The main purpose of this paper is to introduce and study two new operators $ (\cdot)_R^{\diamond} $ and $ cl_R^{\diamond}(\cdot) $ via primal, which is a new notion. We show that the operator $ cl_R^{\diamond}(\cdot) $ is a Kuratowski closure operator, while the operator $ (\cdot)_R^{\diamond} $ is not. In addition, we prove that the topology on $ X $, shown as $ \tau_R^{\diamond}, $ obtained by means of the operator $ cl_R^{\diamond}(\cdot), $ is finer than $ \tau_{\delta}, $ where $ \tau_{\delta} $ is the family of $ \delta $-open subsets of a space $ (X, \tau). $ Moreover, we not only obtain a base for the topology $ \tau_R^{\diamond} $ but also prove many fundamental results concerning this new structure. Furthermore, we provide many counterexamples related to our results.
Citation: Murad ÖZKOÇ, Büşra KÖSTEL. On the topology $ \tau^{\diamond}_R $ of primal topological spaces[J]. AIMS Mathematics, 2024, 9(7): 17171-17183. doi: 10.3934/math.2024834
The main purpose of this paper is to introduce and study two new operators $ (\cdot)_R^{\diamond} $ and $ cl_R^{\diamond}(\cdot) $ via primal, which is a new notion. We show that the operator $ cl_R^{\diamond}(\cdot) $ is a Kuratowski closure operator, while the operator $ (\cdot)_R^{\diamond} $ is not. In addition, we prove that the topology on $ X $, shown as $ \tau_R^{\diamond}, $ obtained by means of the operator $ cl_R^{\diamond}(\cdot), $ is finer than $ \tau_{\delta}, $ where $ \tau_{\delta} $ is the family of $ \delta $-open subsets of a space $ (X, \tau). $ Moreover, we not only obtain a base for the topology $ \tau_R^{\diamond} $ but also prove many fundamental results concerning this new structure. Furthermore, we provide many counterexamples related to our results.
[1] | S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, submitted for publication. |
[2] | A. Al-Omari, S. Acharjee, M. Özkoç, A new operator of primal topological spaces, Mathematica, 65 (2023), 175–183. http://doi.org/10.24193/mathcluj.2023.2.03 doi: 10.24193/mathcluj.2023.2.03 |
[3] | H. Al-Saadi, H. Al-Malki, Categories of open sets in generalized primal topological spaces, Mathematics, 12 (2024), 207. http://doi.org/10.3390/math12020207 doi: 10.3390/math12020207 |
[4] | A. Al-Omari, M. Özkoç, S. Acharjee, Primal-proximity spaces, submitted for publication. |
[5] | A. Al-Omari, M. H. Alqahtani, Primal structure with closure operators and their applications, Mathematics, 11 (2023), 4946. https://doi.org/10.3390/math11244946 doi: 10.3390/math11244946 |
[6] | A. Al-Omari, O. Alghami, Regularity and normality on primal spaces, AIMS Mathematics, 9 (2024), 7662–7672. http://doi.org/10.3934/math.2024372 doi: 10.3934/math.2024372 |
[7] | T. M. Al-shami, H. Işık, A. S. Nawar, R. A. Hosny, Some topological approaches for generalized rough sets via ideals, Math. Probl. Eng., 2021 (2021), 5642982. https://doi.org/10.1155/2021/5642982 doi: 10.1155/2021/5642982 |
[8] | T. M. Al-shami, M. Hosny, Improvement of approximation spaces using maximal left neighborhoods and ideals, IEEE Access, 10 (2022), 79379–79393. http://doi.org/10.1109/ACCESS.2022.3194562 doi: 10.1109/ACCESS.2022.3194562 |
[9] | T. M. Al-shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with applications, Demonstr. Math., 56 (2023), 20220223. http://doi.org/10.1515/dema-2022-0223 doi: 10.1515/dema-2022-0223 |
[10] | T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. http://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7 |
[11] | T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. http://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x |
[12] | T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0 |
[13] | T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 2329. https://doi.org/10.3390/math11102329 |
[14] | Z. A. Ameen, R. A. Mohammed, T. M. Al-shami, B. A. Asaad, Novel fuzzy topologies from old through fuzzy primals, 2023, arXiv: 2308.06637. https://doi.org/10.48550/arXiv.2308.06637 |
[15] | F. Alsharari, H. Alohali, Y. Saber, F. Smarandache, An introduction to single-valued neutrosophic primal theory, Symmetry, 16 (2024), 402. https://doi.org/10.3390/sym16040402 doi: 10.3390/sym16040402 |
[16] | G. Choquet, Sur les notions de filter et grille, Comptes Rendus Acad. Sci. Paris, 224 (1947), 171–173. |
[17] | A. Ç. Güler, E. D. Yıldırım, O. Özbakır, Rough approximations based on different topologies via ideals, Turk. J. Math., 46 (2022), 1177–1192. https://doi.org/10.55730/1300-0098.3150 doi: 10.55730/1300-0098.3150 |
[18] | R. A. Hosny, $\delta$-Sets with grill, International Mathematical Forum, 7 (2012), 2107–2113. |
[19] | M. Hosny, Rough sets theory via new topological notions based on ideals and applications, AIMS Mathematics, 7 (2021), 869–902. https://doi.org/10.3934/math.2022052 doi: 10.3934/math.2022052 |
[20] | M. Hosny, T. M. Al-shami, Rough set models in a more general manner with applications, AIMS Mathematics, 7 (2022), 18971–19017. https://doi.org/10.3934/math.20221044 doi: 10.3934/math.20221044 |
[21] | R. A. Hosny, B. A. Asaad, A. A. Azzam, T. M. Al-shami, Various topologies generated from $E_j$-neighbourhoods via ideals, Complexity, 2021 (2021), 4149368. http://doi.org/10.1155/2021/4149368 doi: 10.1155/2021/4149368 |
[22] | R. A. Hosny, T. M. Al-shami, A. A. Azzam, A. S. Nawar, Knowledge based on rough approximations and ideals, Math. Probl. Eng., 2022 (2022), 3766286. http://doi.org/10.1155/2022/3766286 doi: 10.1155/2022/3766286 |
[23] | M. Hosny, Generalization of rough sets using maximal right neighbourhood and ideals with medical applications, AIMS Mathematics, 7 (2022), 13104–13138. https://doi.org/10.3934/math.2022724 doi: 10.3934/math.2022724 |
[24] | D. Janković, T. R. Hamlett, New topologies from old via ideals, Am. Math. Mon., 97 (1990), 295–310. https://doi.org/10.1080/00029890.1990.11995593 doi: 10.1080/00029890.1990.11995593 |
[25] | K. Kuratowski, Topology, American: Academic Press, 2014. |
[26] | S. Modak, Topology on grill-filter space and continuity, Bol. Soc. Paran. Mat., 31 (2013), 219–230. https://doi.org/10.5269/bspm.v31i2.16603 doi: 10.5269/bspm.v31i2.16603 |
[27] | S. Modak, Grill-filter space, Journal of the Indian Mathematical Society, 80 (2013), 313–320. |
[28] | E. H. Moore, H. L. Smith, A general theory of limits, Am. J. Math., 44 (1922), 102–121. https://doi.org/10.2307/2370388 |
[29] | H. I. Mustafa, T. M. Al-shami, R. Wassef, Rough set paradigms via containment neighborhoods and ideals, Filomat, 37 (2023), 4683–4702. http://doi.org/10.2298/FIL2314683M doi: 10.2298/FIL2314683M |
[30] | A. A. Azzam, A. A. Nasef, Some topological operators via grills, Journal of Linear and Topological Algebra, 5 (2016), 199–204. |
[31] | Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 |
[32] | B. Roy, M. N. Mukherjee, Concerning topologies induced by principal grills, Annals of the Alexandru Ioan Cuza University, 55 (2009), 285–294. |
[33] | B. Roy, M. N. Mukherjee, On a typical topology induced by a grill, Soochow Journal of Mathematics, 33 (2007), 771–786. |
[34] | B. Roy, M. N. Mukherjee, On a type of compactness via grills, Mat. Vestn., 59 (2007), 113–120. |
[35] | B. Roy, M. N. Mukherjee, S. K. Ghosh, On a new operator based on a grill and its associated topology, Arab Journal of Mathematical Sciences, 14 (2008), 21–32. |
[36] | M. H. Stone, Applications of the theory of Boolean rings to general topology, T. Am. Math. Soc., 41 (1937), 375–481. https://doi.org/10.2307/1989788 doi: 10.2307/1989788 |
[37] | O. A. E. Tantawy, H. I. Mustafa, On rough approximations via ideals, Inform. Sci., 251 (2013), 114–125. https://doi.org/10.1016/j.ins.2013.05.012 doi: 10.1016/j.ins.2013.05.012 |
[38] | W. J. Thron, Proximity structures and grills, Math. Ann., 206 (1973), 35–62. https://doi.org/10.1007/BF01431527 doi: 10.1007/BF01431527 |
[39] | N. V. Veličko, $H$-Closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103–118. |