Our aim in this paper is to define more concepts that are related to primal topological space. We introduce new operators called $ \gamma $-diamond and $ \gamma^\ast $-diamond and explore their main characterizations. We provide results and examples regarding to these operators. Using these new operators, we create a weaker version of the original topology. Additionally, we present some results related to compatibility.
Citation: Ohud Alghamdi, Ahmad Al-Omari, Mesfer H. Alqahtani. Novel operators in the frame of primal topological spaces[J]. AIMS Mathematics, 2024, 9(9): 25792-25808. doi: 10.3934/math.20241260
Our aim in this paper is to define more concepts that are related to primal topological space. We introduce new operators called $ \gamma $-diamond and $ \gamma^\ast $-diamond and explore their main characterizations. We provide results and examples regarding to these operators. Using these new operators, we create a weaker version of the original topology. Additionally, we present some results related to compatibility.
[1] | G. Choquet, Sur les notions de filter et grille, C. R. Acad. Sci., 224 (1947), 171–173. |
[2] | K. Kuratowski, Topologie I, Warszawa: Academic Press Inc., 1966. |
[3] | A. Al-Omari, T. Noiri, On $\Psi_{\mathcal{G}}$-sets in grill topological spaces, Filomat, 25 (2011), 187–196. https://doi.org/10.2298/FIL1102187A doi: 10.2298/FIL1102187A |
[4] | K. K. Azad, Fuzzy grills and a characterization of fuzzy proximity, J. Math. Anal. Appl., 79 (1981), 13–17. |
[5] | R. Vaidyanathaswamy, The Localisation theory in set topology, P. Ind. AS-Math. Sci., 20 (1944), 51–61. |
[6] | R. Vaidyanathaswamy, Set Theory, 2 Eds., New York: Chelsea Publishing Company, 1960. |
[7] | D. Janković, T. R. Hamlett, New Topologies from old via Ideals, Am. Math. Mon., 97 (1990), 295–310. |
[8] | D. Sarkar, Fuzzy ideal theory fuzzy local function and generated fuzzy topology, Fuzzy Sets Sys., 87 (1977), 117–123. https://doi.org/10.1016/S0165-0114(96)00032-2 doi: 10.1016/S0165-0114(96)00032-2 |
[9] | A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8 (2014), 1595–1603. http://dx.doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413 |
[10] | Z. Ameen, S. Al Ghour, Cluster soft sets and cluster soft topologies, Comput. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7 |
[11] | S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, preprint paper, 2022. https://doi.org/10.48550/arXiv.2209.12676 |
[12] | T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 2329. https://doi.org/10.3390/math11102329 doi: 10.3390/math11102329 |
[13] | A. Al-Omari, M. H. Alqahtani, Some operators in soft primal spaces, AIMS Math., 9 (2024), 10756–10774. http://dx.doi.org/10.3934/math.2024525 doi: 10.3934/math.2024525 |
[14] | Z. A. Ameen, R. A. Mohammed, T. M. Al-shami, B. A. Asaad, Novel fuzzy topologies formed by fuzzy primal frameworks, J. Intell. Fuzzy Sys., pre-press, 2024, 1–10. https://doi.org/10.3233/JIFS-238408 |
[15] | A. Al-Omari, M. Özkoç, S. Acharjee, Primal-proximity spaces, preprint paper, 2023. https://doi.org/10.48550/arXiv.2306.07977 |
[16] | A. Al-Omari, S. Acharjee, M. Özkoç, A new operator of primal topological spaces, Mathematica, 65 (2023), 175–183. |
[17] | A. Al-Omari, M. H. Alqahtani, Primal structure with closure operators and their applications, Mathematics, 11 (2023), 4946. https://doi.org/10.3390/math11244946 doi: 10.3390/math11244946 |
[18] | A. Al-Omari, O. Alghamdi, Regularity and normality on primal spaces, AIMS Math., 9 (2024), 7662–7672. https://doi.org/10.3934/math.2024372 doi: 10.3934/math.2024372 |
[19] | H. Al-Saadi, H. Al-Malki, Categories of open sets in generalized primal topological spaces, Mathematics, 12 (2024), 207. https://doi.org/10.3390/math12020207 doi: 10.3390/math12020207 |
[20] | H. Al-Saadi, H. Al-Malki, Generalized primal topological spaces, AIMS Math., 8 (2023), 24162–24175. http://dx.doi.org/10.3934/math.20231232 doi: 10.3934/math.20231232 |
[21] | N. V. Veličko, H-closed topological spaces, Am. Math. Soc. Transl., 78 (1968), 103–118. |
[22] | T. Noiri, On $\alpha$-continuous functions, Casopis Pest. Mat., 109 (1984), 118–126. |