

AIMS Mathematics, 9(7): 19068–19069. DOI: 10.3934/math.2024928 Received: 06 June 2024 Revised: 06 June 2024 Accepted: 06 June 2024 Published: 06 June 2024

http://www.aimspress.com/journal/Math

Correction

Correction: Generalized primal topological spaces

Hanan Al-Saadi^{1,*} and Huda Al-Malki²

- ¹ Department of Mathematics, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- ² Department of Basic Sciences, Adham University College, Umm Al-Qura University, Saudi Arabia

* Correspondence: Email: Hsssaadi@uqu.edu.sa.

Abstract: The purpose of this note is to give some mistyping corrections for our published article in [1].

Keywords: generalized primal topology; generalized primal neighbourhood; (g, \mathcal{P}) -open sets; cl^{\diamond} -operator; Φ -operator

Mathematics Subject Classification: 54A05, 54A10, 54A20

A correction on

Generalized primal topological spaces,

by Hanan Al-Saadi and Huda Al-Malki. AIMS Mathematics, 2023, 8(10): 24162–24175. DOI:10.3934/math.20231232.

These errata give the following correct statements for the corresponding statements on the cited page of our published article [1].

The description of Examples 3.1–3.3 on pages 24165 and 24166 in [1] is incomplete, now it is corrected as below:

Example 0.1. Consider $X = \{a, b, c\}$, $g = \{\phi, \{a, b\}, \{a, c\}, X\}$ and the primal set $\mathcal{P} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Hence, (X, g, \mathcal{P}) is a generalized primal topological space.

Example 0.2. Consider

 $X = \{a, b, c\}, \quad \mathfrak{g} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$

and

 $\mathcal{P} = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}.$

Let $A = \{a, b\}$ *. Then,* $A^{\diamond} = \{b, c\}$ *. Therefore,* $A^{\diamond} \not\subseteq A$ *and* $A \not\subseteq A^{\diamond}$ *.*

Example 0.3. Consider

$$X = \{a, b, c\}, \quad g = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$$

and

 $\mathcal{P} = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}.$

Let $A = \{a, b\}$ *and* $B = \{c\}$ *. Then,*

 $A^{\diamond} = \{b, c\} and B^{\diamond} = \{c\}.$

Thus, $A^{\diamond} \cap B^{\diamond} = \{c\}$ and $(A \cap B)^{\diamond} = \phi$. Therefore,

$$A^{\diamond} \cap B^{\diamond} \not\subseteq (A \cap B)^{\diamond}.$$

Conflict of interest

The authors declare no conflicts of interest.

References

1. Hanan Al-Saadi, Huda Al-Malki, Generalized primal topological spaces, *AIMS Math.*, **8** (2023), 24162–24175. https://doi.org/10.3934/math.20231232

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)