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1. Introduction

Many topological structures were an active area in the study of various spheres of mathematics,
such as natural and social sciences to solve numerous natural problems. Choquet [1] developed the
theory of grills, which he introduced in 1947. Subsequently, in 1966, Kuratowski [2] investigated
and studied ideals concepts where the concept of ideal is the inverse of the filter. Many researchers
utilized grill structures, including general topology [3] and fuzzy topology [4], etc. It is worth noting
that R. Vaidyanathaswamy introduced the concept of localization theory in set-topology in [5] and [6].
Moreover, this topic was highly discussed in [7] by D. Janković et al. Furthermore, D. Sarkar dicussed
fuzzy ideals in fuzzy set theory and how to generate new fuzzy topologies from old using fuzzy ideals.
Additionally, he studied the concept of fuzzy local functions and the notion of compatibility of fuzzy
ideals with fuzzy topologies in [8]. On the other hand, A. Kandil et al. introduced the notion of soft
local functions in [9]. Z. Amee et al. represented cluster soft closed sets in terms of several forms of
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soft sets, which was a development of the concept of soft local functions [10].
Recently, the notions of primal structure were discussed in [11] where primals are the dual of the

notion of grills. Additionally, they studied the relationship between primal topological spaces and
topological spaces. Promoting the fast development of primal topological space, Al-Shami et al. [12]
defined the soft primal soft topology and investigated its basic properties. Moreover, Al-Omari
et al. [13] presented a novel type of primal soft operator. Also, Ameen et al. [14] introduced the
concept of fuzzy primal. The work of Al-Omari et al. [15] studing proximity spaces inspired by
primal and others [16, 17] had a significant impact on the development of operators in primal
topological spaces.

In this work, we investigate and introduce a new operator named γ-diamond and study the
relationships between it and other primal operators. Moreover, we introduce a new topology via the
γ∗-diamond operator and study several fundamental properties. The principal characteristics of these
notions are were defined and examined by the researchers of [18–20]. In Section 3, we present new
results related on to the γ-diamond operator. We also use the concept of γ-diamond to provide a
weaker topology than the one presented in Section 4. Moreover, we present some basic results
regarding to compatibility in Section 5.

2. Preliminaries

For the duration of this document, (M, σ) and (S , σ) (briefly, M and S ) denote topological spaces
unless specified otherwise. For any G ⊂ M, we denote the closure of G by cl(G) and the interior of G by
Int(G). We will use 2M to refer to the power set of M. We use the symbol σ(x) to denote the family of
open sets that contains x. If F is any subset of M such that F ∈ σc, then F is a closed subset of M. We
use the symbol σθ to mention the class of θ-open [21] sets in M; that is, σθ = {W ∈ σ | ∀w ∈ W ∃ G ∈
σ(w) such that w ∈ G ⊆ cl(G) ⊆ W}. Moreover, clθ(G) = {g ∈ M | cl(W) ∩G , ∅ ∀ W ∈ σ(g)} and
Intθ(G) = {

⋃
α∈ΛUα | Uα ⊆ G, Uα ∈ σθ ∀ α ∈ Λ}. We now obtain the following notions and findings,

which are necessary for the following section.

Definition 2.1. [1] The family G of 2M is a grill on M if G meets the following requirements:

(a) ∅ < G,
(b) if m1 ∪ m2 ∈ G, we have that m1 ∈ G or m2 ∈ G,

(c) if m1 ∈ G and m1 ⊆ m2, we get that m2 ∈ G.

Definition 2.2. [11] The family P ⊆ 2M is called a primal on M, where M is a nonempty set if and
only if the following circumstances are met:

(a) M < P,
(b) if m1 ∩ m2 ∈ P, then m2 ∈ P or m1 ∈ P,
(c) if m2 ∈ P and m1 ⊆ m2, then m1 ∈ P.

Corollary 2.1. [11] The family P ⊆ 2M is a primal on M if and only if the following circumstances
are met:

(a) M < P,
(b) if m2 < P and m1 < P, then m1 ∩ m2 < P,
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(c) if m2 < P and m2 ⊆ m1, then m1 < P.

A primal P [11] on M with a topological space (M, σ) is a primal topological space (M, σ,P)
indicated by PTS.

Definition 2.3. [11] Let (M, σ,P) be a PTS. We define a function (·)⋄ : 2M → 2M as A⋄(M, σ,P) =
{x ∈ M : Ac ∪ Uc ∈ P for all U ∈ σ(x)} for any set A ⊆ M. We will use the symbol A⋄

P
to denote

A⋄(M, σ,P).

Definition 2.4. [11] Let (M, σ,P) be a PTS. We define a function cl⋄ : 2M → 2M as cl⋄(T ) = T ∪ T ⋄,
where T ⊆ M.

Definition 2.5. [11] Let (M, σ,P) be a PTS. We define σ⋄ as σ⋄ = {T ⊆ M : cl⋄(T c) = T c}.

Definition 2.6. [17] Let (M, σ,P) be a PTS. For T ⊆ M, we define the function Π : 2M → 2M as
follows: Π(T )(P, σ) = Π(T ) = {x ∈ M : T c ∪ (cl(V))c ∈ P for all V ∈ σ(x)}, where σ(x) = {V ∈ σ :
x ∈ V}.

Lemma 2.1. [17] Let (M, σ,P) be a PTS. Then, for any T ⊆ M we have T ⋄
P
⊆ Π(T ).

Definition 2.7. Let (M, σ,P) be a PTS and let S be any subset of M. An operator γ is called
idempotent if and only if γ(γ(S )) = γ(S ).

Definition 2.8. [17] Let (M, σ,P) be a PTS. Then, we define the operator
−→
Π(S ) for the set S ⊆ M

as
−→
Π(S ) = {s ∈ M | ∃ W ∈ σ(s) such that (cl(W) − S )c < P}.

Theorem 2.1. [17] Let (M, σ,P) be a PTS. Consider the set β = {K ⊆ M : K ⊆
−→
Π(K)}. Then, β is a

topological space on M and K ∈ β is called β-open.

3. On γ-diamond operator

This section introduces a new a primal structure called a γ-diamond operator. The fundamental
properties of this structure are presented.

Definition 3.1. Let (M, σ,P) be a PTS. For T ⊆ M, define a function γ : 2M → 2M as: γ(T )(P, σ) =
{x ∈ M : T c ∪ (W⋄)c ∈ P for all W ∈ σ(x)}. For the avoidance of uncertainty, γ(T )(P, σ) is succinctly
described by γ(T ) and is known as the primal γ-diamond operator of A pertaining to σ and P.

Theorem 3.1. ( [11]) Let (M, σ,P) be a PTS. Then, the following claims are true for T, S ⊆ M.

(1) ∅⋄ = ∅.
(2) cl(T ⋄) = T ⋄.
(3) (T ⋄)⋄ ⊆ T ⋄.
(4) if T ⊆ S , then T ⋄ ⊆ S ⋄.
(5) T ⋄ ∪ S ⋄ = (T ∪ S )⋄.
(6) (T ∩ S )⋄ ⊆ T ⋄ ∩ S ⋄.

Lemma 3.1. Let (M, σ,P) be a PTS and T ⊆ M. Then, T ⋄ ⊆ cl(T ).

Proof. Let t ∈ T ⋄. Then, Uc ∪ T c ∈ P for all U ∈ σ(t). Thus, Uc ∪ T c , M for all U ∈ σ(t). Hence,
U ∩ T , ∅ for all U ∈ σ(t), implying that t ∈ cl(T ). Hence, T ⋄ ⊆ cl(T ). □
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Theorem 3.2. Let (M, σ,P) be a PTS and T ⊆ M. Then, γ(T ) ⊆ Π(T ).

Proof. Let t ∈ γ(T ). Then, T c ∪ (W⋄)c ∈ P for every W ∈ σ(t). From Lemma 3.1, T c ∪ (cl(W))c ⊆

T c ∪ (W⋄)c for every W ∈ σ(t), which implies that T c ∪ (cl(W))c ∈ P. Hence, t ∈ Π(A). □

Hence, we know from Theorem 3.2 that γ(T ) ⊆ Π(T ). The following examples show that Π(T ) 1
γ(T ) in general.

Example 3.1. Let T = {1, 2, 3, 4}, σ = {∅,T, {4}, {1, 3}, {1, 3, 4}}, and P = {∅, {3}, {4}, {3, 4}}. For a
subset S = {1, 2, 3}, we have γ(S ) = ∅ and Π(S ) = S

Example 3.2. Consider the set of natural numbers N. Define the topological space ν on N such that
U ∈ ν if and only if U = N or 1 < U. Let P be defined on N as T ∈ P if and only if 1 < T. Then,
(N, ν,P) is primal topological space. Let S ⊆ N. Then, there are two options:
Case 1. 1 ∈ S . Let n ∈ N and let V ∈ ν(n) be arbitrary. From the definition of ν, we know that 1 ∈ cl(V).
Then, 1 < S c ∪ (cl(V))c, which implies that S c ∪ (cl(V))c ∈ P and then n ∈ Π(S ). Hence, Π(S ) = N.
Case 2. 1 < S . Then, 1 ∈ S c ∪ (cl(V))c for every V ∈ ν, which implies that S c ∪ (cl(V))c < P. Hence,
Π(S ) = ∅.

∴ Π(S ) =
{
N, if 1 ∈ S
∅, if 1 < S

Now, we want to find γ(S ).
Case 1. 1 ∈ S . Let n ∈ N and let V ∈ ν(n) be arbitrary. Then, we have two subcases:

Subcase 1.1. n = 1. Then, if V ∈ ν(1), V = N. As V⋄ = {n ∈ N | Uc ∪ Vc ∈ P ∀ U ∈ ν(1)}, 1 ∈ V⋄,
which implies that 1 ∈ γ(S ).

Subcase 1.2. n , 1. Set V = {n}. Then, V⋄ = ∅, which implies that n < γ(S ) since (V⋄)c = N.
Thus, in this case γ(S ) = {1}.
Case 2. 1 < S . Then, 1 ∈ S c ∪ (V⋄)c for every V ∈ ν, which implies that S c ∪ (V⋄)c < P. Hence,
γ(S ) = ∅.

∴ γ(S ) =
{
{1}, if 1 ∈ S
∅, if 1 < S

Lemma 3.2. [11] Let (M, σ,P) be a PTS. Then, the following holds:

(1) If σc − {M} ⊆ P, then S ⊆ S ⋄ for all S ∈ σ.
(2) If S c ∈ σ, then S ⋄ ⊆ S .

Lemma 3.3. [17] Let (M, σ,P) be a PTS. A subset F ⊆ M is closed in β iff Π(F) ⊆ F.

Lemma 3.4. Let (M, σ,P) be a PTS and σc − {M} ⊆ P. Then, for all T ⊆ M, T ⋄ ⊆ γ(T ) ⊆ Π(T ).

Proof. Let t ∈ T ⋄. Then, T c ∪Wc ∈ P for every W ∈ σ(t). By Lemma 3.2, we have that T c ∪ (W⋄)c ⊆

T c ∪Wc ∈ P for every W ∈ σ(t). Thus, T c ∪ (W⋄)c ∈ P for all W ∈ σ(t), which implies that t ∈ γ(T ).
Hence, T ⋄ ⊆ γ(T ) ⊆ Π(T ). □

Lemma 3.5. [17] Let (M, σ,P) be a PTS and T ⊆ M. Then,

(1) cl(T ) = clθ(T ) if T is open.
(2) Π(T ) = cl(Π(T )) ⊆ clθ(T ).
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Theorem 3.3. Let (M, σ,P) and (M, σ,J) be two PTS and let T, S ⊆ M. Thus, the following
properties hold:

(1) If T ⊆ S , then γ(T ) ⊆ γ(S ).
(2) If J ⊆ P, then γ(T )(J) ⊆ γ(T )(P).
(3) γ(T ) is closed.
(4) γ(T ) ⊆ Π(T ) ⊆ clθ(T ).
(5) If T ⊆ γ(T ) and γ(T ) is open, then γ(T ) = Π(T ) = clθ(T ).
(6) If T c < P, then γ(T ) = ∅ and γ(∅) = ∅.
(7) γ(T ∪ S ) = γ(T ) ∪ γ(S ).

Proof. (1) Let s < γ(S ). Then, there is W ∈ σ(s) such that S c ∪ (W⋄)c < P. Since S c ∪ (W⋄)c ⊆

T c ∪ (W⋄)c, then T c ∪ (W⋄)c < P. Hence, s < γ(T ). Therefore, M − γ(S ) ⊆ M − γ(T ) or γ(T ) ⊆ γ(S ).
(2) Let t < γ(T )(P). Then, there is W ∈ σ(t) such that T c ∪ (W⋄)c < P. Since J ⊆ P, then

T c ∪ (W⋄)c < J and t < γ(T )(J). Therefore, γ(T )(J) ⊆ γ(T )(P).
(3) Since γ(T ) ⊆ cl(γ(T )) in general, let t1 ∈ cl(γ(T )). Then, γ(T ) ∩ W , ∅ for every W ∈ σ(t1).

Thus, there is t2 ∈ γ(T )∩W, and hence W ∈ σ(t2). Since t2 ∈ γ(T ), then T c∪ (W⋄)c ∈ P which implies
that t1 ∈ γ(T ). Hence, cl(γ(T )) ⊆ γ(T ), and so cl(γ(T )) = γ(T ), which is equivalent to that γ(T ) is
closed.

(4) By Theorem 3.2, we know that γ(A) ⊆ Π(A). Then, it remains to show that Π(T ) ⊆ clθ(T ).
Let t ∈ Π(T ). Then, T c ∪ (cl(G))c ∈ P for every G ∈ σ(t). As M < P, then T c ∪ (cl(G))c , M,
which implies that (T c ∪ (cl(G))c)c , Mc for every G ∈ σ(t). Then, T ∩ cl(G) , ∅ for every G ∈ σ(t).
Therefore, t ∈ clθ(T ).

(5) Let T ⊆ M. By (4) we have γ(T ) ⊆ Π(T ) ⊆ clθ(T ). Since T ⊆ γ(T ), then clθ(T ) ⊆ clθ(γ(T )). By
(1) in Lemma 3.5, we get that Π(T ) ⊆ clθ(T ) ⊆ clθ(γ(T )) since γ(T ) is open. Then, cl(γ(T )) = γ(T ) ⊆
Π(T ) ⊆ clθ(T ). Therefore, γ(T ) = Π(T ) = clθ(T ).

(6) Suppose that T c < P and let t ∈ T . Since T c ⊆ T c∪(W⋄)c for every W ∈ σ(t), then T c∪(W⋄)c < P

for all W ∈ σ(t). Hence, γ(T ) = ∅.
(7) Since T ⊆ T ∪ S and S ⊆ T ∪ S , then γ(T ) ⊆ γ(T ∪ S ) and γ(S ) ⊆ γ(T ∪ S ) by (1); hence,

γ(T ) ∪ γ(S ) ⊆ γ(T ∪ S ). Let r < γ(T ) ∪ γ(S ). Then, r < γ(T ) and r < γ(S ). Therefore, there exist
W1,W2 ∈ σ(r) such that T c ∪ (W⋄

1 )c < P and S c ∪ (W⋄
2 )c < P. Hence, [T c ∪ (W⋄

1 )c] ∪ (W⋄
2 )c < P and

[S c ∪ (W⋄
2 )c] ∪ (W⋄

1 )c < P. Moreover,

[T c ∪ (W⋄
1 )c] ∪ (W⋄

2 )c ∩ [S c ∪ (W⋄
2 )c] ∪ (W⋄

1 )c < P

= [T c ∩ S c] ∪ [(W⋄
1 )c ∪ (W⋄

2 )c] < P
= [T ∪ S ]c ∪ [W⋄

1 ∩W⋄
2 ]c < P.

Since (W1∩W2)⋄ ⊆ W⋄
1∩W⋄

2 and W1∩W2 ∈ σ(r), then [T∪S ]c ∪ [W⋄
1∩W⋄

2 ]c ⊆ [T∪S ]c ∪ [(W1∩W2)⋄]c <

P, which implies that r < γ(T ∪ S ). Hence, γ(T ∪ S ) = γ(T ) ∪ γ(S ). □

Lemma 3.6. Let (M, σ,P) be a PTS. If G ∈ σθ, then G ∩ γ(K) = G ∩ γ(G ∩ K) ⊆ γ(G ∩ K) for any
K ⊆ M.

Proof. Let r ∈ G ∩ γ(K). Since G ∈ σθ, then there exists W1 ∈ σ such that r ∈ W1 ⊆ cl(W1) ⊆ G.
Let W2 be any open set such that r ∈ W2. Then, W2 ∩ W1 ∈ σ(r) and since r ∈ γ(K), we have
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[(W2 ∩W1)⋄]c ∪ Kc ∈ P. Now, (W⋄
2 )c ∪ (G ∩ K)c = (W⋄

2 )c ∪Gc ∪ Kc ⊆ (W⋄
2 )c ∪ (cl(W1))c ∪ Kc by using

the result from Lemma 3.1. Hence, (W⋄
2 )c ∪ (G∩K)c ⊆ (W⋄

2 )c ∪ (cl(W1))c ∪Kc ⊆ (W⋄
2 )c ∪ (W⋄

1 )c ∪Kc ⊆

[(W2 ∩ W1)⋄]c ∪ Kc ∈ P. Therefore, (W⋄
2 )c ∪ (G ∩ K)c ∈ P. Then, r ∈ γ(G ∩ K) which implies that

G ∩ γ(K) ⊆ γ(G ∩ K). Moreover, G ∩ γ(K) ⊆ G ∩ γ(G ∩ K), and by Theorem 3.3, γ(G ∩ K) ⊆ γ(G)
and γ(G ∩ K) ∩G ⊆ γ(K) ∩G. Thus, G ∩ γ(K) = G ∩ γ(G ∩ K). □

Lemma 3.7. Let T, S ⊆ M and (M, σ,P) be a PTS. Then,

γ(S ) − γ(T ) = γ(S − T ) − γ(T ).

Proof. By (7) in Theorem 3.3, γ(S ) = γ[(S − T )∪ (T ∩ S )] = γ(S − T )∪ γ(S ∩ T ) ⊆ γ(S − T )∪ γ(S ).
Thus, γ(S )−γ(T ) ⊆ γ(S −T )−γ(T ). By (1) in Theorem 3.3, γ(S −T ) ⊆ γ(S ) ; hence, γ(S −T )−γ(T ) ⊆
γ(S ) − γ(T ). Therefore, γ(S ) − γ(T ) = γ(S − T ) − γ(T ). □

Corollary 3.1. Let (M, σ,P) be a PTS and T, S ⊆ M such that S c < P. Then, γ(T ∪ S ) = γ(T ) =
γ(S − T ).

Proof. Since S c < P, then γ(S ) = ∅ by using (6) in Theorem 3.3. By Lemma 3.7, we have γ(T ) =
γ(S − T ), and by (7) in Theorem 3.3, we obtain γ(T ∪ S ) = γ(T ) ∪ γ(S ) = γ(T ). □

Theorem 3.4. Let (M, σ,P) be a PTS. The following statements are equivalent:

(a) σ − {M,△} ⊆ P, where △ = {U ∈ σ | U⋄ = ∅}.
(b) If Yc < P, then Intθ(Y) = ∅.
(c) If σc − {M} ⊆ P, then T ⊆ γ(T ) for every clopen set T .
(d) M = γ(M).

Proof. (a) =⇒ (b): Suppose that Yc < P and (σ − {M,△}) ⊆ P and let r ∈ Intθ(Y). Thus, we can find
W ∈ σ such that r ∈ W ⊆ cl(W) ⊆ Y . Then, Yc ⊆ (cl(W))c ⊆ (W⋄)c. Since Yc < P, then (cl(W))c < P

and (W⋄)c < P, which contradicts that σ − {M,△} ⊆ P. Hence, Intθ(Y) = ∅.
(b) =⇒ (c): Let t ∈ T and suppose t < γ(T ). Then, there is Wt ∈ σ(t) such that T c ∪ (W⋄

t )c < P

which implies that (T ∩ W⋄
t )c < P. Since T is a clopen set, then by (b) and Lemma 3.2 we have

T ∩Wt = Int(Wt ∩ T ) ⊆ Int(W⋄
t ∩ T ) ⊆ Intθ(W⋄

t ∩ T ) = ∅, which is a contradiction since t ∈ T ∩Wt.
Then, t ∈ γ(t), and hence T ⊆ γ(T ).

(c) =⇒ (d): Since M is a clopen set, we get that M = γ(M).
(d) =⇒ (a): M = γ(M) = {a ∈ M : (W⋄)c ∪ Mc = (W⋄)c ∈ P for each a ∈ W ∈ σ}. Hence, (σ −

{M,△}) ⊆ P. □

4. New topology via γ∗-diamond operator

In this section, we define a new operator called γ∗-diamond operator. We present some results
regarding to this operator including generating a new topology.

Definition 4.1. Let (M, σ,P) be a PTS. We define the operator γ∗ : 2M → 2M as:

γ∗(S ) = {s ∈ M : ∃ W ∈ σ(s) and (W⋄ − S )c < P}

for every S ⊆ M.
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The theorem below establishes some essential aspects about the behavior of the γ∗-diamond
operator.

Theorem 4.1. Let (M, σ,P) be a PTS and let S ,H ⊆ M. The following statements hold:

(1) γ∗(S ) = [γ(S c)]c,
(2) γ∗(S ) is open,
(3) γ∗(S ) ⊆ γ∗(H), if S ⊆ H,
(4) γ∗(S ∩ H) = γ∗(S ) ∩ γ∗(H),
(5) γ∗(S ) = γ∗(γ∗(S )) iff γ(S c) = γ(γ(S c)),
(6) γ∗(S ) = M − γ(M), if S c < P,
(7) γ∗(S − I) = γ∗(S ), if Ic < P,
(8) γ∗(S ∪ I) = γ∗(S ), if Ic < P,
(9) γ∗(S ) = γ∗(H), if [(S − H) ∪ (H − S )]c < P.

Proof. (1) Suppose that s ∈ γ∗(S ). Then, there exists W ∈ σ(s) such that (W⋄ − S )c < P. Since
(W⋄−S )c = (W⋄∩S c)c = (W⋄)c∪S , (W⋄)c∪S < P, which implies that s < γ(S c). Hence, s ∈ [γ(S c)]c.

Conversely, suppose that s ∈ [γ(S c)]c. Then, s < γ(S c), which implies that there exists W ∈ σ(s)
such that (W⋄)c ∪ (S c)c < P. Now, as (W⋄)c ∪ (S c)c = (W⋄ ∩ S c)c = (W⋄ − S )c, then (W⋄ − S )c < P.
Hence, s ∈ γ∗(S ).

(2) By (3) in Theorem 3.3, we know that γ(S c) is closed. Hence, γ∗(S ) = [γ(S c)]c is open.
(3) By (1) in Theorem 3.3, we know that if S ⊆ H, then γ(S ) ⊆ γ(H). Now, since S ⊆ H, then

Hc ⊆ S c; hence, γ(Hc) ⊆ γ(S c), which implies that [γ(S c)]c ⊆ [γ(Hc)]c. Then, γ∗(S ) ⊆ γ∗(H).
(4) By (3) we have γ∗(S ∩ H) ⊆ γ∗(S ) and γ∗(S ∩ H) ⊆ γ∗(H). Hence, γ∗(S ∩ H) ⊆ γ∗(S ) ∩ γ∗(H).

Now, let r ∈ γ∗(S )∩γ∗(H). Then, there exist W1,W2 ∈ σ(r) such that (W⋄
1 −S )c < P and (W⋄

2 −H)c < P.
Let G = W1 ∩W2 ∈ σ(r). Since (W⋄

1 − S )c < P and (W⋄
1 − S )c ⊆ (G⋄ − S )c, we get that (G⋄ − S )c < P

and similarly (G⋄ −H)c < P. Therefore, [G⋄ − (S ∩H)]c = (G⋄ − S )c ∩ (G⋄ −H)c < P by Corollary 2.1.
Then, r ∈ γ∗(S ∩ H). Hence, γ∗(S ∩ H) = γ∗(S ) ∩ γ∗(H).

(5) It follows from the facts:

(a) γ∗(S ) = [γ(S c)]c.
(b) γ∗(γ∗(S )) = M − γ[M − (M − γ(S c))] = [γ(γ(S c))]c.

(6) By Corollary 3.1, we acquire that γ(S c) = γ(M) if S c < P. Then, γ∗(S ) = [γ(S c)]c = M−γ(M).
(7) This is inferred from Corollary 3.1 and γ∗(S − I) = M − γ[M − (S − I)] = M − γ[(M − S )∪ I] =

M − γ(M − S ) = γ∗(S ).
(8) This is inferred from Corollary 3.1 and γ∗(S ∪ I) = M − γ[M − (S ∪ I)] = M − γ[(M − S )− I] =

M − γ(M − S ) = γ∗(S ).
(9) Assume [(S − H) ∪ (H − S )]c < P. Let S − H = I and H − S = J. Observe that Ic, Jc < P by

heredity. Furthermore, we see that H = (S − I)∪ J. Thus, γ∗(S ) = γ∗(S − I) = γ∗[(S − I)∪ J] = γ∗(H)
by (7) and (8). □

Remark 4.1. Let (M, σ,P) be a PTS. Then, by (1) in Theorem 4.1 we have γ∗(M) = [γ(Mc)]c =

[γ(∅)]c = ∅c = M.

Definition 4.2. Let (M, σ,P) be a PTS and let S ⊆ M. Then, S is called diamond-open if S ⊆ γ∗(S ).

Lemma 4.1. Let (M, σ,P) be a PTS. Then, every θ-open set is diamond-open.
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Proof. Let S ⊆ M be θ-open. By (1) in Theorem 4.1, we have γ∗(S ) = [γ(S c)]c. Then, γ(M − S ) ⊆
clθ(M−S ) = M−S since M−S is θ-closed. Thus, S = M− (M−S ) ⊆ M−γ(M−S ) = γ∗(S ). Hence,
S is a diamond-open. □

Theorem 4.2. Let (M, σ,P) be a PTS. The collection σγ∗ = {S ⊆ M | S ⊆ γ∗(S )} is a topology on
M.

Proof. By Remark 4.1, ∅,M ∈ σγ∗ . Let S ,T ∈ σγ∗ . Then, S ⊆ γ∗(S ) and T ⊆ γ∗(T ). Thus,
S ∩ T ⊆ γ∗(S ) ∩ γ∗(T ) = γ∗(S ∩ T ) by (4) in Theorem 4.1. Therefore, S ∩ T ∈ σγ∗ . Let {S α|α ∈ ∆}
be a family of diamond-open sets. Since {S α ⊆ γ∗(S α) | ∀α ∈ ∆}, S α ⊆ γ∗(S α) ⊆ γ∗(

⋃
α∈∆ S α) for each

α ∈ ∆. Hence,
⋃
α∈∆ S α ⊆ γ∗(

⋃
α∈∆ S α). Therefore, σγ∗ is topology. □

Lemma 4.2. Let (M, σ,P) be a PTS.
−→
Π(S ) ⊆ γ∗(S ) for every subset S of M.

Proof. From Definition 2.8, we know that
−→
Π(S ) = {s ∈ M | ∃ W ∈ σ(s) such that (cl(W) − S )c < P}.

Hence, by Theorem 3.2, we have γ(M−S ) ⊆ Π(M−S ). Then,
−→
Π(S ) = M−Π(M−S ) ⊆ M−γ(M−S ) =

γ∗(S ). □

Lemma 4.3. Let (M, σ,P) be a PTS. Then, every β-open subset is diamond-open.

Proof. Recall that a set S is called β-open if S ⊆
−→
Π(S ), see Definition 2.1. Let S be β-open. Then,

S ⊆
−→
Π(S ). By Lemma 4.2, S ⊆

−→
Π(S ) ⊆ γ∗(S ). Hence, S is diamond-open. □

Lemma 4.4. Let (M, σ,P) be a PTS and let S ⊆ M. Then,

γ(γ(S )) ⊆ γ(S )⇐⇒ γ∗(M − S ) ⊆ γ∗[γ∗(M − S )].

Proof. Let S ⊆ M. Then,

γ(γ(S )) ⊆ γ(S ) ⇐⇒ [γ(S )]c ⊆ [γ(γ(S ))]c

⇐⇒ [γ((S c)c)]c ⊆ [γ([γ((S c)c)]c)c]c

⇐⇒ γ∗(S c) ⊆ [γ(γ∗(S c))c]c

⇐⇒ γ∗(M − S ) ⊆ γ∗[γ∗(M − S )].

□

Corollary 4.1. Let (M, σ,P) be a PTS and let S ⊆ M. Then,

γ(γ(S )) ⊆ γ(S )⇐⇒ γ∗(S ) ⊆ γ∗(γ∗(S )).

Proposition 4.1. Let (M, σ,P) be a PTS. If γ is idempotent, then γ∗(S ) − K and γ∗(S − K) ∈ σγ∗ for
S ⊆ M and Kc ∈ P.

Proof. By (7) in Theorem 4.1 and γ is idempotent, we have

(1) (γ∗(S ) − K) ⊆ γ∗(S ) ⊆ γ∗(γ∗(S )) = γ∗(γ∗(S ) − K) =⇒ γ∗(S ) − K ∈ σγ∗ .
(2) γ∗(S − K) = γ∗(S ) ⊆ γ∗(γ∗(S )) = γ∗(γ∗(S − K)) =⇒ γ∗(S − K) ∈ σγ∗ .

□
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Proposition 4.2. Let (M, σ,P) be a PTS. The following hold for S ⊆ M:

(1) A subset S is closed in σγ∗ if and only if γ(S ) ⊆ S .
(2) σθ ⊆ β ⊆ σγ∗ .
(3) If Π(T ) = γ(T ) for every T ⊆ M, then σγ∗ = β.
(4) If γ(γ(S )) ⊈ γ(S ) and Π(γ(S )) ⊆ γ(S ), then σγ∗ ⊈ β.

Proof. (1): Let S be closed in σγ∗ . Then, M − S is open in σγ∗ , and hence M − S ⊆ γ∗(M − S ) =
M − [γ(S )]. Thus, γ(S ) ⊆ S .

(2): Let S ∈ σθ. We know that
−→
Π(S ) = M − Π(M − S ). Now, Π(M − S ) ⊆ clθ(M − S ) = M − S .

Since M − S is θ-closed, then T = M − (M − S ) ⊆ M −Π(M − S ) =
−→
Π(S ) and σθ ⊆ β. Also, if S ∈ β,

by Lemma 4.2 we get S ⊆
−→
Π(S ) ⊆ γ∗(S ). So, σθ ⊆ β ⊆ σγ∗ .

(3): Let S ∈ σγ∗ . Then, S ⊆ γ∗(B) = M − γ(M − S ) = M − Π(M − S ) =
−→
Π(S ) and σγ∗ = β.

(4): Since Π(γ(S )) ⊆ γ(S ), then γ(S ) is closed in β by Lemma 3.3, but γ(γ(S )) ⊈ γ(S ), then by (1)
γ(S ) is not closed in σγ∗ , indicating that σγ∗ ⊈ β. □

The following examples demonstrate that β and σ are independent.

Example 4.1. Let M = {1, 2, 3} with topology σ = {∅,M, {1}, {2}, {1, 2}} and a primal
P = {∅, {1}, {2}, {1, 2}}. Then, β = {∅,M, {3}, {1, 3}, {1, 3}}.

Example 4.2. Let σ = {W ⊆ N such that W = N or 1 < W} and P = {W ⊆ N such that 1 < W}. Let
S ⊆ N. Then,
Case 1. 1 ∈ S . As 1 ∈ (cl(W) − S )c, then (cl(W) − S )c < P for every W ∈ σ.
Hence,

−→
Π(S ) = N, which implies that S ⊆

−→
Π(S ).

Case 2. 1 < S . As 1 < (cl(W) − S )c, then (cl(W) − S )c ∈ P, which implies that
−→
Π(S ) = ∅, and then

S ⊆
−→
Π(S )⇐⇒ S = ∅.

Hence, S ⊆
−→
Π(S ) if and only if S = ∅ or 1 ∈ S . Therefore, β = {S , ∅ | 1 ∈ S }.

Theorem 4.3. Let (M, σ,P) be a PTS. If for each S ⊆ M we have γ(γ(S )) ⊆ γ(S ), then clγ∗(S ) =
S ∪ γ(S ).

Proof. Since γ(A∪γ(S )) = γ(S )∪γ(γ(S )) = γ(S ) ⊆ S ∪γ(S ), we know that S ∪γ(S ) is a closed set in
σγ∗ containing A by Proposition 4.2. Let us demonstrate that S ∪ γ(S ) is the smallest closed set in σγ∗
containing S . Let s ∈ γ(S ) ∪ S . If s ∈ S , then s ∈ clγ∗(S ). If s ∈ γ(S ), then S c ∪ (W⋄)c ∈ P for every
open set W ∈ σ(s). We have (W⋄)c ∪ [clγ∗(S )]c ∈ P because [clγ∗(S )]c ⊆ S c Therefore, s ∈ γ[clγ∗(S )]
and since clγ∗(S ) is closed in σγ∗ , then γ[clγ∗(S )] ⊆ clγ∗(S ). Now, by (1) in Proposition 4.2, we have
s ∈ clγ∗(S ). Hence, clγ∗(S ) = S ∪ γ(S ) for all S ⊆ M. □

Lemma 4.5. [22] Let (M, σ) be a TS. If either S ∈ σ or T ∈ σ, then Int((cl(S ∩ T ))) = Int(cl(S )) ∩
Int(cl(T )).

Theorem 4.4. Let (M, σ,P) be a PTS and let σγ∗∗ = {S ⊆ M : S ⊆ Int (cl(γ∗(S )))}. Then, σγ∗∗ forms
a topology on M.

Proof. By item (2) in Theorem 4.1, γ⋆(S ) is an open set for any S ⊆ M and σγ∗ ⊂ σγ∗∗ . Thus,
∅, M ∈ σγ∗∗ . Let A, B ∈ σγ∗∗ . Then, using Theorem 4.1 and Lemma 4.5, we obtain that S ∩
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T ⊂ Int
(
cl(γ⋆(S ))

)
∩ Int

(
cl(γ⋆(T ))

)
= Int

(
cl(γ⋆(S ) ∩ γ⋆(T ))

)
= Int

(
cl(γ⋆(S ∩ T ))

)
. Therefore,

S ∩ T ∈ σγ∗∗ . Let S α ∈ σγ∗∗ for each α ∈ I. Then, S α ⊆ Int
[
cl(γ⋆(S α))

]
for each α ∈ I. Now,

by (3) in Theorem 4.1, we get that Int
[
cl(γ⋆(S α))

]
⊆ Int

[
cl(γ⋆(∪S α))

]
for all α ∈ I and ∪S α ⊂

Int
[
cl(γ⋆(∪S α))

]
. Therefore, ∪S α ∈ σγ∗∗ . Thus, σγ∗∗ is a topology on M. □

Proposition 4.3. Let (M, σ,P) be a PTS. We have the following:

(1) φ ⊆ σγ∗∗ .
(2) σγ∗ ⊆ σγ∗∗ .
(3) T is closed subset in σγ∗∗ ⇐⇒ cl(Int(γ(T ))) ⊆ T.

Proof. Recall that φ = {S ⊆ M | S ⊆ Int(cl(
−→
Π(S )))}, see [17].

(1) Let S be any subset of M. We know that
−→
Π(S ) ⊆ γ∗(S ) by Lemma 4.2. Then, Int(cl(

−→
Π(S ))) ⊆

Int(cl(γ∗(S ))). Hence, φ ⊆ σγ∗∗ .
(2) Let S be diamond-open. Then, S ⊆ γ∗(S ). Since γ∗(S ) is open, we get S ⊆ γ∗(S ) ⊆ Int(cl(γ∗(S ))).
Thus, σγ∗ ⊆ σγ∗∗ .
(3) Let T be closed in σγ∗∗ . Then, M − T is open in σγ∗∗ ⇐⇒ M − T ⊆ Int(cl(γ∗(M − T ))) =
Int(cl(M − [γ(T )])) ⊆ [M − cl(Int(γ(T )))]. Hence, cl(Int(γ(T ))) ⊆ T . □

A necessary condition for the tight inequality between these two topologies is given by the lemma
that follows.

Lemma 4.6. Let (M, σ,P) be a PTS and let S ⊆ M. If σγ∗ ⫋ σγ∗∗ , then there exists s ∈ S such that

(a) [T ⋄ − S ]c ∈ P for each T ∈ σ(s);
(b) There exist W ∈ σ(s) and an open set K ⊆ W such that, [K⋄ − S ]c < P.

Proof. If σγ∗ ⫋ σγ∗∗ , then there exists S ∈ σγ∗∗ − σγ∗ . Since S < σγ∗ , there exists s ∈ S such that

s < γ∗(S )⇐⇒ s < M − γ[M − S ]
⇐⇒ s ∈ γ[M − S ]
⇐⇒ ∀ T ∈ σ(s), (T ⋄)c ∪ S ∈ P

⇐⇒ ∀ T ∈ σ(s), [T ⋄ ∩ S c]c ∈ P

⇐⇒ ∀ T ∈ σ(s), [T ⋄ − S ]c ∈ P.

Since S ∈ σγ∗∗ , then for all r ∈ S , we have

r ∈ Int (cl(γ∗(S )))⇐⇒ ∃W ∈ σ(r), W ⊆ cl(γ∗(S ))
⇐⇒ ∃W ∈ σ(r), ∀ z ∈ W,∀ H ∈ σ(z), H ∩ γ∗(S ) , ∅
⇐⇒ ∃W ∈ σ(r), ∀ H ⊆ W, [H ∈ σ⇒ H ∩ γ∗(S ) , ∅]
⇐⇒ ∃W ∈ σ(r), ∀ H ⊆ W, [H ∈ σ⇒ H ∩ [M − γ(M − S )] , ∅]
⇐⇒ ∃W ∈ σ(r), ∀ H ⊆ W, [H ∈ σ⇒ H − γ(M − S ) , ∅]
⇐⇒ ∃W ∈ σ(r), ∀H ⊆ W, [H ∈ σ⇒ [∃ K ⊆ W (K ∈ σ⇐⇒ [K⋄ − S ]c < P)].

□
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Theorem 4.5. Let (M, σ,P) be a PTS and let S ⊆ M. If γ(cl(Int(γ(S )))) ⊆ cl(Int(γ(S ))), then
clγ⋆⋆(S ) = S ∪ cl(Int(γ(S ))).

Proof. By Proposition 4.3 and since γ(S ) is a closed set, we have

cl(Int(γ[S ∪ cl(Int(γ(S )))])) = cl(Int(γ(S ) ∪ γ(cl(Int(γ(S ))))))
⊆ cl(Int(γ(S ) ∪ cl(Int(γ(S )))))
= cl(Int(γ(S ))) ⊆ S ∪ cl(Int(γ(S )))

by Proposition 4.3, and we that have S ∪ cl(Int(γ(S ))) is a closed subset in σγ∗∗ containing S . Now,
we want to show that S ∪ cl(Int(γ(S ))) is the smallest closed set in σγ∗∗ containing S . Let r ∈ S ∪
cl(Int(γ(S ))). If r ∈ S , then r ∈ clγ∗∗(S ). Suppose that r ∈ cl(Int(γ(S ))). Since S ⊆ clγ⋆⋆(S ), then
r ∈ cl(Int(γ(S ))) ⊆ cl(Int(γ(clγ⋆⋆(S )))). As clγ⋆⋆(S ) is closed in σγ⋆⋆ , then by Proposition 4.3 we
have r ∈ clγ⋆⋆(S ). Thus, S ∪ cl(Int(γ(S ))) ⊆ clγ∗∗(S ). Since clγ∗∗(S ) is the smallest closed set in σγ⋆⋆
containing S , then clγ⋆⋆(S ) = S ∪ cl(Int(γ(S ))).

□

The following diagram and examples show the link between the results such as the concept of
topologies β, τγ⋆ , φ and τγ⋆⋆ .

θ-open

��

// open

β-open //

��

φ-open

��
diamond-open // τγ⋆⋆-open

(Diagram I)

The following example illustrates the relations between the concepts.

Example 4.3. Let X = {a, b, c} with topology τ = {∅, X, {a}, {b}, {a, b}}, and the primal
P = {∅, {a}, {b}, {a, b}}. It is clear that β = {∅, X, {c}, {b, c}, {a, c}}, τθ = {∅, X}, and
τγ⋆ = φ = τγ⋆⋆ = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}, as shown by the following table. If A ⊆ X:

Table 1. Details on illustrates the relations between the concepts I.

A cl(A) Π(X − A)
−→
Π(A) A⋄ γ(A) γ⋆(A) Int(Cl(

−→
Π(A))) Int(Cl(γ⋆(A)))

∅ ∅ X ∅ ∅ ∅ {a, b} ∅ X
X X ∅ X {c} {c} X X X
{a} {a, c} X ∅ ∅ ∅ {a, b} ∅ X
{b} {b, c} X ∅ ∅ ∅ {a, b} ∅ X
{c} {c} ∅ X {c} {c} X X X
{a, b} X X ∅ ∅ ∅ {a, b} ∅ X
{a, c} {a, c} ∅ X {c} {c} X X X
{b, c} {b, c} ∅ X {c} {c} X X X
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Example 4.4. Let X = {a, b, c} with topology τ = {∅, X, {a}, {c}, {b, c}, {a, c}} and the primal P =
{∅, {a}, {b}, {a, b}}. It is clear that β = φ = {∅, X, {a}, {c}, {b, c}, {a, c}}, τθ = {∅, X, {a}, {b, c}}, and τγ⋆ =
τγ⋆⋆ = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}, as shown by the following table. If A ⊆ X:

Table 2. Details on illustrates the relations between the concepts II.

A cl(A) Π(X − A)
−→
Π(A) A⋄ γ(A) γ⋆(A) Int(Cl(

−→
Π(A)))

∅ ∅ {b, c} {a} ∅ ∅ X {a}
X X ∅ X {b} ∅ X X
{a} {a} {b, c} {a} ∅ ∅ X {a}
{b} {b} {b, c} {a} ∅ ∅ X {a}
{c} {b, c} ∅ X ∅ ∅ X X
{a, b} {a, b} {b, c} {a} ∅ ∅ X {a}
{a, c} X ∅ X {b} ∅ X X
{b, c} {b, c} ∅ X {b} ∅ X X

5. Compatibility via primal topological spaces

This section introduces a new a primal structure, namely a compatible space. The fundamental
properties of this structure are presented.

Definition 5.1. Let (M, σ,P) be a PTS and let S ⊆ M. Then:

(1) If S c ∪ S ⋄ < P, then σ is suitable for P, [16].
(2) If [cl(W)]c ∪ S c < P for W ∈ σ(s) where s ∈ S , then σ is Π-suitable for P, [17].

If σ is suitable for P, then σ is Π-suitable for P.

Definition 5.2. Let (M, σ,P) be a PTS and let S ⊆ M. σ is said to be compatible with P if the
following condition holds:

If for every s ∈ S there exists W ∈ σ(s) such that (W⋄)c ∪ S c < P, then S c < P.

Proposition 5.1. Let (M, σ,P) be a PTS such that σ is Π-suitable for P. Then, σ is compatible.

Proof. Let σ be Π-suitable for P and S ⊆ M. Assume that for each s ∈ S there exists W ∈ σ(s) such
that [cl(W)]c ∪ S c < P. Since W⋄ ⊆ cl(W), then [cl(W)]c ∪ S c ⊆ [W⋄]c ∪ S c < P. Therefore, S c < P;
hence, σ is compatible with P. □

Theorem 5.1. Let (M, σ,P) be a PTS and let S ⊆ M, then the following statements are equivalent:

(1) σ is compatible for P.
(2) If there exists an open coverW for the set S such that ∀ W ∈ W, then [(Ws)⋄]c ∪ S c < P, and

then S c < P.
(3) If S ∩ γ(S ) = ∅, then S c < P.
(4) (S − γ(S ))c < P.
(5) If there is no nonempty subset R ⊆ S such that R ⊆ γ(R), then S c < P.

AIMS Mathematics Volume 9, Issue 9, 25792–25808.



25804

Proof. (1) =⇒ (2): The evidence is clear.
(2) =⇒ (3): Let s ∈ S ⊆ M. As S ∩ γ(S ) = ∅, then s < γ(S ) which implies that ∃Ws ∈ σ(s) with

[(Ws)⋄]c ∪ S c < P. Consequently, we have S ⊆ ∪{Ws : s ∈ S } and Ws ∈ σ(s). Hence, by (2) S c < P.
(3) =⇒ (4): Suppose that S ∩ γ(S ) = ∅. Then, S − γ(S ) ⊆ S and (S − γ(S )) ∩ γ(S − γ(S )) ⊆

(S − γ(S )) ∩ γ(S ) = ∅ . Hence, by using (3) we get (S − γ(S ))c < P.
(4) =⇒ (5): Assume that (S − γ(S ))c < P. Set J = S − γ(S ). Then, S = J ∪ (S ∩ γ(S )). By

Theorem 3.3, we get that γ(S ) = γ(J) ∪ γ(S ∩ γ(S )) = γ(S ∩ γ(S )). Now, if R = S ∩ γ(S ) ⊆ S , then
R = S ∩ γ(S ∩ γ(S )) ⊆ γ(S ∩ γ(S )) = γ(R) = ∅ by item (6) of Theorem 3.3. Therefore, S ∩ γ(S ) = ∅
and S − γ(S ) = S , we have (S − γ(S ))c = S c < P.

(5) =⇒ (1): Let s ∈ S and let W ∈ σ(s) such that (W⋄)c ∪ S c < P. Then, S ∩ γ(S ) = ∅ because if
there is r ∈ S ∩ γ(S ), and then for every H ∈ σ(r) we have (H⋄)c ∪ S c ∈ P, which is a contradiction.
Suppose that R ⊆ S such that R ⊆ γ(R). Then, R = R ∩ γ(R) ⊆ S ∩ γ(S ) = ∅. Thus, S does not
contains a nonempty set R with R ⊆ γ(R), which implies that, by (5), S c < P. Thus, σ is compatible
for the primal P. □

Theorem 5.2. Let (M, σ,P) be a PTS and let S ⊆ M. If σ is compatible for the primal P, then the
following statements are equivalent:

(1) If S ∩ γ(S ) = ∅, then γ(S ) = ∅.
(2) γ(S − γ(S )) = ∅.
(3) γ(S ∩ γ(S )) = γ(S ).

Proof. We want first to show that if σ is compatible for P and if S ∩ γ(S ) = ∅, then γ(S ) = ∅. Since
S ∩ γ(S ) = ∅, then by using (3) in Thoerem 5.1 we get that S c < P. Hence, by (6) in Theorem 3.3 we
have γ(S ) = ∅.

(1) =⇒(2): Suppose that if S ∩ γ(S ) = ∅, then γ(S ) = ∅. We want to show that γ(K) = ∅ where
K = S − γ(S ). Then,

K ∩ γ(K) = (S − γ(S )) ∩ γ(S − γ(S ))
= (S ∩ (M − γ(S ))) ∩ γ(S ∩ (M − γ(S )))
⊆ [S ∩ (M − γ(S ))] ∩ [γ(S ) ∩ (γ(M − γ(S )))] = ∅.

By (1), we get that γ(K) = ∅.
(2) =⇒ (3): Assume that γ(S − γ(S )) = ∅.

S = (S − γ(S )) ∪ (S ∩ γ(S ))
γ(S ) = γ[(S − γ(S )) ∪ (S ∩ γ(S ))]

= γ(S − γ(S )) ∪ γ(S ∩ γ(S ))
= γ(S ∩ γ(S )).

(3) =⇒ (1): Suppose that γ(S ) = γ(S ∩ γ(S )) and γ(S ) ∩ S = ∅. Then,

γ(γ(S ) ∩ S ) = γ(S ) =⇒ γ(∅) = γ(S ).

By Theorem 3.3, γ(∅) = ∅. Hence, γ(S ) = ∅. □
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Theorem 5.3. Let (M, σ,P) be a PTS. Then, σ is compatible for P if and only if [γ∗(S )− S ]c < P for
every S ⊆ M.

Proof. First, let σ be compatible for P and let S ⊆ M. We want to show that [γ∗(S ) − S ]c < P. Let
s ∈ γ∗(S ) − S . Then, s ∈ γ∗(S ) = [γ(S )c]c and s < S , which implies that s < γ(M − S ). Hence,
∃W ∈ σ(s) such that (W⋄)c ∪ S < P. Since σ is compatible, then S < P. As S ⊆ [γ∗(S ) − S ]c and
S < P, [γ∗(S ) − S ]c < P.

Second, Let, S ⊆ M such that [γ∗(S ) − S ]c < P. We want to show that σ is compatible. Suppose
that for every s ∈ S there exists W ∈ σ(s) such that [(W⋄)c ∪ S c] < P. Note that for every S ⊆ M,
γ∗(S c) − (S c) = S − γ(S ) = {s ∈ S | ∃W ∈ σ(s) such that s ∈ (W⋄)c ∪ S c < P}. As a result, we get that
[S − γ(S )]c = [γ∗(S c) − (S c)]c < P; hence, by item (4) of Theorem 5.1, σ is compatible for P. □

Theorem 5.4. Let (M, σ,P) be a PTS such that σ is compatible for P and the primal diamond
operator is idempotent. Then, σγ∗ = {γ∗(S ) − T : S ⊆ M, T c < P}.

Proof. Let S ,T ⊆ M. We want first to prove that all the sets are of the form γ∗(S ) − T in σγ∗ . By
using the results from Theorem 4.1 and Corollary 4.1, we have γ∗(S ) − T ⊆ γ∗(S ) ⊆ γ∗[γ∗(S )] ⊆
γ∗[γ∗(S ) − T ]. By Theorem 4.2, we get that γ∗(S ) − T ∈ σγ∗ .

Conversely, let S ∈ σγ∗ . Therefore, S ⊆ γ∗(S ). Since σ is compatible for P, then by Theorem 5.3,
we have [γ∗(S ) − S ]c < P. Let T = γ∗(S ) − S . Therefore, S = γ∗(S ) − T and T c < P. Thus,
S ∈ {γ∗(S ) − T : S ⊆ M, T c < P} = σγ∗ . □

Theorem 5.5. Let (M, σ,P) be a PTS and σ is be compatible for P. Then, for every T ∈ σθ and
S ⊆ M, [γ(T ∩ S )]⋄ ⊆ γ(T ∩ S ) ⊆ γ(T ∩ γ(S )) ⊆ clθ(T ∩ γ(S )).

Proof. By (3) in Theorem 5.2 , we have γ(S ∩ T ) = γ((S ∩ T ) ∩ γ(S ∩ T )) By (1) in Theorem 3.3,
we get that γ((S ∩ T ) ∩ γ(S ∩ T )) ⊆ γ(T ∩ γ(S )). Additionally, by Theorem 3.3 and Lemma 3.1,
[γ(T ∩ S )]⋄ ⊆ cl(γ(T ∩ S )) = γ(T ∩ S ) ⊆ γ(T ∩ γ(S )) ⊆ clθ(T ∩ γ(S )). □

We now examine some of a compatible structure’s primal qualities and investigate some of its
attributes via primal topological spaces.

Proposition 5.2. Let (M, σ,P) be a PTS and σ be compatible for P. If T ⊆ γ(S ) ∩ γ∗(S ) and T , ∅
is open, then [T − S ]c < P and (T ⋄)c ∪ S c ∈ P for T, S ⊆ M.

Proof. Since σ is compatible for P, then by Theorem 5.3, we have that [γ∗(S ) − S ]c < P. Given that
T ⊆ γ(S ) ∩ γ∗(S ) such that T is a nonempty open set, as [γ∗(S ) − S ]c ⊆ [T − S ]c, then [T − S ]c < P

by heredity. Since T is an open nonempty set and T ⊆ γ(S ), then (T ⋄)c ∪ S c ∈ P by the definition of
γ(S ). □

We say that S = T [mod P] if [(S − T ) ∪ (T − S )]c < P, where [mod P] is an equivalence relation.
By (9) in Theorem 4.1, we have, if S = T [mod P], then γ∗(S ) = γ∗(T ).

Lemma 5.1. Let (M, σ,P) be a PTS and let σ be compatible for P. If S , T ∈ σθ, and γ∗(S ) = γ∗(T ),
then S = T [mod P].

Proof. Let S ∈ σθ. Then, by Lemma 4.1 we have S ⊆ γ∗(S ); hence, S − T ⊆ γ∗(S ) − T = γ∗(T ) − T
and [γ∗(T ) − T ]c < P by Theorem 5.3. Consequently, [S − T ]c < P and [T − S ]c < P. Now,
(S − T )c ∩ (T − S )c = [(S − T ) ∪ (T − S )]c < P by additivity. Hence, S = T [mod P]. □
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Definition 5.3. Let (M, σ,P) be a PTS and let S ⊆ M. We say that S is a Baire set pertaining to σ
and P, and we write S ∈ Bθ if there exists W ∈ σθ such that S = W [mod P].

Theorem 5.6. Let (M, σ,P) be aPTS such thatσ is compatible forP. If S ,T ∈ Bθ and γ∗(S ) = γ∗(T ),
then S = T [mod P].

Proof. Let W1,W2 ∈ σθ such that S = W1 [mod P] and T = W2 [mod P]. Then, by using the
result (9) in Theorem 4.1, we have γ∗(S ) = γ∗(W1) and γ∗(T ) = γ∗(W2). Since γ∗(S ) = γ∗(T ), then
γ∗(W1) = γ∗(W2), which implies that W1 = W2 [mod P] by Lemma 5.1. Thus, S = T [mod P]
by transitivity. □

Theorem 5.7. Let (M, σ,P) be a PTS. If σ − {M} ⊆ P such that σ is compatible for the primal P,
then γ∗(S ) ⊆ γ(S ) for any set S ⊆ M.

Proof. Let s ∈ γ∗(S ). Suppose that s < γ(S ). Then, there exists Ws ∈ σ(s) such that [W⋄
s ∩ S ]c < P.

Since s ∈ γ∗(A), then there exists H ∈ σ(s) and [H⋄ − S ]c < P. Thus, [(Ws ∩ H)⋄ ∩ S ]c < P and
[(Ws∩H)⋄−S ]c < P by heredity. Consequently, [(Ws∩H)⋄]c = [(Ws∩H)⋄∩S ]c∩[(Ws∩H)⋄−S ]c < P.
Since [(Ws∩H)⋄]c ∈ σ(s), which is a contradiction to σ−{M} ⊆ P, s ∈ γ(S ). Hence, γ∗(S ) ⊆ γ(S ). □

6. Conclusions

Acharjee et al. introduced a new mathematical structure called primal in [11], which is the inverse of
the concept of grills. They also provided results that connect topological spaces with primal topological
spaces. Since the concept of primal topological spaces has been quickly developed Al-Shami et al.
in [12] defined soft primal soft topology. Moreover, Al-Omari et al. has introduced a new structure,
called the soft primal, in [13], and investigated its properties and applications. Also, Ameen et al.
presented results regarded to the concept of fuzzy primal in [14]. Furthermore, Al-Omari found out
a new class of proximity spaces called primal-proximity spaces, which are derived from the notion of
primal in [15]. This study had an important role in the improvement of operators in primal topological
spaces. The aim of this study is to introduce and examine some novel operators based on primal
structures, which enrich the field of primal topological spaces by generating new frameworks that
enable us to formulate new notions and properties. Moreover, by using these operators, we were able
to construct a new topological space that will help to discover new notations and applications in this
area. This also contributes significantly in the improvement of other topological notions such as fuzzy
and soft primal topological spaces. In future work, we will explore more results regarding to the primal
topological spaces.
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