The purpose of this note is to give some mistyping corrections for our published article in [
Citation: Hanan Al-Saadi, Huda Al-Malki. Correction: Generalized primal topological spaces[J]. AIMS Mathematics, 2024, 9(7): 19068-19069. doi: 10.3934/math.2024928
[1] | Hanan Al-Saadi, Huda Al-Malki . Generalized primal topological spaces. AIMS Mathematics, 2023, 8(10): 24162-24175. doi: 10.3934/math.20231232 |
[2] | Murad ÖZKOÇ, Büşra KÖSTEL . On the topology $ \tau^{\diamond}_R $ of primal topological spaces. AIMS Mathematics, 2024, 9(7): 17171-17183. doi: 10.3934/math.2024834 |
[3] | Ahmad Al-Omari, Mesfer H. Alqahtani . Some operators in soft primal spaces. AIMS Mathematics, 2024, 9(5): 10756-10774. doi: 10.3934/math.2024525 |
[4] | Ohud Alghamdi, Ahmad Al-Omari, Mesfer H. Alqahtani . Novel operators in the frame of primal topological spaces. AIMS Mathematics, 2024, 9(9): 25792-25808. doi: 10.3934/math.20241260 |
[5] | Luis Fernando Mejías, Jorge Vielma, Elvis Aponte, Lourival Rodrigues De Lima . Continuous functions on primal topological spaces induced by group actions. AIMS Mathematics, 2025, 10(1): 793-808. doi: 10.3934/math.2025037 |
[6] | Ohud Alghamdi . On the compactness via primal topological spaces. AIMS Mathematics, 2024, 9(11): 32124-32137. doi: 10.3934/math.20241542 |
[7] | Ahmad Al-Omari, Ohud Alghamdi . Regularity and normality on primal spaces. AIMS Mathematics, 2024, 9(3): 7662-7672. doi: 10.3934/math.2024372 |
[8] | Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060 |
[9] | Baravan A. Asaad, Tareq M. Al-shami, Abdelwaheb Mhemdi . Bioperators on soft topological spaces. AIMS Mathematics, 2021, 6(11): 12471-12490. doi: 10.3934/math.2021720 |
[10] | Feng Ma, Bangjie Li, Zeyan Wang, Yaxiong Li, Lefei Pan . A prediction-correction based proximal method for monotone variational inequalities with linear constraints. AIMS Mathematics, 2023, 8(8): 18295-18313. doi: 10.3934/math.2023930 |
The purpose of this note is to give some mistyping corrections for our published article in [
Generalized primal topological spaces,
by Hanan Al-Saadi and Huda Al-Malki. AIMS Mathematics, 2023, 8(10): 24162–24175.
These errata give the following correct statements for the corresponding statements on the cited page of our published article [1].
The description of Examples 3.1–3.3 on pages 24165 and 24166 in [1] is incomplete, now it is corrected as below:
Example 0.1. Consider X={a,b,c}, g={ϕ,{a,b},{a,c},X} and the primal set P={ϕ,{a},{b},{a,b}}. Hence, (X,g,P) is a generalized primal topological space.
Example 0.2. Consider
X={a,b,c}, g={ϕ,{a},{b},{a,b},X} |
and
P={ϕ,{a},{b},{c},{a,b},{a,c}}. |
Let A={a,b}. Then, A⋄={b,c}. Therefore, A⋄⊈A and A⊈A⋄.
Example 0.3. Consider
X={a,b,c}, g={ϕ,{a},{b},{a,b},X} |
and
P={ϕ,{a},{b},{c},{a,b},{a,c}}. |
Let A={a,b} and B={c}. Then,
A⋄={b,c}andB⋄={c}. |
Thus, A⋄∩B⋄={c} and (A∩B)⋄=ϕ. Therefore,
A⋄∩B⋄⊈(A∩B)⋄. |
The authors declare no conflicts of interest.
[1] |
Hanan Al-Saadi, Huda Al-Malki, Generalized primal topological spaces, AIMS Math., 8 (2023), 24162–24175. https://doi.org/10.3934/math.20231232 doi: 10.3934/math.20231232
![]() |