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1. Introduction and motivation

The Fox-Wright function, denoted by pΨq, which is a generalization of hypergeometric functions,
and it defined as follows [1] (see also [2, p. 4, Eq (2.4)]):

pΨq

[ (a1, A1), · · · , (ap, Ap)
(b1, B1), · · · , (bq, Bq)

∣∣∣∣z] = pΨq

[ (ap,Ap)
(bq,Bq)

∣∣∣∣z]

=

∞∑
k=0

p∏
l=1

Γ(al + kAl)

q∏
l=1

Γ(bl + kBl)

zk

k!
,

(1.1)
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where A j ≥ 0 ( j = 1, · · · , p) and Bl ≥ 0 (l = 1, · · · , q). The convergence conditions and convergence
radius of the series on the right-hand side of (1.1) immediately follow from the known asymptote of
the Euler gamma function. The defining series in (1.1) converges in the complex z-plane when

∆ = 1 +

q∑
j=1

B j −

p∑
i=1

Ai > 0.

If ∆ = 0, then the series in (1.1) converges for |z| < ρ and |z| = ρ under the condition<(µ) > 1
2 , where

ρ =

 p∏
i=1

A−Ai
i


 q∏

j=1

BB j

j

 , µ =

q∑
j=1

b j −

p∑
k=1

ak +
p − q

2
.

The Fox-Wright function extends the generalized hypergeometric function pFq[z] the power series
form of which is as follows [3, p. 404, Eq (16.2.1)]:

pFq

[ ap

bq

∣∣∣∣z] =

∞∑
k=0

p∏
l=1

(al)k

q∏
l=1

(bl)k

zk

k!
,

where, as usual, we make use of the Pochhammer symbol (or rising factorial) given below:

(τ)0 = 1; (τ)k = τ(τ + 1) · · · (τ + k − 1) =
Γ(τ + k)

Γ(τ)
, k ∈ N.

In the special case that Ap = Bq = 1 the Fox-Wright function pΨq[z] reduces (up to the multiplicative
constant) to the following generalized hypergeometric function:

pΨq

[ (ap, 1)
(bq, 1)

∣∣∣∣z] =
Γ(a1) · · · Γ(ap)
Γ(b1) · · · Γ(bq) pFq

[ ap

bq

∣∣∣∣z].
For p = q = a1 = A1 = 1, b1 = β, and B1 = α, we recover from (1.1) the two-parameter Mittag-

Leffler function Eα,β(z) (also known as the Wiman function [4]) defined as follows (see, for example,
[5, Chapter 4]):

Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
, min(α, β, t) > 0. (1.2)

To provide the exposition of the results in the present investigation, we need the so-called
incomplete Fox-Wright functions pΨ

(γ)
q [z] and pΨ

(γ)
q [z] that were introduced by Srivastava et al. in [6,

Eqs (6.1) & (6.6)]:

pΨ
(γ)
q

[ (µ,M, x), (ap−1,Ap−1)
(bq,Bq)

∣∣∣∣z] =

∞∑
k=0

γ(µ + k M, x)
p−1∏
j=1

Γ(a j + kA j)

q∏
j=1

Γ(b j + kB j)

zk

k!
,
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and

pΨ
(Γ)
q

[ (µ,M, x), (ap−1,Ap−1)
(bq,Bq)

∣∣∣∣z] =

∞∑
k=0

Γ(µ + k M, x)
p−1∏
j=1

Γ(a j + kA j)

q∏
j=1

Γ(b j + kB j)

zk

k!
,

where γ(a, x) and Γ(a, x) denote the lower and upper incomplete gamma functions, the integral
expression of which is as follows [3, p. 174, Eq (8.2.1-2)]):

γ(ν, x) =

∫ x

0
e−ttν−1dt, x > 0,<(ν) > 0, (1.3)

and
Γ(ν, x) =

∫ ∞

x
e−ttν−1dt, x > 0,<(ν) > 0. (1.4)

These two functions satisfy the following decomposition formula [3, p. 136, Eq (5.2.1)]:

Γ(ν, x) + γ(ν, x) = Γ(ν), <(ν) > 0. (1.5)

The positivity constraint of parameters M, A j, B j > 0 should satisfy the following constraint:

∆(γ) = 1 +

q∑
j=1

B j − M −
p−1∑
i=1

Ai ≥ 0,

where the convergence conditions and characteristics coincide with the ones around the ‘complete’
Fox-Wright function pΨq[z].

The properties of some functions related to the incomplete special functions including their
functional inequalities, have been the subject of several investigations [7–13]. A certain class of
incomplete special functions are widely used in some areas of applied sciences due to the relations
with well-known and less-known special functions, such as the Nuttall Q-function [14], the generalized
Marcum Q-function (see e.g., [14, p. 39]), the McKay Iν Bessel distribution (see e.g., [15, Theorem 1]),
the McKay Kν(a, b) distribution [16], and the non-central chi-squared distribution [17, Section 5]. The
incomplete Fox-Wright functions have important applications in communication theory, probability
theory, and groundwater pumping modeling; see [6, Section 6] for details. See also [18]. To date,
there have been many studies on a some class of functions related to the lower incomplete Fox-Wright
functions; see, for instance [19–21]. Also, Mehrez et al. [22] considered a new class of functions
related to the upper incomplete Fox-Wright function, defined in the following form:

K
(ν)
α,β(a, b) = 2

ν−1
2 e−

a2
2 2Ψ

(Γ)
1

[ ( ν+1
2 ,

1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣a√2
]
, (1.6)

(
a > 0, b ≥ 0, α ≥

1
2
, β > 0, ν > −1

)
.

In [22], several properties of the function defined by (1.6), including its differentiation formulas,
fractional integration formulas that can be obtained via fractional calculus and new summation
formulas that comprise the incomplete gamma function, as well as some other special functions (such
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as the complementary error function) are investigated. In this paper, we apply another point of view to
the following upper incomplete Fox-Wright function:

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z] = 21−νe
z2
2 K

(2ν−1)
α,β (

z
√

2
, b), (1.7)

(
min(z, ν, β) > 0, b ≥ 0, α ≥

1
2

)
.

By using certain properties of the two parameters of the Mittag-Leffler and incomplete gamma
functions, we derive new functional inequalities based on the aforementioned function defined in (1.7).
Furthermore, two classes of completely monotonic functions are presented.

2. Some useful lemmas

Before proving our main results, we need the following useful lemmas. One of the main tools is the
following result, i.e., which entails applying the Mellin transform on [b,∞) of the function e−

t2
2 Eα,β(t) :

Lemma 2.1. [22] The following integral representation holds true:

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z] = 21−ν
∫ ∞

b
t2ν−1e−

t2
2 Eα,β

( zt
√

2

)
dt, (2.1)

(
min(z, ν, β) > 0, b ≥ 0, α ≥

1
2

)
.

Remark 2.2. If we set b = 0 in Lemma 2.1, we obtain

2Ψ1

[ (ν, 1
2 ), (1, 1)
(β, α)

∣∣∣∣z] = 21−ν
∫ ∞

0
t2ν−1e−

t2
2 Eα,β

( zt
√

2

)
dt, (2.2)

(
z > 0, α ≥

1
2
, β > 0, ν > −1

)
.

Lemma 2.3. [23] Let (ak)k≥0 and (bk)k≥0 be two sequences of real numbers, and let the power series

f (t) =
∞∑

k=0
aktk and g(t) =

∞∑
k=0

bktk be convergent for |t| < r. If bk > 0 for k ≥ 0 and if the sequence

(ak/bk)k≥0 is increasing (decreasing) for all k, then the function t 7→ f (t)/g(t) is also increasing
(decreasing) on (0, r).

The following lemma, is one of the crucial facts in the proof of some of our main results.

Lemma 2.4. If min(α, β) > 1, then the function t 7→ e−tEα,β(t) is decreasing on (0,∞).

Proof. From the power-series representations of the functions t 7→ Eα,β(t) and t 7→ et, we get

e−t Eα,β(t) =

 ∞∑
k=0

tk

Γ(αk + β)

 /  ∞∑
k=0

tk

Γ(k + 1)


=:

 ∞∑
k=0

aktk

 /  ∞∑
k=0

bktk

 .
AIMS Mathematics Volume 9, Issue 7, 19070–19088.
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Given lemma 2.3, to prove that the function t 7→ e−tEα,β(t) is decreasing, it is sufficient to prove that
the sequence (ck)k≥0 = (ak/bk)k≥0 is decreasing. A simple computation gives

ck+1

ck
=

Γ(k + 2)Γ(αk + β)
Γ(k + 1)Γ(αk + α + β)

, k ≥ 0. (2.3)

Moreover, since the digamma function ψ(t) = Γ′(t)/Γ(t) is increasing on (0,∞), we get that the function

t 7→
Γ(t + λ)

Γ(t)
, λ > 0,

is increasing on (0,∞). This implies that the inequality

Γ(t + λ)Γ(t + δ) ≤ Γ(t)Γ(t + λ + δ), (2.4)

holds true for all λ, δ > 0. Now, we set t = k + 1, λ = 1 and δ = (α − 1)k + β − 1 in (2.4), we get

Γ(αk + β)Γ(k + 2) ≤ Γ(k + 1)Γ(αk + β + 1). (2.5)

Using the fact that Γ(αk + α + β) > Γ(αk + β + 1) for all min(α, β) > 1, and in consideration of (2.5),
we obtain

Γ(αk + β)Γ(k + 2) ≤ Γ(k + 1)Γ(αk + β + α). (2.6)

Bearing in mind (2.3) and the inequality (2.6), we can show that the sequence (ck)k≥0 is decreasing.
This, in turn, implies that the function t 7→ e−tEα,β(t) is decreasing on (0,∞) for all min(α, β) > 1. �

Lemma 2.5. Let α > 0 and β > 0. If

(α, β) ∈ J :=
{

(α, β) ∈ R2
+ :

Γ(β)
Γ2(α + β)

<
2

Γ(2α + β)
<

1
Γ(α + β)

}
, (2.7)

then
eηα,βt

Γ(β)
≤ Eα,β(t) ≤

1 − ηα,β + ηα,βet

Γ(β)
(t > 0), (2.8)

where
ηα,β :=

Γ(β)
Γ(α + β)

. (2.9)

Proof. The proof follows by applying [24, Theorem 3]. �

Remark 2.6. We see that the set J is nonempty; for example, we see that (1, β) ∈ J such that β > 1. For
instance, (1, 2) ∈ J.

The result in the next lemma has been given in [25, Theorem 4]. We present an alternative proof.

Lemma 2.7. For min(z, µ) > 0, the following holds:

γ(µ, z) ≥
zµe−

µ
µ+1 z

µ
. (2.10)

Moreover, for min(z, µ) > 0, we have

Γ(µ, z) ≤ Γ(µ) −
zµe−

µ
µ+1 z

µ
. (2.11)
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Proof. Let us denote

γ∗(µ, z) :=
γ(µ, z)

zµ
.

Given (1.3), we can obtain

γ∗(µ, z) =

∫ 1

0
tµ−1e−ztdt. (2.12)

We denote
Fµ(z) = log(µγ∗(µ, z)) and G(z) = z (z > 0).

We have that Fµ(0) = G(0) = 0. Since the function z 7→ γ∗(µ, z) is log-convex on (0,∞) (see, for
instance, the proof of Theorem 3.1 in [25]), we deduce that the function z 7→ Fµ(z) is convex on (0,∞).
This, in turn, implies that the function

z 7→ F′µ(z) =
F′µ(z)

G′(z)
,

is also increasing on (0,∞). Therefore, the function

z 7→
Fµ(z)
G(z)

=
Fµ(z) − Fµ(0)
G(z) −G(0)

,

is also increasing on (0,∞) according to L’Hospital’s rule for monotonicity [26]. Therefore, we have

Fµ(z)
G(z)

≥ lim
z→0

Fµ(z)
G(z)

= −
µ

µ + 1
.

Then, through straightforward calculations, we can complete the proof of inequality (2.10). Finally, by
combining (2.10) and (1.5), we obtain (2.11). �

3. Main results

The first set of main results read as follows.

Theorem 3.1. Let b > 0, z ≥ 0, min(α, β) > 1, b + 2ν > 1 and 0 < 2ν ≤ 1. Then, the following
inequalities are valid:

√
πb2ν−1e

z(z+2
√

2b)
4 Eα,β

( bz
√

2

)
2ν−

1
2

erfc
z +

√
2b

2

 ≤ 2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤

√
πb2ν−1e

z(z−2
√

2b)
4 Eα,β

( bz
√

2

)
2ν−

1
2

erfc
 √2b − z

2

 ,
(3.1)

where the equality holds true if z = 0 : also, here, erfc is the complementary error function, defined as
follows (see, e.g., [3, Eq (7.2.1)]):

erfc(b) =
2
√
π

∫ ∞

b
e−t2dt.

AIMS Mathematics Volume 9, Issue 7, 19070–19088.
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Proof. According to Lemma 2.4, the function t 7→ e−atEα,β(at) is decreasing on (0,∞) for all
min(α, β) > 1 and a > 0. It follows that the function t 7→ t2ν−1e−atEα,β(at) is decreasing on (0,∞)
for each min(α, β) > 1 and ν ∈ (0, 1

2 ]. Then, for all t ≥ b, we have

t2ν−1e−atEα,β(at) ≤ b2ν−1e−abEα,β(ab).

Therefore

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣a√2
]
≤

b2ν−1e−abEα,β(ab)
2ν−1

∫ ∞

b
e−

t2−2at
2 dt

=
b2ν−1e

a(a−2b)
2 Eα,β(ab)
2ν−1

∫ ∞

b
e−

(t−a)2
2 dt

=
b2ν−1e

a(a−2b)
2 Eα,β(ab)
2ν−1

∫ ∞

b−a
e−

t2
2 dt.

(3.2)

which readily implies that the upper bound in (3.1) holds true. Now, let us focus on the lower bound of
the inequalities corresponding to (3.1). We observe that the function t 7→ t2ν−1et is increasing on [b,∞)
if b + 2ν − 1 > 0 and, consequently the function t 7→ t2ν−1etEα,β(t) is increasing on [b,∞) under the
given conditions. Hence,

t2ν−1eatEα,β(at) ≥ b2ν−1eabEα,β(ab) (t ≥ b).

Then, we obtain

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣a√2
]
≥

b2ν−1eabEα,β(ab)
2ν−1

∫ ∞

b
e−

t2+2at
2 dt

=
b2ν−1e

a(a+2b)
2 Eα,β(ab)
2ν−1

∫ ∞

b
e−

(t+a)2
2 dt

=
b2ν−1e

a(a+2b)
2 Eα,β(ab)
2ν−1

∫ ∞

b+a
e−

t2
2 dt,

(3.3)

which completes the proof of the right-hand side of the inequalities defined in (3.1). This completes
the proof. �

Setting ν = 1
3 in Theorem 3.1, we can deduce the following results.

Corollary 3.2. For all b > 1
3 , z ≥ 0, and min(α, β) > 1, the following inequality holds:

c(b) e
z(z+2

√
2b)

4 Eα,β

( bz
√

2

)
erfc

z +
√

2b
2

 ≤ 2Ψ
(Γ)
1

[ ( 1
3 ,

1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤ c(b) e

z(z−2
√

2b)
4 Eα,β

( bz
√

2

)
erfc

 √2b − z
2

 , (3.4)

where c(b) =
6√
2π3b2.
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Example 3.3. Taking (α, β) = 2 and b = 1
√

2
in Corollary 3.2 gives the following statement (see

Figure 1):

L1(z) :=
√
π e

z(z+2)
4 E2,2

( z
2
)

erfc
(
z + 1

2

)
≤ 2Ψ

(Γ)
1

[ ( 1
3 ,

1
2 ,

1
4 ), (1, 1)

(2, 2)

∣∣∣∣z] =: φ1(z)

≤
√
π e

z(z−2)
4 E2,2

( z
2
)

erfc
(
1 − z

2

)
=: U1(z),

(3.5)

0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66 6.56.5 77 7.57.5

22

44

66

88

1010

1212

1414

1616

1818

z
Figure 1. The graph of the functions L1(z), φ1(z) and U1(z).

Theorem 3.4. Let ν > 0, min(z, b) ≥ 0, and min(α, β) > 1. Then,

e
z(
√

2z+4b)
4
√

2 Eα,β

( bz
√

2

)
φ2ν−1

(
− z
√

2
, b

)
2ν−1 ≤ 2Ψ

(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤

e
z(
√

2z−4b)
4
√

2 Eα,β

( bz
√

2

)
φ2ν−1

( z
√

2
, b)

2ν−1 ,

(3.6)

where φν(a, b) is defined by

φν(a, b) =

∫ ∞

b−a
(t + a)νe−

t2
2 dt. (3.7)

Proof. By applying part (a) of Lemma 2.4, we get

Eα,β(at) ≤ e−ab+atEα,β(ab). (3.8)

Moreover, by using the monotonicity of the function t 7→ eatEα,β(at), we have

Eα,β(at) ≥ eab−atEα,β(ab). (3.9)

Obviously, by repeating the same calculations as in Theorem 3.1, with the help of (3.8) and (3.9), we
obtain (3.6). �
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By applying ν = 1
2 in (3.6), we immediately obtain the following inequalities.

Corollary 3.5. Assume that min(z, b) ≥ 0 and min(α, β) > 1. Then, the following holds:

√
π e

z(
√

2z+4b)
4
√

2 Eα,β

( bz
√

2

)
erfc

z +
√

2b
2

 ≤ 2Ψ
(Γ)
1

[ (1
2 ,

1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤
√
π e

z(
√

2z−4b)
4
√

2 Eα,β

( bz
√

2

)
erfc

 √2b − z
2

 , (3.10)

where the equality holds only if z = 0.

Remark 3.6. It is worth mentioning that, if we set ν = 1
2 in Theorem 3.1, we obtain the inequalities

defined in (3.10), but under the condition b > 0.

Corollary 3.7. Under the assumptions of Corollary 3.5, the following inequalities hold:

e
z(
√

2z+4b)
4
√

2 Eα,β

( bz
√

2

)(
e−

(z+
√

2b)2
4 −

√
πz
2

erfc
z +

√
2b

2

 ) ≤ 2Ψ
(Γ)
1

[ (1, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤ e

z(
√

2z−4b)
4
√

2 Eα,β

( bz
√

2

) e− (z−
√

2b)2
4 +

√
πz
2

erfc
 √2b − z

2

 . (3.11)

Proof. Taking ν = 1 in (3.6) and keeping in mind the relation given by

φ1(a, b) =

∫ ∞

b−a
(t + a)e−

t2
2 dt

=

∫ ∞

b−a
te−

t2
2 dt + a

∫ ∞

b−a
e−

t2
2 dt

= e−
(b−a)2

2 + a
√
π

2
erfc

(
b − a
√

2

)
,

(3.12)

we readily establish (3.11) as well. �

Now, by making use of Corollary 3.5 and Corollary 3.7 with b = 0, we obtain the following specified
result.

Corollary 3.8. For z ≥ 0 and min(α, β) > 1, we have

Lα,β(z) :=
√
πe

z2
4

Γ(β)
erfc

( z
2

)
≤ 2Ψ1

[ ( 1
2 ,

1
2 ), (1, 1)
(β, α)

∣∣∣∣z] =: φα,β(z)

≤

√
πe

z2
4

Γ(β)
erfc

(
−z
2

)
=: Uα,β(z).

(3.13)
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By making use of Corollary 3.7 with b = 0, we obtain the following specified result.

Corollary 3.9. For z ≥ 0 and min(α, β) > 1, we have

L̃α,β(z) :=
2 −
√
πze

z2
4 erfc

(
z
2

)
2Γ(β)

≤ 2Ψ1

[ (1, 1
2 ), (1, 1)
(β, α)

∣∣∣∣z] =: φ̃α,β(z)

≤
2 +
√
πze

z2
4 erfc

(
−z
2

)
2Γ(β)

=: Ũα,β(z).

(3.14)

Example 3.10. If we set α = β = 2 in (3.13), we obtain the following inequalities (see Figure 2):

L2,2(z) :=
√
πe

z2
4 erfc

( z
2

)
≤ 2Ψ1

[ (1
2 ,

1
2 ), (1, 1)
(2, 2)

∣∣∣∣z] =: φ2,2(z)

≤
√
πe

z2
4 erfc

(
−z
2

)
=: Uα,β(z).

(3.15)

0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66 6.56.5 77 7.57.5

22

44

66

88

1010

1212

1414

1616

1818

z

Figure 2. The graph of the functions L2,2(z), φ2,2(z) and U2,2(z).

Example 3.11. If we set α = β = 2 in (3.14), we obtain the following inequalities (see Figure 3):

L̃2,2(z) :=
2 −
√
πze

z2
4 erfc

(
z
2

)
2

≤ 2Ψ1

[ (1, 1
2 ), (1, 1)
(2, 2)

∣∣∣∣z] =: φ̃2,2(z)

≤
2 +
√
πze

z2
4 erfc

(
−z
2

)
2

=: Ũ2,2(z).

(3.16)
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Figure 3. The graph of the functions L̃2,2(z), φ̃2,2(z) and Ũ2,2(z).

Theorem 3.12. Let ν > 0,min(z, b) ≥ 0, and (α, β) ∈ J such that α ≥ 1
2 . Then, the following inequalities

hold:

21−νe
(zηα,β)2

4

Γ(β)
φ2ν−1

(ηα,βz
√

2
, b

)
≤ 2Ψ

(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤

1 − ηα,β
Γ(β)

Γ

(
ν,

b2

2

)
+

21−ν ηα,β e
z2
4

Γ(β)
φ2ν−1(

z
√

2
, b).

(3.17)

Proof. By considering the left-hand side of the inequalities defined in (2.8), i.e., where we applied the
substitution u = t − c(α, β), we have

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣√2a
]
≥

21−ν

Γ(β)

∫ ∞

b
t2ν−1e−

t2−2aηα,βt
2 dt

=
21−νe

(aηα,β)2

2

Γ(β)

∫ ∞

b
t2ν−1e−

(t−ηα,β)2

2 dt

=
21−νe

(aηα,β)2

2

Γ(β)

∫ ∞

b−aηα,β
(u + aηα,β)2ν−1e−

u2
2 du,

(3.18)

which implies the right-hand side of (3.17). It remains for us to prove the left-hand side of the
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inequalities defined in (3.17). By applying the right-hand side of (2.8), we get

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣√2a
]
≤

21−ν

Γ(β)

∫ ∞

b
t2ν−1e−

t2
2
[
1 − ηα,β + ηα,βeat

]
dt

=
21−ν(1 − ηα,β)

Γ(β)

∫ ∞

b
t2ν−1e−

t2
2 dt

+
21−νηα,β e

a2
2

Γ(β)

∫ ∞

b
t2ν−1e−

(t−a)2
2 dt

=
1 − ηα,β

Γ(β)
Γ

(
ν,

b2

2

)
+

21−νηα,β e
a2
2

Γ(β)

∫ ∞

b−a
(t + a)2ν−1e−

t2
2 dt.

Then, we can readily establish (3.17) as well. �

Corollary 3.13. For min(z, b) ≥ 0 and (α, β) ∈ J such that α ≥ 1
2 , the following holds:

√
πe

(ηα,βz)2

4

Γ(β)
erfc

 √2b − ηα,βz
2

 ≤ 2Ψ
(Γ)
1

[ ( 1
2 ,

1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤

√
π(1 − ηα,β)

Γ(β)
erfc

(
b
√

2

)
+

√
π ηα,β e

z2
4

Γ(β)
erfc

 √2b − z
2

 ,
(3.19)

and the corresponding equalities hold for z = 0.

Proof. By applying ν = 1
2 in (3.17) and performing some elementary simplifications, the asserted result

described by (3.19) follows. �

As a result of b = 0 in (3.19), we get the following result:

Corollary 3.14. For ν > 0 and (α, β) ∈ J such that α ≥ 1
2 , the inequalities

√
πe

(ηα,βz)2

4

Γ(β)
erfc

(
−ηα,βz

2

)
≤ 2Ψ1

[ ( 1
2 ,

1
2 ), (1, 1)
(β, α)

∣∣∣∣z]
≤

√
π(1 − ηα,β)

Γ(β)
+

√
π ηα,β e

z2
4

Γ(β)
erfc

(
−z
2

)
,

(3.20)

hold for all z ≥ 0. Moreover, the corresponding equalities hold for z = 0.

Example 3.15. If we set ν = 1
2 , α = 1, and β = 2 in (3.20), we obtain the following inequalities (see

Figure 4):

L2(z) :=
√
π e

z2
16 erfc

(
−z
4

)
≤ 2Ψ1

[ ( 1
2 ,

1
2 ), (1, 1)
(2, 1)

∣∣∣∣z] =: φ2(z)

≤

√
π

2

(
1 + e

z2
4 erfc

(
−z
2

))
=: U2(z),

(3.21)

where z ≥ 0.
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Figure 4. The graph of the functions L2(z), φ2(z) and U2(z).

Theorem 3.16. For min(ν, z) > 0 and b ≥ 0, the following holds:

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z] ≤ 2Ψ1

[ (ν, 1
2 ), (1, 1)
(β, α)

∣∣∣∣z]
−

(
b2

2

)ν
e−

b2
2

(
2ν + b2

2ν

)
Eα,β

(
bz
√

2

)
.

(3.22)

Furthermore, if ν ≥ 1, b ≥ 0 and z > 0, the following holds:

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z] ≥ (
b2

2

)ν−1

e−
b2
2 Eα,β

(
bz
√

2

)
. (3.23)

Proof. By applying (2.11) we obtain

2Ψ1

[ (ν, 1
2 ), (1, 1)
(β, α)

∣∣∣∣z] − 2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z]
≥

(
b2

2

)ν
e−

b2
2

∞∑
k=0

e
b2

2ν+k
(
(zb)/

√
2
)k

Γ(αk + β)

≥

(
b2

2

)ν
e−

b2
2

∞∑
k=0

(
1 + b2

2ν+k

) (
(zb)/

√
2
)k

Γ(αk + β)

=

(
b2

2

)ν
e−

b2
2 Eα,β

(
bz
√

2

)
+

(
b2

2

)ν
e−

b2
2

∞∑
k=0

b2((zb)/
√

2
)k

(2ν + k)Γ(αk + β)

≥

(
b2

2

)ν
e−

b2
2 Eα,β

(
bz
√

2

)
+

(
b2

2

)ν+1 e−
b2
2

ν
Eα,β

(
bz
√

2

)
,

(3.24)
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which is equivalent to the inequality (3.22). Now, let us focus on the inequalities (3.23). By applying
the following inequality [3, Eq (8.10.1)]

Γ(µ, z) ≥ zµ−1e−z, (z > 0, µ ≥ 1). (3.25)

Then, we get

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z] ≥ (
b2

2

)ν−1

e−
b2
2

∞∑
k=0

(
(zb)/

√
2
)k

Γ(αk + β)

=

(
b2

2

)ν−1

e−
b2
2 Eα,β

(
bz
√

2

)
.

(3.26)

The proof is complete. �

We recall that a real valued function f , defined on an interval I, is called completely monotonic on
I if f has derivatives of all orders and satisfies

(−1)n f (n)(z) ≥ 0, (n ∈ N0, z ∈ I).

These functions play an important role in numerical analysis and probability theory. For the main
properties of the completely monotonic functions, we refer the reader to [27, Chapter IV].

Theorem 3.17. Let ν > 0 and b ≥ 0. If 0 < α ≤ 1 and β ≥ α, then the function

z 7→ 2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣ − z
]
,

is completely monotonic on (0,∞). Furthermore, for 0 < α ≤ 1 and β ≥ α, the inequality

2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣ − z
]
≥ Γ

(
ν,

b2

2

)
exp

− Γ
(

2ν+1
2 , b2

2

)
Γ(α + β)Γ

(
ν, b2

2

)z

 (3.27)

holds for all z > 0 and b ≥ 0.

Proof. In [28], Schneider proved that the function z 7→ Eα,β(−z) is completely monotonic on (0,∞)
under the parametric restrictions α ∈ (0, 1] and β ≥ α (see also [29]). Then, by considering (2.1), we
conclude that

(−1)k ∂
k

∂zk

(
2Ψ

(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣ − z
])
≥ 0 (k ∈ N0, z > 0).

Finally, for inequality (3.27), we can observe that the function

z 7→ 2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣ − z
]
,

is log-convex on (0,∞) since every completely monotonic function is log-convex; see [27, p. 167].
Now, for convenience, let us denote

Φ(z) := 2Ψ
(Γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣ − z
]
, F (z) := log

(
Φ(z)

/
Γ
(
ν,

b2

2
))

and G(z) = z.
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Hence, the function z 7→ F (z) is convex on (0,∞) such that F (0) = 0. Therefore, the function z 7→ F ′(z)
G′(z)

is increasing on (0,∞). Again, according to L’Hospital’s rule of monotonicity [26], we conclude that
the function

z 7→
F (z)
G(z)

=
F (z) − F (0)
G(z) − G(0)

,

is increasing on (0,∞). Consequently,

F (z)
G(z)

≥ lim
z→0

F (z)
G(z)

= F ′(0). (3.28)

On the other hand, by (2.1), we have

Φ′(0) = −
2

1−2ν
2

Γ(α + β)

∫ ∞

b
t2νe−

t2
2 dt

= −
Γ
(

2ν+1
2 , b2

2

)
Γ(α + β)

.

(3.29)

By combining (3.28) and (3.29) via some obvious calculations, we can obtain the asserted bound (3.27).
�

By setting b = 0 in Theorem 3.17, we can obtain the following results:

Corollary 3.18. Let ν > 0. If 0 < α ≤ 1 and β ≥ α, then the function

z 7→ 2Ψ1

[ (ν, 1
2 ), (1, 1)
(β, α)

∣∣∣∣ − z
]
,

is completely monotonic on (0,∞). Furthermore, for 0 < α ≤ 1 and β ≥ α, the inequality

2Ψ1

[ (ν, 1
2 ), (1, 1)
(β, α)

∣∣∣∣ − z
]
≥ Γ(ν) exp

− Γ
(

2ν+1
2

)
Γ(ν)Γ(α + β)

z

 , (3.30)

holds for all z ≥ 0.

Example 3.19. Letting ν = 1
2 , α = 1, and β = 2 in (3.27), we obtain the following inequality (see

Figure 5):

L3(z) :=
√
πe−

4
3π z ≤ 2Ψ1

[ ( 1
2 ,

1
2 ), (1, 1)
(2, 1)

∣∣∣∣ − z
]

=: φ3(z), z > 0. (3.31)

Remark 3.20. As in Section 3, we may derive new upper and/or lower bounds for the lower incomplete
Fox-Wright function 2Ψ

(γ)
1 [z], by simple replacing the relation (2.1) with the following relation:

2Ψ
(γ)
1

[ (ν, 1
2 ,

b2

2 ), (1, 1)
(β, α)

∣∣∣∣z] = 21−ν
∫ b

0
t2ν−1e−

t2
2 Eα,β

( zt
√

2

)
dt, (3.32)

(
min(z, ν, β) > 0, b ≥ 0, α ≥

1
2

)
.
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Figure 5. The graph of the functions L3(z) and φ3(z).

4. Applications

In [6, Section 6], Srivastava et al. presented several applications for the incomplete Fox-Wright
functions in communication theory and probability theory. It is believed that certain forms of the
incomplete Fox-Wright functions, which we have studied here, have the potential for application in
fields similar to those mentioned above, including probability theory.

5. Conclusions

In our present investigation, we have established new functional bounds for a class of functions
that are related to the lower incomplete Fox-Wright functions; see (1.7). We have also presented a
class of completely monotonic functions related to the aforementioned type of function. In particular,
we have reported on bilateral functional bounds for the Fox-Wright function 2Ψ1[.]. Moreover, we
have presented some conditions to be imposed on the parameters of the Fox-Wright function 2Ψ1[.],
and these conditions have allowed us to conclude that the function is completely monotonic. Some
applications of this type of incomplete special function have been discussed for probability theory.

The mathematical tools that have been applied in the proofs of the main results in this paper will
inspire and encourage the researchers to study new research directions that involve the formulation
of some other special functions related to the incomplete Fox-Wright functions, such as the Nuttall
Q-function [14], the generalized Marcum Q-function, and Marcum Q-function. Yet another novel
direction of research can be pursued for other special functions when we replace the two-parameter
Mittag-Leffler function with other special functions such as the three-parameter Mittag-Leffler function
(or Prabhakar’s function [30]), the two-parameter Wright function [2], and the four parameter Wright
function; see [31, Eq (21)].
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7. D. J. Masirević, T. K. Pogany, Bounds for confluent Horn function Φ2 deduced by McKay Iν Bessel
law, Rad Hrvatske akademije znanosti i umjetnosti Matematicke znanosti, 27 (2023), 123–131.
https://doi.org/10.21857/9xn31cd8wy

8. J. F. Paris, E. Martos-Naya, U. Fernández-Plazaola, J. López-Fernández, Analysis
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9. T. K. Pogány, Bounds for incomplete confluent Fox-Wright generalized hypergeometric functions,
Mathematics, 10 (2022), 3106. https://doi.org/10.3390/math10173106

10. K. Mehrez, New properties for several classes of functions related to the Fox-Wright functions, J.
Comput. Appl. Math., 362 (2019), 161–171. https://doi.org/10.1016/j.cam.2019.05.025

11. K. Mehrez, S. M. Sitnik, Functional inequalities for the Fox-Wright functions, Ramnjuan J., 50
(2019), 263–287. https://doi.org/10.1007/s11139-018-0071-2

12. K. Mehrez, Integral representation and computational properties of the incomplete Fox-Wright
function, Ramnjuan J., 58 (2022), 369–387. https://doi.org/10.1007/s11139-022-00571-7

13. M. M. Agrest, M. S. Maksimov, Theory of incomplete cylindrical functions and their Applications,
Berlin, Heidelberg: Springer, 1971. https://doi.org/10.1007/978-3-642-65021-5

14. Yu. A. Brychkov, On some properties of the Nuttall function Qµ,ν(a, b), Integr. Transf. Spec. Funct.,
25 (2014), 34–43. https://doi.org/10.1080/10652469.2013.812172
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29. K. Górska, A. Horzela, A. Lattanzi, T. K. Pogany, On complete monotonicity of
three parameter Mittag-Leffler function, Appl. Anal. Discr. Math., 15 (2021), 118–128.
https://doi.org/10.2298/AADM190226025G

30. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the
kernel, Yokohama Mathematical Journal, 19 (1971), 7–15.

31. Yu. Luchko, R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional
order, Fract. Calc. Appl. Anal., 1 (1998), 63–78.

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 7, 19070–19088.

https://dx.doi.org/https://doi.org/10.2140/pjm.1993.160.1
https://dx.doi.org/https://doi.org/10.2298/AADM190226025G
https://creativecommons.org/licenses/by/4.0

	Introduction and motivation
	Some useful lemmas
	Main results
	Applications
	Conclusions

