesfer H. Alqahtani . Novel operators in the frame of primal topological spaces. AIMS Mathematics, 2024, 9(9): 25792-25808. doi: 10.3934/math.20241260
    [5] Luis Fernando Mejías, Jorge Vielma, Elvis Aponte, Lourival Rodrigues De Lima . Continuous functions on primal topological spaces induced by group actions. AIMS Mathematics, 2025, 10(1): 793-808. doi: 10.3934/math.2025037
    [6] Ohud Alghamdi . On the compactness via primal topological spaces. AIMS Mathematics, 2024, 9(11): 32124-32137. doi: 10.3934/math.20241542
    [7] Ahmad Al-Omari, Ohud Alghamdi . Regularity and normality on primal spaces. AIMS Mathematics, 2024, 9(3): 7662-7672. doi: 10.3934/math.2024372
    [8] Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060
    [9] Baravan A. Asaad, Tareq M. Al-shami, Abdelwaheb Mhemdi . Bioperators on soft topological spaces. AIMS Mathematics, 2021, 6(11): 12471-12490. doi: 10.3934/math.2021720
    [10] Feng Ma, Bangjie Li, Zeyan Wang, Yaxiong Li, Lefei Pan . A prediction-correction based proximal method for monotone variational inequalities with linear constraints. AIMS Mathematics, 2023, 8(8): 18295-18313. doi: 10.3934/math.2023930
  • The purpose of this note is to give some mistyping corrections for our published article in [1].



    Generalized primal topological spaces,

    by Hanan Al-Saadi and Huda Al-Malki. AIMS Mathematics, 2023, 8(10): 24162–24175.

    DOI:10.3934/math.20231232.

    These errata give the following correct statements for the corresponding statements on the cited page of our published article [1].

    The description of Examples 3.1–3.3 on pages 24165 and 24166 in [1] is incomplete, now it is corrected as below:

    Example 0.1. Consider X={a,b,c}, g={ϕ,{a,b},{a,c},X} and the primal set P={ϕ,{a},{b},{a,b}}. Hence, (X,g,P) is a generalized primal topological space.

    Example 0.2. Consider

    X={a,b,c},   g={ϕ,{a},{b},{a,b},X}

    and

    P={ϕ,{a},{b},{c},{a,b},{a,c}}.

    Let A={a,b}. Then, A={b,c}. Therefore, AA and AA.

    Example 0.3. Consider

    X={a,b,c},  g={ϕ,{a},{b},{a,b},X}

    and

    P={ϕ,{a},{b},{c},{a,b},{a,c}}.

    Let A={a,b} and B={c}. Then,

    A={b,c}andB={c}.

    Thus, AB={c} and (AB)=ϕ. Therefore,

    AB(AB).

    The authors declare no conflicts of interest.



    [1] Hanan Al-Saadi, Huda Al-Malki, Generalized primal topological spaces, AIMS Math., 8 (2023), 24162–24175. https://doi.org/10.3934/math.20231232 doi: 10.3934/math.20231232
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(788) PDF downloads(54) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog