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1. Introduction

Fixed point theory focuses on the techniques to solve non-linear equations of the kind p(u) = u,
where p is self-mapping. As a result, the concrete solution of such equations takes into account “fixed
point theory”. Any approximative solution is also worth examining and can be determined using the
best proximity point theory in circumstances where such a problem cannot be solved. Best proximity
roughly translates to the smallest value of d(u, p(u)) if p(u) is not equal to u. Best proximity theorems,
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interestingly, are a natural development of fixed point theorems. When the mapping in question is
self-mapping, best proximity point becomes a fixed point. The existence of a best proximity point can
be determined by analyzing different types of proximal contractions [1–4].

The interpolative contraction principles consist of the product of distances having exponents
satisfying some conditions. The term “interpolative contraction” was introduced by the renowned
mathematician Erdal Karapinar in his paper [5] published in 2018. The interpolative contraction is
defined as follows:

A self-mapping S defined on a metric space (A, d) is said to be an interpolative contraction, if there
exist ν ∈ (0, 1] and K ∈ [0, 1) such that

d(S e, S r) ≤ K (d(e, r))ν ,∀e, r ∈ A.

Note that for ν = 1, S is a Banach contraction. If the mapping S defined on a metric space (A, d)
satisfies the following inequalities:

d(S e, S r) ≤ K (d(e, S e))ν (d(r, S r))1−ν ,

d(S e, S r) ≤ K (d(r, S e))ν (d(e, S r))1−ν ,

d(S e, S r) ≤ K (d(e, r))η (d(e, S e))ν (d(r, S r))1−ν−η , ν + η < 1

d(S e, S r) ≤ K (d(e, r))ν (d(e, S e))η (d(r, S r))γ
(
1
2

(d(e, S r) + d(r, S e))
)1−η−ν−γ

,

for all e, r ∈ A, then S is called interpolative Kannan type contraction, interpolative Chatterjea type
contraction, interpolative Ćirić-Reich-Rus type contraction and interpolative Hardy Rogers type
contraction respectively. Recently, many classical and advanced contractions have been revisited via
interpolation (see [6–9]).

Recently, Altun et al. [10], revisited all the interpolative contractions and defined interpolative
proximal contractions. They presented the best proximity theorems on such contractions. The aim of
this paper is to establish the best proximity point theorems for interpolative proximal contractions to
the case of non-self mappings.

The concept of fuzzy sets was given by Zadeh [11]. Schweizer and Sklar [12] defined the notion of
continuous t-norms. Gregory and Sapena [13] introduced the notion of fuzzy metric space by using the
concept of fuzzy sets, continuous t-norm, and metric space. Pakanazar [15] proved the best proximity
point theorems in a fuzzy metric space. The idea of best proximity points of the fuzzy mappings
in fuzzy metric space was introduced by Vetro and Salimi [16]. Also, Vetro and Salimi proved the
existence and uniqueness of the best proximity point in a non-Archimedean fuzzy metric space.

Many authors have extended this theorem in various directions and in this context Ajeti et al. [17]
introduced the notion of coupled best proximity points for some cyclic and semi-cyclic maps in a
reflexive Banach space. Gabeleh [18] introduce a new class of non-self mappings, called weak
proximal contractions and proved the existence and uniqueness results of the best proximity point for
weak proximal contractions. Some utilization of best proximity points has been discussed in [19–21].

Inspired, by these results, we introduce interpolative Kannan type, interpolative Reich-Rus-Ciric
type and interpolative Hardy Rogers type in non-Archimedean fuzzy metric space. The aim of this
paper is to generalize the interpolative type contraction in a complete non-Archimedean fuzzy metric
space. Recently, many nonlinear fuzzy models have appeared in the literature [22] and to show the
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existence of solutions to such mathematical models, we need generalized fuzzy contractive conditions.
In this regard, Hierro et al. [23] and Vetro and Salimi [16] have presented some generalized Lipschitz
conditions to obtain the best proximity point theorems. Motivated by the investigations [16,23], in this
paper, we suggest various generalized Lipschitz conditions in the fuzzy metric space that can be used
to show the existence of fuzzy models of nonlinear systems.

2. Preliminaries

Given two non-empty subsets R and G of a fuzzy metric space, the following notions and notations
are used in the sequel.

F(R,G, ω) = sup{F(u, v, ω) : u ∈ R, v ∈ G and ω > 0},
R0 (ω) = {u ∈ R : F(u, v, ω) = F(R,G, ω) for some v ∈ G},

G0 (ω) = {v ∈ G : F(u, v, ω) = F(R,G, ω) for some u ∈ R}.

For any (U, F, ∗) be a fuzzy metric space and R,G be any nonempty subsets of U. We say that G is
approximately compact with respect to R, if every sequence {un} in G satisfying the following condition

F (v, un, ω)→ F (v,G, ω)

for some v ∈ R, has a convergent subsequence.

Definition 2.1. [12] A binary operation ∗ : I × I → I is called a continuous t-norm if it satisfies the
following axioms:

(T1) a ∗ b = b ∗ a and a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ I;
(T2) ∗ is continuous;
(T3) a ∗ 1 = a for all a ∈ I;
(T4) a ∗ b ≤ c ∗ d when a ≤ c and b ≤ d, with a, b, c, d ∈ I.

Definition 2.2. [23] Let U be arbitrary set, F : U × U × (0,∞) → [0, 1] and ∗ is continuous t-norm
then (U, F, ∗) is said to be a fuzzy metric space if it satisfies the following axioms for all u, v,w ∈ U
and ω,$ > 0 :

C1: F (u, v, ω) > 0;
C2: F (u, v, ω) = 1 ⇐⇒ u = v;
C3: F (u, v, ω) = F (v, u, ω) ;
C4: F (u,w, ω +$) ≥ F (u, v, ω) ∗ F (v,w, $) ;
C5: F (u, v, .) : (0,∞)→ [0, 1] is continuous.
If we replace (C4) by
C6: F (u,w,max {ω,$}) ≥ F (u, v, ω) ∗ F (v,w, $) ,

then (U, F, ∗) is said to be non-Archimedean fuzzy metric space. Note that, since (C6) implies (C4),
each non-Archimedean fuzzy metric space is a fuzzy metric space.

Definition 2.3. [23] Let (U, F, ∗) be a fuzzy metric space. Then
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(i) A sequence {un} converges to u ∈ U if and only if F (un, u, ω)→ 1 as n→ +∞ for all ω > 0;
(ii) A sequence {un} in U is a Cauchy sequence if and only if for all ε ∈ (0, 1) and ω > 0, there exits

n0 such that F (un, um, ω) > 1 − ε for all m, n ≥ n0;
(iii) The fuzzy metric space is complete if every Cauchy sequence converges to some u ∈ U.

Definition 2.4. [16] Let (U, F, ∗) be a fuzzy metric space and R,G be any nonempty subsets of U.
We say that G is approximately compact with respect to R, if every sequence {un} in G satisfying the
following condition

F (v, un, ω)→ F (v,G, ω) ,

for some v ∈ R, has a convergent subsequence.

Definition 2.5. [16] Let (U, F, ∗) be a fuzzy metric space and R,G be non-empty subsets of U. An
element u in R is called a best proximity point of the mapping Υ : R→ G, if it satisfies the equation:

F (u,Υu, ω) = F (R,G, ω) .

A best proximity point of the mapping Υ is not only an approximate solution of the equation Υ(u) =

u but also an optimal solution of the minimization problem:

min {F (u,Υ(u), ω) : u ∈ R} .

3. Main results

In this section, we define non-Archimedean fuzzy interpolative contraction mappings and show that
it generalizes proximal contraction. We prove the existence of the best proximity points of proximal
contraction in a complete non-Archimedean fuzzy metric space followed by supporting examples.

3.1. Interpolative Kannan type proximal contraction in non-Archimedean fuzzy metric space

Definition 3.1. Let (U, F, ∗) be a complete non-Archimedean fuzzy metric space and R,G ⊆ U. A
mapping Υ : R → G is said to be interpolative Kannan type proximal contraction, if there exist
λ ∈ [0, 1) and α ∈ (0, 1) such that

F (u1, u2, ω) ≥ λ
(
(F (v1, u1, ω))α (F (v2, u2, ω))1−α

)
, (3.1)

for all u1, u2,v1, v2 ∈ R, ω > 0 and ui , vi, i ∈ {1, 2} with respect to F (u1,Υv1, ω) = F (R,G, ω),
F (u2,Υv2, ω) = F (R,G, ω) and F (u, v, ω) > 0.

Example 3.2. Let U = R × R and define the function F : U × U × (0,∞)→ [0, 1] by

F (u, v, ω) =
ω

ω + d ((u1, v1) , (u2, v2))
,

for all (u1, v1) , (u2, v2) ∈ U. Where d ((u1, v1) , (u2, v2)) =| u1 − v1 | + | u2 − v2|. Then (U, F, ∗) is a
non-Archimedean fuzzy metric space with ă ∗ ē = ăē for all ă, ē ∈ I. Let R,G ⊆ U defined by

R =

{(
0,

1
n

)
; n ∈ N

}
∪ {(0, 0)} ,
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G = {

(
1,

1
n

)
; n ∈ N} ∪ {(1, 0)} .

Define F(R,G, ω) = sup{F(u, v, ω) : u ∈ R, v ∈ G and ω > 0}. So, we have F(R,G, ω) = ω
ω+1 ,

R0 (ω) = R and G0 (ω) = G. Define the mapping Υ : R→ G by

Υ (u1, u2) =


(
1, 1

2n

)
, if (u1, u2) =

(
0, 1

n

)
for all n ∈ N

(1, 0) , if (u1, u2) = (0, 0)

for all (u1, u2) ∈ R. Then, clearly Υ (R0) ⊆ G0. Now, we show that Υ is a interpolative Kannan type
contraction. For u1 =

(
0, 1

2

)
, u2 =

(
0, 1

4

)
, v1 = (0, 1) , v2 =

(
0, 1

2

)
, α = 1

2 , λ = 1
3 and ω = 1.

F(u1,Υv1, ω) = F
((

0,
1
2

)
,Υ (0, 1) , 1

)
= F (R,G, ω) ,

and

F(u2,Υv2, ω) = F
((

0,
1
4

)
,Υ

(
0,

1
2

)
, 1

)
= F (R,G, ω) .

This implies that,

F (u1, u2, ω) = F
((

0,
1
2

)
,

(
0,

1
4

)
, 1

)
,

≥ λ (F (v1, u1, ω))α (F (v2, u2, ω))1−α ,

≥ λ

(
F

(
(0, 1) ,

(
0,

1
2

)
, 1

)) 1
2
(
F

((
0,

1
2

)
,

(
0,

1
4

)
, 1

))1− 1
2

,

which yield,
0.5714 ≥ 0.1826.

This shows that Υ is a interpolative Kannan type contraction. However, for u1 =
(
0, 1

2

)
, u2 =

(
0, 1

4

)
,

v1 = (0, 1) , v2 =
(
0, 1

2

)
, λ = 0.499 and ω = 1. Now, we have

F(u1,Υv1, ω) = F
((

0,
1
2

)
,Υ (0, 1) , 1

)
= F (R,G, ω) ,

and

F(u2,Υv2, ω) = F
((

0,
1
4

)
,Υ

(
0,

1
2

)
, 1

)
= F (R,G, ω) .

Implies,

(F (u1, u2, ω)) = F
((

0,
1
2

)
,

(
0,

1
4

)
, 1

)
≥ λ ((F (v1, u1, ω)) + (F (v2, u2, ω)))
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= λ


(
F

(
(0, 1) ,

(
0, 1

2

)
, 1

))
+F

((
0, 1

2

)
,
(
0, 1

4

)
, 1

)  ,
which yield

0.5714 ≥ λ (0.4 + 0.75) ,
0.5714 � 0.5739.

This is a contradiction. Hence, Υ is not a Kannan type contraction.

Next, we start our main results.

Theorem 3.3. Let (U, F, ∗) be a complete non-Archimedean fuzzy metric space and R,G ⊆ U such
that G is approximately compact with respect to R. Let Υ : R → G be a interpolative Kannan type
contraction. If R0 ⊆ R such that Υ (R0) ⊆ G0. Then Υ admits a best proximity point.

Proof. Let u0 ∈ R0. Since Υ(u0) ∈ Υ(R0) ⊆ G0 there exist u1 ∈ R0 such that,

F(u1,Υ(u0), ω) = F(R,G, ω).

Also, we have Υ(u1) ∈ Υ(R0) ⊆ G0. So, there exist u2 ∈ R0 such that,

F(u2,Υ(u1), ω) = F(R,G, ω).

This process of existence of point in R0 implies to have a sequence {un} ⊆ R0 such that,

F(un+1,Υ(un), ω) = F(R,G, ω), (3.2)

for all n ∈ N. Observe that, if there exist n ∈ N such that un = un+1 then from (3.2), the point un is a
best proximity point of the mapping Υ. On the other hand, if un , un+1 for all n ∈ N. Then by (3.2),
we have

F(un,Υ(un−1), ω) = F(R,G, ω),

and
F(un+1,Υ(un), ω) = F(R,G, ω),

for all n ≥ 1. Thus, by (3.1),

(F(un, un+1, ω)) ≥ λ (F(un−1, un, ω))α (F (un, un+1, ω))1−α , (3.3)

for all distinct un−1, un, un+1 ∈ R. Since, by (3.3), we have

F(un, un+1, ω) ≥ λ (F(un−1, un, ω))α (F (un, un+1, ω))1−α ,

(F(un, un+1, ω))α ≥ λ (F(un−1, un, ω))α . (3.4)

So, by (3.4), let Hn = F (un, un+1, ω). We have Hn−1 < Hn for all n ∈ N. This shows that the sequence
{Hn} is positive and strictly non-decreasing. Thus, it converges to some element H ≥ 1.Now from (3.4),
we have

F(un, un+1, ω) ≥ λ
1
α F(un−1, un, ω)
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≥ λ
2
α F(un−2, un−1, ω)

...

≥ λ
n
α F(u1, u0, ω).

Then Hn (ω) > Hn−1 (ω) , that is the sequence {Hn} is non-decreasing sequence for all ω > 0.
Consequently, there exist H (ω) ≤ 1 such that limn→∞ Hn (ω) = H (ω). Now, we claim that H (ω) = 1.
Suppose, to the contrary that 0 < H (ω0) < 1 for some ω0 > 0. Since Hn (ω0) ≥ H (ω0) , by taking the
limit with ω = ω0. We obtain

H (ω0) ≥ λ
1
α H (ω0) > H (ω0) .

Which is contradiction and hence, H (ω) = 1 for all ω > 0. Now, we show {un} is a cauchy sequence.
Assuming this is not true, then there exist ε ∈ (0, 1) and ω0 > 0 such that for all k ∈ N, there are
n (k) ,m (k) ∈ N with m (k) > n (k) ≥ k and

F
(
um(k), un(k), ω0

)
≤ 1 − ε.

Assume, that m (k) is the least integer exceeding n (k) satisfying the above inequality, that is
equivalently,

F
(
um(k)−1, un(k), ω0

)
> 1 − ε,

and so for all k we get

1 − ε ≥ F
(
um(k), un(k), ω

)
≥ F

(
um(k)−1, um(k), ω

)
∗ F

(
um(k)−1, un(k), ω

)
(3.5)

> Hm(k) (ω0) ∗ (1 − ε) .

Putting limit n→ ∞ in (3.5), we get that

lim
n→∞

F
(
um(k), un(k), ω0

)
= 1 − ε,

from

F
(
um(k)+1, un(k)+1, ω0

)
≥ F

(
um(k)+1, um(k), ω0

)
∗ F

(
um(k), un(k), ω0

)
∗ F

(
un(k), un(k)+1, ω0

)
,

and
F

(
um(k), un(k), ω0

)
≥ F

(
um(k), um(k)+1, ω0

)
∗ F

(
um(k), un(k)+1, ω0

)
∗ F

(
un(k)+1, un(k), ω0

)
,

we get
lim
n→∞

F
(
um(k)+1, un(k)+1, ω0

)
= 1 − ε.

From Eq (3.2), we know that

F
(
um(k)+1,Υum(k), ω0

)
= F (R,G, ω0)

and
F

(
un(k)+1,Υun(k), ω0

)
= F (R,G, ω0) .
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So, by (3.1),

F
(
um(k)+1, un(k)+1, ω0

)
≥ λ

(
F

(
um(k), um(k)+1, ω0

))α (
F

(
un(k), un(k)+1, ω0

))1−α ,

taking lim k → ∞, we get
1 − ε ≥ λ (1 − ε) > 1 − ε.

Which is contradiction. Then {un} is cauchy sequence. Since (U, F, ∗) is a complete non-Archimedean
fuzzy metric space and R is closed subset of U. Then there exist u ∈ R, such that limn→∞ F (un, u, ω) = 1.
Moreover,

F(R,G, ω) = F(un+1,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F (un+1,Υun, ω)

= F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F(R,G, ω).

This implies,

F(R,G, ω) ≥ F (un+1, u, ω) ∗ F(u,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F(R,G, ω).

Applying to limit as n→ ∞ in the above inequality, we get

F(R,G, ω) ≥ 1 ∗ lim
n→∞

F(u,Υ(un), ω)

≥ 1 ∗ 1 ∗ F(R,G, ω).

That is,
lim
n→∞

F(u,Υ(un), ω) = F(R,G, ω).

Therefore, F(u,Υ (un) , ω)→ F(u,G, ω) as n→ ∞. Since G is approximately compact with respect to
R, then there exist ξ ∈ R0 (ω) such that,

F (ξ,Υu, ω) = F(R,G, ω) = F(un+1,Υ(un), ω). (3.6)

We now show that u = ξ. If not, then

F (ξ, un+1, ω) ≥ λ (F (u, ξ, ω))α (F (un, un+1, ω))1−α ,

on taking limit as n→ ∞ gives

F (ξ, u, ω) ≥ λ (F (u, ξ, ω))α > (F (u, ξ, ω))α .

Which is contradiction. Hence F (u,Υu, ω) = F(R,G, ω) = F (ξ,Υξ, ω), that is , u is the best proximity
point. We show that u is the unique best proximity point of Υ. Assume, on the contrary, that 0 <

F (u, v, ω) < 1 for all ω > 0 and v , u is another best proximity point of Υ, i.e., F (u,Υu, ω) =

F(R,G, ω) = F (v,Υv, ω) then from (3.1), we have

F (u, v, ω) ≥ λ (F (u, u, ω))α (F (v, v, ω))1−α > 1.

Which is contradiction and hence, F (u, v, ω) = 1 for all ω > 0, that is u = v. �
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3.2. Interpolative Reich-Rus-Ciric type proximal contraction in non-Archimedean fuzzy metric space

Definition 3.4. Let (U, F, ∗) be a complete non-Archimedean fuzzy metric space, and R,G ⊆ U. A
mapping Υ : R → G is said to be a interpolative Reich-Rus-Ciric type proximal contraction, if there
exist α, β ∈ (0, 1) and λ ∈ [0, 1) with α + β < 1.

F (u2, u1, ω) ≥ λ (F (v1, v2, ω))α (F (v1, u1, ω))β (F (v2, u2, ω))1−α−β , (3.7)

for all u1, u2,v1, v2 ∈ R, ω > 0 and ui , vi, i ∈ {1, 2} with respect to F (u1,Υv1, ω) = F (R,G, ω),
F (u2,Υv2, ω) = F (R,G, ω) and F (u, v, ω) > 0.

Example 3.5. Let U = R2 and define the function F : U × U × (0,+∞)→ [0, 1] by

F(u, v, ω) =
ω

ω + d (u, v)
,

where d((u1, v1), (u2, v2)) =
2
√

(u2 − u1)2 + (v2 − v1)2 for all (u1, v1) , (u2, v2) ∈ U. Then (U, F, ∗) is a
non-Archimedean fuzzy metric space with ă ∗ ē = ăē for all ă, ē ∈ I. Let R,G ⊆ U defined as

R = {(0, u); u ∈ R},

G = {(1, u); u ∈ R}.

Define F(R,G, ω) = sup{F(u, v, ω) : u ∈ R, v ∈ G and ω > 0}. So we have F(R,G, ω) = ω
ω+1 ,

R0 (ω) = R, G0 (ω) = G. Define the mapping Υ : R→ G by

Υ ((0, γ)) = (1, 2γ),

for all (0, γ) ∈ R. Then clearly Υ (R0) ⊆ G0. Now, we show that Υ is a interpolative Reich-Rus-Ciric
contraction. For u1 = (0, 2), v1 = (0, 1), u2 = (0, 4), v2 = (0, 2), ω = 1, α = 1

2 , β = 1
3 and λ = 0.27.

F(u1,Υv1, ω) = F((0, 2),Υ(0, 1), 1) = F(R,G, ω),

and

F(u2,Υv2, ω) = F((0, 4),Υ(0, 2), 1) = F(R,G, ω).

This implies that,

F(u1, u2, ω) = F((0, 2), (0, 4), 1)
≥ λ

(
(F(v1, v2, ω))α (F (v1, u1, ω))β (F (v2, u2, ω))1−α−β

)
= λ

 (F((0, 1) , (0, 2) , ω))
1
2 (F ((0, 1) , (0, 2) , 1))

1
3

(F ((0, 2) , (0, 4) , 1))1− 1
2−

1
3

 ,
which yield

0.3333 ≥ 0.1557.

This shows that Υ is a interpolative Riech-Rus-Ciric type contraction. However, for u1 = (0, 2), v1 =

(0, 1) and u2 = (0, 4), v2 = (0, 2), λ = 0.27. Now, we have

F(u1,Υv1, ω) = F((0, 2),Υ(0, 1), 1) = F(R,G, ω),
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and

F(u2,Υv2, ω) = F((0, 4),Υ(0, 2), 1) = F(R,G, ω).

Implies,

F(u1, u2, ω) = F((0, 2), (0, 4), 1)
≥ λ (F(v1, v2, ω) + F (v1, u1, ω) + F (v2, u2, ω))

= λ

(
F((0, 1) , (0, 2) , ω) + F ((0, 1) , (0, 2) , 1) +

F ((0, 2) , (0, 4) , 1)

)
,

which yield,
0.3333 ≯ 0.3599.

This is a contradiction. Which shows that, Υ is not a Riech-Rus-Ciric type contraction.

Theorem 3.6. Let (U, F, ∗) be a complete non-Archimedean fuzzy metric space and R,G ⊆ U such that
G approximately compact with respect to R. Let Υ : R → G be a interpolative Reich-Rus-Ciric type
contraction. If R0 ⊆ R such that Υ (R0) ⊆ G0. Then Υ admits a best proximity point.

Proof. Let u0 ∈ R0. Since Υ(u0) ∈ Υ(R0) ⊆ G0, so there exist u1 ∈ R0 such that,

F(u1,Υ(u0), ω) = F(R,G, ω).

Also, we have Υ(u1) ∈ Υ(R0) ⊆ G0. So, there exist u2 ∈ R0 such that,

F(u2,Υ(u1), ω) = F(R,G, ω).

This process of existence of point in R0 implies to have a sequence {un} ⊆ R0 such that,

F(un+1,Υ(un), ω) = F(R,G, ω) (3.8)

for all n ∈ N. Observe that, if there exist n ∈ N such that un = un+1 then from (3.8), the point un is a
best proximity point of the mapping Υ. On the other hand, if un , un+1 for all n ∈ N. Then by (3.8),
we have

F(un,Υ(un−1), ω) = F(R,G, ω),

and
F(un+1,Υ(un), ω) = F(R,G, ω),

for all n ≥ 1, Thus, by (3.7),

(F(un, un+1, ω)) ≥ λ
(
(F(un−1, un, ω))α (F (un−1, un, ω))β (F (un, un+1, ω))1−α−β

)
, (3.9)

for all distinct un−1, un, un+1 ∈ R. Since, by (3.9), we have

(F(un, un+1, ω)) ≥ λ
(
(F(un−1, un, ω))α (F (un−1, un, ω))β (F (un, un+1, ω))1−α−β

)
,

F(un, un+1, ω) ≥ λ (F(un−1, un, ω))α+β (F(un, un+1, ω))1−α−β . (3.10)
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So, by (3.10), let H = F (un, un+1, ω) We have Hn−1 < Hn for all n ∈ N. This shows that the sequence
{Hn} is positive and strictly non-decreasing. Thus, it converges to some element H ≥ 1. Now,
from (3.10), we have

F(un, un+1, ω) ≥ λ
1

α+β F(un−1, un, ω)
≥ λ

2
α+β F(un−2, un−1, ω)

...

≥ λ
n

α+β F(u1, u0, ω).

Then Hn−1 (ω) < Hn (ω) , that is the sequence {Hn} is non-decreasing sequence for all ω > 0.
Consequently, there exist H (ω) ≤ 1 such that limn→∞ Hn (ω) = H (ω) . Now, we claim that H (ω) = 1.
Suppose, to the contrary that 0 < H (ω0) < 1 for some ω0 > 0. Since Hn (ω0) ≥ H (ω0) , by taking the
limit with ω = ω0. We obtain

H (ω0) ≥ λ
1

α+β H (ω0) > H (ω0) .

Which is a contradiction and hence, H (ω) = 1 for all ω > 0. Now, we show {un} is a cauchy sequence.
Assuming this is not true, then there exist ε ∈ (0, 1) and ω0 > 0 such that for all k ∈ N, there are
n (k) ,m (k) ∈ N with m (k) > n (k) ≥ k and

F
(
um(k), un(k), ω0

)
≤ 1 − ε.

Assume that m (k) is the least integer exceeding n (k) satisfying the above inequality, that is
equivalently,

F
(
um(k)−1, un(k), ω0

)
> 1 − ε,

and for all k we get

1 − ε ≥ F
(
um(k), un(k), ω

)
≥ F

(
um(k)−1, um(k), ω

)
∗ F

(
um(k)−1, un(k), ω

)
(3.11)

> Hm(k) (ω0) ∗ (1 − ε) .

Putting limit n→ ∞ in (3.11), we get that

lim
n→∞

F
(
um(k), un(k), ω0

)
= 1 − ε,

from

F
(
um(k)+1, un(k)+1, ω0

)
≥ F

(
um(k)+1, um(k), ω0

)
∗ F

(
um(k), un(k), ω0

)
∗ F

(
un(k), un(k)+1, ω0

)
,

and
F

(
um(k), un(k), ω0

)
≥ F

(
um(k), um(k)+1, ω0

)
∗ F

(
um(k), un(k)+1, ω0

)
∗ F

(
un(k)+1, un(k), ω0

)
,

we get
lim
n→∞

F
(
um(k)+1, un(k)+1, ω0

)
= 1 − ε.

From Eq (3.8), we know that

F
(
um(k)+1,Υum(k), ω0

)
= F (R,G, ω0)
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and
F

(
un(k)+1,Υun(k), ω0

)
= F (R,G, ω0) .

So, by (3.7),

F
(
um(k)+1, un(k)+1, ω0

)
≥ λ

(
F

(
um(k), un(k), ω

))α (
F

(
um(k), um(k)+1, ω0

))β (F (
un(k), un(k)+1, ω0

))1−α−β ,

taking lim k → ∞ we get
1 − ε ≥ λ (1 − ε) > 1 − ε.

Which is contradiction. Then {un} is cauchy sequence. Since (U, F, ∗) is a complete non-Archimedean
fuzzy metric space and R is closed subset of U. Then there exist u ∈ R, such that limn→∞ F (un, u, ω) = 1.
Moreover,

F(R,G, ω) = F(un+1,Υ(un), ω) ≥ F (un+1, u, ω) ∗ F(u,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F (un+1,Υun, ω)

= F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F(R,G, ω).

This implies,

F(R,G, ω) ≥ F (un+1, u, ω) ∗ F(u,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F(R,G, ω).

Applying to limit as n→ ∞ in the above inequality, we get

F(R,G, ω) ≥ 1 ∗ lim
n→∞

F(u,Υ(un), ω)

≥ 1 ∗ 1 ∗ F(R,G, ω).

That is,
lim
n→∞

F(u,Υ(un), ω) = F(R,G, ω).

Therefore, F(u,Υ (un) , ω) → F(u,G, ω) as n → ∞. Since G is approximately comact with respec to
R, there exist ξ ∈ R0 (ω) such that

F (ξ,Υu, ω) = F(R,G, ω) = F(un+1,Υ(un), ω). (3.12)

We show that u = ξ. If not, then

F (ξ, un+1, ω) ≥ λ
(

(F (u, un, ω))α (F (u, ξ, ω))β

(F (un, un+1, ω))1−α−β

)
,

taking limit as n→ ∞ gives

F (ξ, u, ω) ≥ λ (F (u, ξ, ω))β > (F (u, ξ, ω))β .

Which is a contradiction. Hence F (u,Υu, ω) = F(R,G, ω) = F (ξ,Υξ, ω) that is, u is the best proximity
point. We show that u is the unique best proximity point of Υ. Assume, on the contrary, that 0 <

F (u, v, ω) < 1 for all ω > 0 and v , u is another best proximity point of Υ, i.e., F (u,Υu, ω) =

F(R,G, ω) = F (v,Υv, ω) then from (3.7) we have

F (u, v, ω) ≥ λ
(
(F (u, v, ω))α (F (u, u, ω))β (F (v, v, ω))1−α−β

)
> (F (u, v, ω))α .

Which is contradiction and hence F (u, v, ω) = 1 for all ω > 0, that is u = v. �
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3.3. Interpolative Hardy Rogers proximal contraction in non-Archimedean fuzzy metric space

Definition 3.7. Let (U, F, ∗) be a complete non-Archimedean fuzzy metric space, and R,G ⊆ U. A
mapping Υ : R→ G is said to be interpolative Hardy Rogers type contraction, if there exist α, β, γ, δ ∈
(0, 1) such that α + β + γ + δ < 1, and λ ∈ [0, 1).

F (u1, u2, ω) ≥ λ
(

(F (v1, v2, ω))α (F (v1, u1, ω))β (F (v2, u2, ω))γ

(F (v1, u2, ω))δ (F (v2, u1, ω))1−α−β−γ−δ

)
, (3.13)

for all u1, u2,v1, v2 ∈ R, ω > 0 and ui , vi, i ∈ {1, 2} with respect to F (u1,Υv1, ω) = F (R,G, ω),
F (u2,Υv2, ω) = F (R,G, ω) and F (u, v, ω) > 0.

Example 3.8. Let U = R2 and define the function F : U × U × (0,∞)→ [0, 1] by

F (u, v, ω) =
ω

ω + d ((u1, v1) , (u2, v2))
,

where d ((u1, v1) , (u2, v2)) =
2
√

(u2 − u1)2 + (v2 − v1)2 for all (u1, v1) , (u2, v2) ∈ U. Then (U, F, ∗) is a
non-Archimedean fuzzy metric space with ă ∗ ē = ăē for all ă, ē ∈ I. Let R,G ⊆ U defined by

R = {(0, u) , u ∈ R} ,
G = {(1, u) , u ∈ R} .

Define F(R,G, ω) = sup{F(u, v, ω) : u ∈ R, v ∈ G and ω > 0}. Then F(R,G, ω) = ω
ω+1 , R0 (ω) = R,

G0 (ω) = G. Define the mapping Υ : R→ G by

Υ (0, u) =

 (1, u) , if s ∈ [−1, 1],(
1, u2

)
, otherwise,

for all (0, u) ∈ R. Then clearly Υ (R0) ⊆ G0. We show that Υ is interpolative Hardy Rogers type
contraction. For u1 = (0, 4) , v1 = (0, 2), u2 = (0, 9) , v2 = (0, 3) , α = 0.01, β = 0.02, γ = 0.03, δ = 0.04,
λ = 1

4 then we have

F (u1,Υv1, ω) = F ((0, 4) ,Υ (0, 2) , 1) = F (R,G, ω) ,

and

F (u2,Υv2, ω) = F ((0, 9) ,Υ (0, 3) , 1) = F (R,G, ω) .

This implies that,

F (u1, u2, ω) = F ((0, 4) , (0, 9) , 1)

≥ λ

(
(F (v1, v2, ω))α (F (v1, u1, ω))β (F (v2, u2, ω))γ

(F (v1, u2, ω))δ (F (v2, u1, ω))1−α−β−γ−δ

)
,

which yield,
0.4082 ≥ 0.1129.
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This shows that Υ is a interpolative Hardy Rogers type contraction. However, for u1 = (0, 4) , v1 =

(0, 2) and u2 = (0, 9) , v2 = (0, 3) , λ = 0.2 and ω = 1. We know that

F (u1,Υv1, ω) = F ((0, 4) ,Υ (0, 2) , 1) = F (R,G, ω) ,

and

F (u2,Υv2, ω) = F ((0, 9) ,Υ (0, 3) , 1) = F (R,G, ω) .

Implies

F (u1, u2, ω) = F ((0, 4) , (0, 9) , 1)

≥ λ

(
(F (v1, v2, ω)) + (F (v1, u1, ω)) + (F (v2, u2, ω))

+ (F (v1, u2, ω)) + (F (v2, u2, ω))

)
,

which yield,
0.1667 ≯ 0.3201.

This is a contradiction. Hence, Υ is not interpolative Hardy Rogers type contraction.

Theorem 3.9. Let (U, F, ∗) be a complete non-Archimedean fuzzy metric space, R,G ⊆ U such that
G is approximately compact with respect to R. Let Υ : R → G be a interpolative Hardy Rogers type
proximal contraction. If R0 ⊆ R such that Υ (R0) ⊆ G0. Then Υ admits a best proximity point.

Proof. Let u0 ∈ R0. Since Υ(u0) ∈ Υ(R0) ⊆ G0, there exist u1 ∈ R0 such that,

F(u1,Υ(u0), ω) = F(R,G, ω).

Also, we have Υ(u1) ∈ Υ(R0) ⊆ G0, so there exist u2 ∈ R0 such that,

F(u2,Υ(u1), ω) = F(R,G, ω).

This process of existence of point in R0 implies to have a sequence {un} ⊆ R0 such that,

F(un+1,Υ(un), ω) = F(R,G, ω), (3.14)

for all n ∈ N. Observe that, if there exist n ∈ N such that un = un+1 then from (3.14), the point un is a
best proximity point of the mapping Υ. On the other hand, if un , un+1 for all n ∈ N. Then by (3.14),
we have

F(un,Υ(un−1), ω) = F(R,G, ω),

and
F(un+1,Υ(un), ω) = F(R,G, ω),

for all n ≥ 1, thus, by (3.13),

F (un, un+1, ω) ≥ λ (F (un−1, un, ω))α (F (un−1, un, ω))β (F (un, un+1, ω))γ ,
(F (un, un, ω))δ (F (un−1, un+1, ω))1−α−β−γ−δ , (3.15)
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for all distinct un−1, un, un+1 ∈ R. Since, by (3.15), we have

F (un, un+1, ω) ≥ λ (F (un−1, un, ω))α+β (F (un, un+1, ω))γ (F (un−1, un+1, ω))1−α−β−γ−δ

≥ λ (F (un−1, un, ω))α+β (F (un, un+1, ω))γ

(F (un−1, un, ω))1−α−β−γ−δ (F (un, un+1, ω))1−α−β−γ−δ

≥ λ (F (un−1, un, ω))1−γ−δ (F (un, un+1, ω))1−α−β−δ

(F (un, un+1, ω))α+β+δ
≥ λ (F (un−1, un, ω))1−γ−δ . (3.16)

So, by (3.16), let H = F (un, un+1, ω), we have Hn−1 < Hn for all n ∈ N. This shows that the sequence
{Hn} is positive and strictly non-decreasing. Thus, it converges to some element H ≥ 1. Now
from (3.16), we have

F(un, un+1, ω) ≥ λ
1

α+β+δ F(un−1, un, ω)
1−γ−δ
α+β+δ

≥ λ
2

α+β+δ F(un−2, un−1, ω)
1−γ−δ
α+β+δ

...

≥ λ
n

α+β+δ F(u1, u0, ω)
1−γ−δ
α+β+δ

.

Then Hn−1 (ω) < Hn (ω) , that is the sequence {Hn} is non-decreasing sequence for all ω > 0.
Consequently, there exist H (ω) ≤ 1 such that limn→∞ Hn (ω) = H (ω) . Now, we claim that H (ω) = 1.
Suppose, to the contrary that 0 < H (ω0) < 1 for some ω0 > 0. Since Hn (ω0) ≥ H (ω0) , by taking the
limit with ω = ω0. We obtain

H (ω0) ≥ λ
1

α+β+δ H (ω0) > H (ω0) .

Satisfying the above inequality, that is equivalently,

F
(
um(k)−1, un(k), ω0

)
> 1 − ε,

and for all k we get

1 − ε ≥ F
(
um(k), un(k), ω

)
≥ F

(
um(k), un(k), ω

)
∗ F

(
um(k), un(k), ω

)
(3.17)

≥ Hm(k) (ω0) ∗ (1 − ε) ,

putting limit n→ ∞ in (3.17), we get that

lim
n→∞

F
(
um(k), un(k), ω0

)
= 1 − ε,

from

F
(
um(k)+1, un(k)+1, ω0

)
≥ F

(
um(k)+1, um(k), ω0

)
∗ F

(
um(k), un(k), ω0

)
∗ F

(
un(k), un(k)+1, ω0

)
,

and
F

(
um(k), un(k), ω0

)
≥ F

(
um(k), um(k)+1, ω0

)
∗ F

(
um(k), un(k)+1, ω0

)
∗ F

(
un(k)+1, un(k), ω0

)
,

AIMS Mathematics Volume 8, Issue 2, 2891–2909.



2906

we get
lim
n→∞

F
(
um(k)+1, un(k)+1, ω0

)
= 1 − ε.

From Eq (3.14), we know that

F
(
um(k)+1,Υum(k), ω0

)
= F (R,G, ω0) and F

(
un(k)+1,Υun(k), ω0

)
= F (R,G, ω0) ,

so by (3.13),

F
(
um(k)+1, un(k)+1, ω0

)
≥ λ

(
F

(
um(k), un(k), ω

))α (
F

(
um(k), um(k)+1, ω0

))β (F (
un(k), un(k)+1, ω0

))γ(
F

(
um(k), un(k)+1, ω

))δ (F (
un(k), um(k)+1, ω

))1−α−β−γ−δ .

Taking lim k → ∞ we get
1 − ε ≥ λ (1 − ε) > 1 − ε.

Which is a contradiction. Then {un} is cauchy sequence. Since (U, F, ∗) is a complete non-Archimedean
fuzzy metric space and R is closed subset of U. Then there exist u ∈ R, such that limn→∞ F (un, u, ω) = 1.
Moreover,

F(R,G, ω) = F(un+1,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F (un+1,Υun, ω)

= F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F(R,G, ω).

This implies,

F(R,G, ω) ≥ F (un+1, u, ω) ∗ F(u,Υ(un), ω)
≥ F (un+1, u, ω) ∗ F(u, un+1, ω) ∗ F(R,G, ω).

Applying to limit as n→ ∞ in the above inequality, we get

F(R,G, ω) ≥ 1 ∗ lim
n→∞

F(u,Υ(un), ω)

≥ 1 ∗ 1 ∗ F(R,G, ω).

That is,
lim
n→∞

F(u,Υ(un), ω) = F(R,G, ω).

Therefore, F(u,Υ (un) , ω)→ F(u,G, ω) as n→ ∞. Since G is approximately compact with respect to
R, there exist ξ ∈ R0 (ω) such that,

F (ξ,Υu, ω) = F(R,G, ω) = F(un+1,Υ(un), ω). (3.18)

We now show that u = ξ. If not, then

F (ξ, un+1, ω) ≥ λ (F (u, un, ω))α (F (u, ξ, ω))β (F (un, un+1, ω))γ

(F (u, un+1, ω))δ (F (un, ξ, ω))1−α−β−γ−δ ,
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on taking limit as n→ ∞ gives

F (ξ, u, ω) ≥ λ (F (u, ξ, ω))1−α−γ−δ > (F (u, ξ, ω))1−α−γ−δ .

Which is a contradiction. Hence F (u,Υu, ω) = F(R,G, ω) = F (ξ,Υξ, ω) that is, u is the best proximity
point. We show that u is the unique best proximity point of Υ. Assume, on the contrary, that 0 <

F (u, v, ω) < 1 for all ω > 0 and v , u is another best proximity point of Υ, i.e., F (u,Υu, ω) =

F(R,G, ω) = F (v,Υv, ω) then from (3.13) we have

F (u, v, ω) ≥ λ (F (u, v, ω))α (F (u, u, ω))β (F (v, v, ω))γ (F (u, v, ω))δ (F (v, u, ω))1−α−β−γ−δ

> (F (u, v, ω))1−β−γ .

Which is a contradiction and hence F (u, v, ω) = 1 for all ω > 0, that is u = v. This completes the
proof. �

4. Conclusions

We have produced several new types of contractive condition that ensures the existence of best
proximity points in non-Archimedean complete fuzzy metric spaces. The examples show that the new
contractive conditions generalize the corresponding contractions given in earlier works. According to
the nature (linear and nonlinear) of contractions (3.1), (3.7) and (3.13), these can be used to show the
existence of solutions to fuzzy models of linear and nonlinear dynamic systems. The study carried out
in this paper generalizes the valuable research work presented in [5, 14, 23–25].
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functions, An. Şt. Univ. Ovidius Constanţa, 27 (2019), 137–152. https://doi.org/10.2478/auom-
2019-0038
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