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1. Introduction

The split feasibility problem (SFP) in Euclidean spaces was introduced by Censor and Elfving [1]
in 1994. It is depicted as finding a point x such that

xe(C, AxeQ, (1.1)

where C C H, and Q C H, are nonempty closed convex sets; A is a bounded linear operator from
a Hilbert space H; onto a Hilbert space H, with A # 0. Denote the set of solutions for (1.1) by
A. The SFP plays an important role in the study of medical image reconstruction, signal processing,
etc. Many scholars regard the SFP and its generalizations, such as the multiple-set SFP and the split
common-fixed-point problem as their research direction (see [2—6]).

It is known that Byrne [7, 8] proposed the famous CQ algorithm (CQA) for solving the problem
(1.1). The proposed method is given as follows:

Xps1 = Pe(x, — 1,A°(I = Pg)Ax,), Vn>1, (1.2)
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where 7, € (O, w) is the step size, A* is the adjoint operator of A, P is the projection onto C and

Py is the projection onto Q. Regrettably, there are two drawbacks of applying (1.2). On one hand,
estimating the operator norm can often be challenging. On the other hand, computing projections onto
both C and Q can be very difficult.

To overcome the first drawback, Lopez et al. [9] proposed a novel approach for selecting the step
size, denoted by 7,, which is defined as follows:

SN VACD)
b IVSGIPT

1
where f(x,) := Sl - Po)AX,II?, Vf(x,) = A(I = Pg)Ax,, p, € (0,4) and inf,ei p,(4 = p,)) > 0.

To overcome the second drawback, Fukushima [10] introduced the level sets C and Q:

C={xeH :¢(x)<0}, O={yeH: @y <0} (1.3)

where ¢ : H — R and ¢ : H, — R are convex, subdifferential and weakly lower semi-continuous
functions. Motivated by Fukushima’s method, Yang [11] introduced a new relaxed CQA by replacing
Pc with P¢, and Py with Py . The algorithm has the form

Xn+l = PC,,(xn - anA*(I - PQ,I)Axn)’ Vn > 1’

2

where «,, € (0, TAAT

), A* is the adjoint operator of A and C,, and Q,, are defined as follows:
Cn = {x € Hl : ¢(xn) < <ﬂn, Xn — x>}a ﬁn € a¢(xn),

and
Qn = {y €H,: ‘;D(A-xn) < </\/n’A-xn _y>}’ Xn € a‘p(Axn)a

where d¢ and dp are bounded operators.
Qin and Wang [12] introduced (1.4) to find a common solution of the SFP (1.1) and fixed-point

problem in 2019. Their algorithm has the form

Yn = PC((1 - 6n)(xn - TnA*(I - PQ)Axn) + 6nS-xn)s

(1.4)
Xn+1 = ang(-xn) +ﬂnxn + YV, N2 1’

where g is a k-contraction from C onto C, S is nonexpansive from C onto C and Fix(S) := {x € H :
Sx = x}. {a,}, {84}, {yn}), {0,) and {7,} are included in (0, 1); they satisfy the following:

(i) Yooy, =00, limea, =0;
(1) 0 < liminf B, < limsuppg, < 1;

n—oo
(i) @, + By + v, = 1;
@(iv) lim |t, = Tps1| = 0, 0 < liminf 7, < limsup 1, < —25;
n—0c0 lIAll

n—oo n—00

(v) lim |6, — 9,41/ = 0,0 < liminf ¢, < limsupd, < 1.

n—oo n—oo
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Then, there is a point g of A N Fix(§) with x, — ¢. Furthermore, it satisfies (1.5):
(7 -q,8(q)—qy <0, V7 €Fix(S)NA. (1.5)

Motivated by Lépez et al. [9], Wang et al. [13] improved the selection of step size in (1.4). In
order to accelerate the convergence rate, they introduced (1.6) to solve the SFP (1.1) and fixed-point
problem. Given that xy, x; € H, their algorithm has the form

. & .
i, = min {,U, m}, if X1 # X,
n — .
u, otherwise,

Wy = Xn +ﬂ11(xn - xn—l)a

Yn = PC((1 - 5n)(wn - TnA*(I - PQ)AWn) + 6nS Wn)» (16)
Xn+l = a’ng(-xn) +ﬁnwn + YnYns nz 1’
Oonf (Wn)

1
where u > 0,7, = ———— 0 < p, <4, fw,) 1= =|l(I — Pp)Aw,||> and V f(w,) = A*(I — Pp)Aw,.

Assume that S : H; — H, is quasi-nonexpansive, / — S is demiclosed at zero and g : H; — H; is a
k-contraction. {a,}, {8}, {y.} and {6,} are included in [0, 1], which satisfy the following conditions:

(i) Yooy, =00, lima, = 0;
n—oo

(i1) limsuppg, < 1;
(iil) @y + B, + 70 = 1
(iv) 0 < liminf ¢, < limsupd, < 1;

v) &, >0, I}Lrgfl— =0.
Then, there is a point g of Fix(§) N A with x, — ¢. Furthermore, it satisfies (1.7):
(7 —q,8(q)—q) <0, V7 €Fix(S)NA. (1.7)
In addition, Tian [14] introduced an iterative form:
Xpp1 = a,Ag(x,) + (I —w,B)Sx,, VYneN.

Suppose that Fix(S') # @, where Fix(S) := {x € H : Sx = x}. Then, there is a point ¢ in Fix(§) with
x, — q. Furthermore, it satisfies the following:

(tB-18)q,7 —q) 20, ¥z’ € Fix(5),

where B is A-strongly monotone and M-Lipschitz continuous from H onto H with 4, M > 0, S is
nonexpansive from H onto H and g is a k-contraction from H onto H with O < k < 1. Let(,4 € R and
{a,} C (0, 1) satisty the following:

24
(i)O<L<W;
1 M

i) 0< A 2.
(1) 0< A<t k
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(i) 57 Jan = aul < 00, £, @, = oo, lim @, = 0.

Motivated by the algorithms developed by Qin and Wang [12], Wang et al. [13], Tian [14] and
Kwari et al. [15], we propose a new half-space relaxation projection method for solving the SFP and
fixed-point problem of demicontractive mappings by expanding the scope of operator S, modifying
the iteration format and optimizing the selection of step sizes. Our result in this article extends and
improves many recent correlative results of other authors. Particularly, our method extends and
improves the methods in some papers of other authors in the following ways: (1) We have considered
and studied a new modified half-space hybrid method to solve the fixed-point problem and SFP of
nonlinear operators at the same time. And, our method can be used more widely; (2) We extend the
nonexpansive mapping and the quasi-nonexpansive mapping to the demicontractive mapping, which
expands the scope of the study; (3) The inertia is added to accelerate the convergence rate further; (4)
The selection of the step size is a multistep and self-adaptive process, so it no longer depends on the
operator norm; (5) The projection onto a half-space greatly facilitates the calculation, and under some
weaker conditional assumptions, the iterative sequence generated by our new algorithm converges
strongly to the common solution of the two problems. At last, we present some numerical
experiments to show the effectiveness and feasibility of our new iterative method.

2. Preliminaries

In this paper, let H be a real Hilbert space; the inner product be denoted by (-, -) and the norm
be denoted by || - ||. We use the symbol — to indicate weak convergence and — to indicate strong
convergence.

Definition 2.1. A self-mapping P is said to be

(1) nonexpansive if
IPx— Pyl <llx—yll, VYx,yeH,

(i1) quasi-nonexpansive if Fix(P) # 0 such that
IPx—=yll <llx—=yll, VYxeH,yeFix(P);
(iii) a -demicontractive (0 < a < 1) if Fix(P) # @ such that
1Px = yI* < all( = P)xl* + llx =)I’,  Vx € H,y € Fix(P);
(iv) firmly nonexpansive if
|IPx — Py|* < (Px—Py,x—-y), Vx,y€H;
(v) t-contractive (0 <t < 1)if
IPx = Pyll <tllx=yll, VYx,yeH,;
(vi) M-Lipschitz continuous (M > 0) if

|Px = Pyl < Mllx=yll, VYx,ye€H,;
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(vii) B-strongly monotone (8 > 0) if
(Px—Py,x—y) = Bllx—)I’, Vx,y€H.

When Fix(P) # (), we obtain (i)=(1i)=(ii1).

Definition 2.2. When the function f : H — R is convex and subdifferentiable, an element d € H is
called a subgradient of f(xp) if

fO) = f(xo) +{d,y — x0), Vye€H.
The set of subgradients of f at x; is denoted by 9 f(x).

Definition 2.3. The function f : H — R is called weakly lower semi-continuous if x, — x, implies
that

f(xo) < liminf f(x,).
Lemma 2.1 ([16-18]). Let D C H be a nonempty, convex and closed set. For any x € H, we have

(@) IPpx =yl <llx = ylI* = llx = Ppxll>, Vye D;
(1) (x — Ppx,y—Ppx) <0, VyeD;
(iii) ||Ppx — Ppyl* < (Ppx— Ppy,x—y), Yy€ H;
(iv) I(I = Pp)x — (I = Pp)yl*> <{(I — Pp)x— (I — Pp)y,x—y), VYye€H.

Lemma 2.2 ([19,20]). For any x,y € H, the following results hold

(i) Ilx + yIP < 2y, x +y) + [Inl;
(i) [I(1 = m)x + myl> = mllyl> + (1 = m)lIxl® = (1 = m)mllx =y,  meR.

Lemma 2.3 ( [14]). Assume that B is an M-Lipschitz continuous and A-strongly monotone operator
with A, M > 0. For u,v > 0, they satisfy the following conditions:
M?*u
2

24 -
O<pu< 7 yv=A1
Let {y,} € (0,1) and lim vy, = 0. If n is a sufficiently large number, we have

NI = yuB)x = (I = yuB)yll < (1 = ya¥)llx = yll.

Proof.

I = yuB)x = (I = v, B)I

llx =y = yu(Bx — By)II”

llx = YIP = 2yu(x = y, Bx — By) + ¥;||Bx — By’
llx = Y1 = 2y, dllx = yIP* + y2M?|lx — yIP?

(1 =2y, d + 7, M?)|lx =yl

(1 = 2yv = yuMu + v M)|1x = yI

(1 =2y, = yuM(u = y,) + vo")llx = yI*.

| | B VAN (B

IA
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Combining lim vy, = 0 and u — ¥, > 0 (n sufficiently large), we have

(I = y,B)x — (I =y, B)yll*
< (1 =2y +y2)lx =yl
= (1= y)lx -yl

Since 1 — y,v > 0 (n sufficiently large), we have

NI = yuB)x — (I = yuB)yll < (1 = ya¥)llx = yll.
o

Lemma 2.4 ( [21]). Let the self-mapping S be a-demicontractive in H and Fix(S) # 0. Define S, =
(1 -0)+ 0S8, o€ (0,1 — ), then, we have the following:
(1) Fix(S) = Fix(S,) C H is convex and closed;
1
(i) ISex =gl <llx =gl = =(1 —a = DI = SHAl> Vx € H, g € Fix(S).
o

Lemma 2.5 ( [8]). Let f(z) = %ll([ — PQ)AZIIZ. We can know that V f is M-Lipschitz continuous with
M = AP

Lemma 2.6 ( [22]). Let {a,} be a sequence of nonnegative numbers such that

an+1 < (1 - ®n)an + ®nTn’ n 2z ny,

an+1 < Ay — Hn + Fna n = ny,

where ny is a sufficiently large integer, the sequence {®,} is contained in (0, 1), the real sequence {I1,}
is nonnegative {Y,} and {I',} are two sequences which are included in R. If the following conditions
hold

(1) Yoo ®, = 005 (ii) ’}1_)11010 I,=0; (iii)lim I1,, =0 = limsupY,, <0, ¥{n;} C {n}, then lim a, = 0.

oo n—oo

3. Results

In this section, C and Q are defined by (1.3). We give some conditions for the convergence analysis
of our Algorithm 1.

(C) Y2, a, =00, lima,=0,0<a,<1;
(Cy) B, €10,1], limsuppB, < 1;

(C3) & >0, lim 2 =0;
(Cy) 0 <liminfo, <limsupd, < 1;

n—oo

(Cs) 0, €(0,1 —a], liminf o, > O;
(Co) infren pu(4 — pn) > 0, {p,} € (0,4).

AIMS Mathematics Volume 8, Issue 10, 24310-24330.
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Algorithm 1

21 .
Initialization: Apply o, ¥, € Hy.ji>0,7>0,0 <t < Z3.v =1~ 7‘ 4> 0'such that 0 < kA < v.
Iterative step: Compute x,,; forn > 1:
Step 1. Compute

dn = Xn +,un(xn - xn—l)’

where

(126 = X1l

3 min{u, En }, if x,_1 # x,,
Ha U, otherwise.

Step 2. Compute

Yu = Pe,((1 = 8,)(dy = 7,A"(I = P,)Ad,) + 6,((1 = 07,)d, + 07, S ),

where £d)
pn n n .
——, if[|Vfu(d)Il #0,
7, = { WhdoE
T, if [V fu(d)ll = 0,
1
Ju(dy) = Ell(l — Pp,)Ad,|I,
Vfud,) = A*(I - Py,)Ad,,
and

C,={x€H :p(x,) <Dy, x, —x)}, where D, € 0p(x,),
O,={ye Hy: p(Ax,) < (xu,Ax, — )}, Wwhere y,, € 0p(Ax,).

Step 3. Compute
Xn+l = an/lg(xn) +ﬁndn + ((1 _ﬁn)l - a'nB)yn-

Setn :=n+ 1and go to Step 1.

AIMS Mathematics Volume 8, Issue 10, 24310-24330.
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Theorem 3.1. Let S : Hy — H; be a-demicontractive, [ —S be demiclosed at zero and g : H; — H, be
k-contractive. Moreover, let operator B be L-Lipschitz continuous and A-strongly monotone. Assume
that {a,}, {B.}, 0.}, {0}, {on} are sequences satisfying (Cy) — (Ce) and Fix(S) N A # 0. Then, the {x,}
generated by Algorithm 1 converges strongly to x* € Fix(S) N A. Furthermore, it is the unique solution
of (3.1):

(B-Ag9)x",7 —x") >0, V¥Z e Fix(S) N A. (3.1)

Proof. Letr € AN Fix(§). Since C c C, and Q C Q,, we have that r € C,,, Ar € Q, and r € Fix(S).
By combining Lemma 2.1 with Lemma 2.2, we get

Iy = rlP®
= |Pe (1~ 6. ~ A"~ Po)Ad) + 6,((1 = 5.0, + 0,8d,)) ~ |
(1 = 6,)(dy = 7,A°T = Pg,)Ad,) + 6,((1 = o)y + 7S dy) = rl
| = Pe(1 = 6., — uA" U - Po,)Ad,)

IA

2
+6,((1 = 07)d, + 0,5 )

2

6u((1 = o)dy + 08 dy — 1) + (1 = 6,)(d, — T,A°( — Pg,)Ad, — 1)|
_' (I = Pe,)((1 = 6,)(d, — TaA"(I - Pg,)Ad,)

2
+6,((1 = o), + 0,84,

Set
So,dn =1 —-0,)d, +0,5d,;

according to Lemma 2.4, we have

llyn — I
< 6n”Sa',,dn - I’||2 + (1 - 6n)”dn - Tnvfn(dn) - I’||2
_5n(1 - 5n)||0-n(Sdn - dn) + TnA*(I - PQn)Adn”2
||t = Pe( = 6., - 7aa"( - Po,)Ad,)
2
+6,((1 = o)y + 0S|
< Gulldy = PP + (1 = 8)lldy — TV fo(dy) = 1l
_511(1 - 6n)||0-n(Sdn - dn) + TnA*(I - I')Q,,)Adn”2
|| = Pe((1 = 8y = 7aA" (T - Po,)Ad,)
2
+6,((1 = )d, + 5,5 ,) )
< Gulldy = P + (1 = 8,)(ldy = rIP + T2V f(d)IP

—2Tn<an(dn), dn - I">)
_5n(1 - 5n)||0-n(Sdn - dn) + TnA*(I - PQn)Adn”2

AIMS Mathematics Volume 8, Issue 10, 24310-24330.
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|| = Pe( = 6. - 7aa"( - Po,)Ad,)
§

+6,((1 = o)d, + 07, d,))

From the definition of Vf,(d,), we have

(Vfuldy), dn = 1)
= (A" - Py)Ad, — A*(I - Pg,)Ar,d, —r)
= (U - Py)Ad, — (I - Py,)Ar,Ad, — Ar)
> (I - Pg,)Ad,|?
= 2fuldn),

(3.2)

(3.3)

which means that when ||V f,(d,)|| = 0, we get that f,(d,) = 0. Substituting (3.3) into (3.2), we have

IA

IA

llyn — I
lldy = AP + 77(1 = SV fu(d I = 41 = 5,)70 fo(d)
=621 = llon(Sdy — dy) + T,A*(I = Pg,)Ad, |
|| = Pe)( = 6.)(d - 7aA° U - Pg,)Ad,)

+6,((1 = o)d, + 0,8 dn)) ‘2
”dn - r”2 + (1 - 5n)Tnpnfn(dn) - 4(1 - 611)Tnﬁ1(dn)
_5n(1 - 5n)||o-n(Sdn - dn) + TnA*(I - PQn)Adn”2
|| = Pe)( = 6.)(d, — 724" - Po,)Ad,)

‘2

+6,((1 = 07,)d, + 0,5 )
lldy = > = (4 = pu)(1 = 6,)7, fu(dn)

_6n(1 - 6n)||0-n(5dn - dn) + TnA*(I - PQ,,)Adn”2
||t = Pe( = 6.)(d - 7aA" U - Po,)Ad,)

2
+6,((1 = ), + 7,8 d,)|

Noting that {d,} is a sequence in (0, 1) and p, € (0, 4), we derive that

Wyn = rll < lldy, = rll.

From the definition of d,,, we have

”dn - I"H
”xn + ,un(xn - xnfl) - 7'”
Mnllxn - xn—l” + ”xn - r”

En t+ ”xn - I"”

IA I

IA

In the rest of the proof, n is assumed to be a sufficiently large positive integer and n > n,.

AIMS Mathematics
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Now, let y,, := 1?;3 . By Lemma 2.3, (3.5) and (3.6), we estimate ||x,+; — r||:

(12,41 — 71|
= ||eudg(x) + Budy + (1 = BT — a,B)y, — |
= |jandg(xa) + Budy + (1 = B — @ B)y, — r + @, Br — o, Br
= ||andg(x,) = @uBr + Bud, — Bur + (1 = B — @, B)y,

~((1 = B)I - ,B)r||

< aullAg(x,) = Bril + Bulld, — rll + (1 = BN = yuB)yn — (I = v, B)r|
< aulldg(x,) — Ag(N)ll + a,llAg(r) — Brll + B.lld, — |

+(1 =B = yuV)llyn — 7l
< apdkllx, — rll + a,l|Ag(r) — Bril + B.lld, — |

+(1 =B = yuW)llyn — 1l
= audkllx, = rll + a,l|lAg(r) = Brl|l + Bulld, — rll + (1 = B, — aV)lly, — 7|
< aupdkllx, — rll + @,llAg(r) = Brl| + (1 — a,v)lld, — rl|
< (1= ap(v = A))Ix, — rll + @ullAg(r) = Bril + (1 — a,v)e,

llAg(r) — Br|| (1 - anV)sn).

(1 —a,(v - /UC))”xn —r|l+ a,(v — /UC)( v — 1k + @, (v — k)

We can assume that M is a suitable positive number such that 2 < M since lim 2 = 0. Next, we

v — Ak

have e
%41 = 7]
l[Ag(r) = Brl| M1 - «a,v)
< (1=a,(v—)x, — ) —ﬁk( )
(1 = v = Wb, = rl + v = A FHED= Ty O
Ae(r) — Bl + M
< ( —a/,,(v—/lk))llxn—rll+an(v—/1k)(” 8(r) — Br )
v — Ak
Ae(r) — Brll + M
< maxdx, -7, |[Ag(r) — Br]| +
y — Ak
l[Ag(r) — Br|| + M
< max{||x,, — 7l .

Therefore, the sequence {x,} is bounded.
From the definition of x,,.,

Xn+1 = Bndn + (1 _ﬁn)(yn/lg(xn) + (1 - ynB)yn)’

set
Zn = Yad8(Xn) + (I = YuB)yn; (3.7)
then, we obtain
Xni1 = Budy + (1 = B1)za- (3.8)

AIMS Mathematics Volume 8, Issue 10, 24310-24330.
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In view of the arbitrariness of r, Lemma 2.2, Lemma 2.3, (3.5) and (3.7), we have

< yilldg(x,) — BXIP + (1 = y,v) |y, — I
+2v,{Ag(x,) — Bx",y, — x*) — Zyi(/lg(xn) — Bx", By, — Bx")

< ylldg(x,) = BXIF + (1 = yv)2lly, — X°IP
+27,(Ag(x,) — Bx", y, — X*) + 2y.11Ag(x,) — Bx*[ll|By, — Bx"||

< yilldg(x,) — BXIP + (1 = y,v)?lly, — I
+2y,(Ag(x,) — Ag(X"), yu — X*) + 2,{Ag(x") — Bx", y, — x")
+2y2]|Ag(x,) — Bx*||l|By, — Bx"||

< yillAg(x,) — BXIP + (1 =y, )2 llyn — X11P + 2y, dklix, — X"y, — x°|l
+2y,(Ag(x*) — Bx",y, — x*) + 2y2||Ag(x,) — Bx||l|By, — Bx"||

< yilag(x,) — Bx|* + (1 = y,v)*lld, — x*|I* + 2y, Akl|x, — x"|llld, — x"||

llz, — x*II”

llyadg(x,) + (I = ¥uB)y, — x|

Yu(Ag(x) = BX") + ((I = ¥ B)y, — (I = v, B)x")
Yallag(x,) = BX|* + I = yuB)y, — (I — y,B)x*|
+27,(Ag(x,) = Bx", (I = yuB)y, — (I = y,B)x")

2

+27,(Ag(x") = BX", y, — x") + 2y7114g(x,) — Bx'|[||By, — Bx"|
(1 =2y )lldy = x*|1* + 2y, klx, — x"(lld, — x|

+27,(Ag(x") = BX", y, — x") + 2¥,1148(x,) — Bx'|[||By, — Bx'|
+yalldg(x,) — BxIP + yv2lld, — x|

According to the definition of {d,} and Lemma 2.2, we have

2
lldn — X7l

2
126, + (X = Xp—1) = X7|

2
< 2lun<xn - xn—l,dn - X*> + ”-xn - X*H
2
< 2ullxn = xpalllld, = X7I 1, — X7l
% 2
< 2&ld, — XN+ [l — X7

(3.9)

(3.10)

Next, we can estimate ||x,,; — x*||>. On the one hand, in view of (3.6), (3.8), (3.9), (3.10) and
Lemma 2.2, we obtain

121 — X717
= “ﬁndn +(1 _ﬁn)zn - x*”2
(1 = B)(@n — x) + Buldy — XD

IA

(1= Bllzs = XI” + Bulld, — x|
Balldy, = x°|I> + (1 = B)(1 = 2y,)ld, — x|

IA

AIMS Mathematics

(1= Bllzn = X + Bulldy, = X1 = Bu(1 = Blld, =zl
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IA

IA

+2(1 = B)yndkllxy — x"Mllldy = X7|1 + 2ya(1 = Ba)(AG(x") — Bx", yy — x7)

+2¥,(1 = BlIAg(x,) = BxIll| By, — Bx'l|

+ya(l = BollAg(x,) = BXIP + 5 (1 = B)VlId, — x|

(1 = 2a,)lld, = x| + 2@, Ak||x, = x°lllld, — x|

+2a,(Ag(x") — Bx", y, — x) + 20, y,ll48(x,) — Bx"|[|By, — Bx'||
+,YallAg(x,) = BX'I + ayavlld, = X1

(1 = 2a,v)(|lx, = X"|I* + 2&,lld, — x"||) + 2a,Akl|x, — x*|(||x, = X*|| + &,)

+2a,(A8(x") = Bx",y, — x*) + 2a,y,llAg(x,) — Bx*||||By, — Bx"|
+a,yallAg(x,) — BX'|P + a,y, lld, — x|

(1 = 2a,)llx, = X"|* + 2&,lld, — x"|| + 20, Akl|x, — X*|I* + 2&,||x, — x7]|
+2a,{Ag(x") = Bx",y, — X*) + 2a,y,l|Ag(x,) — Bx"||l| By, — Bx"||
+a’n7n||/1g(xn) - BX*HZ + a’n’)/nvzlldn - x*llz

(1 = 2a,(v = A)Ix, — X*|I* + @n(2(Ag(x") — Bx", y, — x*)
+2y,|1Ag(x,) — Bx*||l|By, — Bx*|| + y,llAg(x,) — Bx"||*

* 28}1 * 2811 .
a2l = P + =y = 1l + =, - 1)
I /1 ' _B *a n = *
(1= 20, = Al X + 2, — g AL B0 = X0
v_
2llgCs,) = Bx'llIBy, - Bx'll _ y,lldg(x,) - B'IP
v = Ak 2(v — Ak)
2 w112
U T et 1)
i dn_ R e |7 .
TR T L T L

On the other hand, using the definition of {z,}, Lemma 2.2, (3.4) and (3.10), we get

AIMS Mathematics

121 — x|

(1 = Bllzw = X + Bulld, — x|

(1 = B)llyadg(x) + (I = vuB)y, — X'IP + Bulld, — x'IP

(1= Blln = x°) + yu(A8(x,) = Byo)I> + Bulld, — x*|?

(1= B)(llyn = X*1I> + 27(A8(x) = Byn, 20 — X)) + Bulldy — x*|I?
Bulld, — xI? + (1 _IBn)(”dn - X' = (4 = p)(1 = 67 fu(dy)
—6,(1 = Sllon(S dy — d) + T,A°(I = Pg,)Ad,|

|| = Pe((1 = 8 = 74" - Po,)Ad,)

I IA

IAN

IA

+6,((1 = o)d, + 07, S d,))

2
)+ 202800 = By 20 = )

10 = X1 + 2&alldy = x°[1 = (1 = B)(@ = p)(1 = 8,)75 fo(d)
_(1 _ﬁn)(sn(l - 6n)||0-n(Sdn - dn) + TnA*(I - PQ,,)Adn”2

—(1 = B)||I = Pe,)((1 = 8,)(dy — T,A°(I = Pg,)Ad,)

IA

(3.11)
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+8,((1 = a)dy + 0,8 )|+ 20,448(x0) — Bz, — 1. (3.12)
Apply the following:
0, = 2a,(v-1k),
T, = ﬁ((ﬂg(x*) = Bx", yu = x7) + ulldg(x) = BX|lll By, — Bx'||

_ 112 2 ]2 - o
+7n||ﬁg(xn) Bx*| L ld, — x| N Enlld, — x|l N Enllx, — x II),
2 2 @, ay
I, = (1-=6)@=p)=06,)1.fu(dy)
+(1 _ﬂn)(sn(l - 6n)||0-n(Sdn - dn) + TnA*(I - PQ,,)Adn”2

+(1 =B\ = Pe,)((1 = 6,)(dy = T4A"(I = Pg,)Ad,)
2
+6,((1 = 0)d, + 07,5 dy))|
1ﬁn = 2a'n</1g(xn) - Byn’ in — X*> + 28n”dn - X*”

Thus, we can rewrite (3.11) and (3.12):

X1 = XIP < (1 = ©)llx, = X' + @,

2 2
a1 = X717 < Ml = X717 = IL, + T

It is easy for us to know that lim ®, = 0, };°, ®, = co andlim I, = 0. If we prove that lim sup (,,, <
0 when lim I1,, = O for any subsequence {n;} C {n}, we can get that lim ||x, — x*|| = 0 by Lelmolfna 2.6.
Assume that
limIL, = 0.

i—o0

Using the conditions of {8,}, {0,} and {0}, we have

Hm(4 = 9,7, £ (d) = O, (3.13)
im [0, (S dy, = dy) + 7, A"(I = Pg, JAdy | = 0, (3.14)
tim |2~ Pe, (1 = 8,)(ds, ~ 709 fo o) + 8, Sy )| = 0. (3.15)
From (3.13) and the conditions of {p,}, we deduce that
Ty, S (dy,) = 0. (3.16)

If ||V £, (d,)ll # 0, we have that f;, (d,,) # 0 and

L= PniJni(dn,)

IV o (I
pulltI = Pg, )Ad,,|I*
2lA*(I = Pg, YAd,,|I?
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. pullI = Po,)Ad,, I
— 20AIPIA = P, )Ad,, |

Pn;
21|17

which means that infey 7,, > 0. Hence, we obtain f, (d,,) — 0 as i — oco. This implies that

lim [[(1 = P, )Ad,| = 0.
Using (3.16) and the conditions of {p,}, we have
TlIV £ @)l = ouTnfu(dn) = 0.
Moreover, from (3.14) and the condition of {0}, we get
S dy, — dyll — 0.
Using (3.15) and the definition of y,, we have
Yu = P, (1= 6,)(dy, = 74, A"( = Py, )Ad,,) + 6, ((1 = 07, )dy, + 0, Sd,)):
again using (3.15), we obtain

-0

”(1 - 5ni)(dni - T"ivﬁli(dni)) + 5niSU'n,~dni — Vi

b

1.e.,
”(1 - 5n,-)dn,- - (1 - 5n,-)Tn,-an,-(dn,-) + 6n,~S0'nidn,~ - yn,” — 0.

Due to (3.17) and (3.19), we get

-0

2

(1 = 6y, + 6, (1 = 0 )y, + TS ) = Vi

ie.,
||dn,- - Yn,- + 5ni0-n,-(Sdn,- - dn,)” - O'

Then, we have
”dn,- - yn,”

”dn, - yl’l,' + 6n,0-nl(Sdn, - dn,) - 6n,-0-nl-(Sdn,- - dn,)”
”dn, - yn,- + 6n,~0-n,-(Sdn,- - dn,)” + ||6n,~0-n,-(Sdn,- - dn,)”;

IA

combining (3.18) with (3.20), we obtain
”dn, _yn,” - O'
Moreover, using the definition of {u,} and the boundedness of {x,}, we can have

”xn,- - dn,”

= ”xnl - xni - ,un,-(xn,- - xn,—l)”

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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l’ll’l;”xl’l,' - xn,'—l ||
< &, —0. (3.22)

i

Next, combining (3.21) and (3.22), we have
1%, = Yol < |2, = i Il + lldn; = yu,ll = 0. (3.23)

It is easy for us to know that w,(d,) C Fix(S) by combining (3.18) and the case that I — S is
demiclosed at zero. Now, we choose a subsequence {d,. } of {d,.} to satisfy

lim sup(Ag(x") — Bx",d,, — x*) = lim(Ag(x") — Bx",d,, — x).
j—oo J

i—o0

Without loss of generality, we suppose that dn,.j — 7. It is easy to get that Yy, = 7" and Xy, = 7 by
using (3.21) and (3.23). Now, we show that 77 € C. We know that Vi, € C,,,,jby the definition of Vi,
this implies that

¢(x”i.i) < <ﬁ"’li’ x”i.f -y ""./>’ (3.24)
where ﬁn,-j € 8(/)(xn,.j). From (3.23) and the boundedness of d¢, we have

B(t,)) < 15, M1, =y Il = O (3.25)

as n — oo. Because of the weakly lower semi-continuous nature of ¢, Xpy, = 7 and (3.25), the
following holds:
#(z') < liminf ¢(x,, ) < 0.
Jj— J

Hence 7' € C.
Next, we show that Az” € Q. Since Py, (Ax,, ) € O, , We have
'

()O(Axn,‘j) < <Xnij ’ Axn,-j - PQ,,[.‘ (Axﬂ,'j )>7 (326)

where Xni; € 890(Axnl.j). Given that lim ||(/ _PQn,' )Ad, || = 0 and (3.22), we get that lim ||(/ _PQn,. VAX, || =
0. By (3.26) and the boundedness of d¢, we have

P(A4%,,) < oy lllA,, = Po, (Ax;, )l = 0 (3.27)

asn — oo. Inview of x, — z’, Ax, — Az, the weakly lower semi-continuous nature of ¢ and
(3.27), we can get
¢(AZ') < liminf ¢(Ax,,) < 0.
Jj—ooo

Hence AZ' € Q.
From the above proof process, we can derive that 7 € Fix(S) N A. Now, using (3.21), we get

lim sup{Ag(x*) — Bx",y,, — x*)

i—o0

= limsup{dg(x*) — Bx",d,, — x*)

i—o0

= lim({Ag(x*) - Bx",d,, —x*)
j—ooo J
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(Ag(x") — Bx", 7/ — x™)
0.

IA

It means that

limY,, <O0.

[—00

4. Numerical experiments

Now, we present a comparison of Algorithm 1 with other algorithms by describing two numerical
experiments. All of the programs were written in Matlab 9.5 and performed on a desktop PC with
AMD Ryzen 7 4800U with Radeon Graphics 1.80 GHz, RAM 16.0GB.

Example 4.1. We assume that H; = H, = C = R* and Q = {b}, where b € R*; then, we have that
A = {x € R* : Ax = b}. Considering the system of linear equations Ax = b, let

I 1 2 3 5

2 3 5 2 1
A= 3 -1 -1 =2/ b= -6

35 2 =2 -15

By calculation, we can find that Ax = b has a unique solution x* = (-1, -2,1,2)". Let

1 1 1
s ol [

Sx= OZ%?x+ _11 , VxeR%
00 3 g i
000 3 !

By calculation, we can find that the mapping S is nonexpansive and x* = (-1, -2, 1,2)T € Fix(S).

In Algorithm 1 and scheme (1.4), we let @, = llm,ﬁn =02,6,=0.5,x =(1,2,3,4)Tand g = 0.21;
in scheme (1.4), we let 7, = m; in Algorithm 1, we let ¢(x) = 0, Vx € R*, @(y) = |ly — b||, Vy € R*,
B=1,1=1,¢, = n%,,u =150,=1,p,=3.5 1= 1and xy = (1,2,3,4)". The results of numercial
experiments are revealed in Table 1 and Figure 1.

From Table 1, we can find that x,, is closer to the exact solution x* with an increase of the number of
iterations. We can also see that errors are closer to 0. Therefore, it can be concluded that Algorithm 1

is feasible. From Figure 1, we can find that the number of iterations for Algorithm 1 is less than that
for scheme (1.4).
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Table 1. Numerical results of Algorithm 1 for Example 4.1.

n—1 xﬁ,l) xfzz) x,(f) xf,4) E,
0 1.0000 2.0000 3.0000 4.0000 5.2915E+00
10 -0.9884 -1.9774 0.9764 1.9905 3.5918E-02
50 -0.9987 -1.9959 0.9963 1.9969 6.4333E-03
100 -0.9994 -1.9980 0.9982 1.9985 3.1627E-03
500 -0.9999 -1.9996 0.9996 1.9997 6.3660E-04
1000 -0.9999 -1.9998 0.9998 1.9998 3.1853E-04
5000 -1.0000 -2.0000 1.0000 2.0000 6.3743E-05
10000 -1.0000 -2.0000 1.0000 2.0000 3.1874E-05

101 F T T T T T
: Algorithm 1 ]
= = Scheme (1.4) | ]

0 100 200 300 400 500 600
Number of Iterations

Figure 1. Comparison of Algorithm 1 and scheme (1.4) for Example 4.1.

Example 4.2. Assume that H; = R, H, = R?, C = [-2,6], O = {(Va» Y5, Y) = [Val + [yl + Iyl < 3},

f3)

Sx= %sinx, Vx eR.

We can see that S is not nonexpansive but quasi-nonexpansive [23]. By calculation, we can find
that Fix(§) = {0}. It is easy to obtain that 0 € A. We denote x* = 0.
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In Algorithm 1 and scheme (1.6), welet xo = x; = 1, ¢, = n%, u=09,6,=0.5,p,=3.5,0,=04,
g(x) = isinx and @, = g5, where 0 < p < 1; in scheme (1.6), we used the function quadprog to
compute the projection over Q by using Matlab 9.5 Optimization Toolbox; In Algorithm 1, we let
$(x) = (x = 6)(x +2), Vx € R, @) = |yal + ypl + Vel =3, ¥y = Gy yo) €R, B=1A=1,0,=1
and 7 = 1. We used ||x, — x*|| < 1078 as the stopping criterion. The results of numerical experiments for
different values of p are shown in Table 2. The convergence behavior for p = 0.5 is shown in Figures 2

and 3.

Table 2. Numerical results of Algorithm 1 and scheme (1.6) for Example 4.2.

Algorithm 1 Scheme (1.6)
Iter. Time [sec] Iter. Time [sec]

0.5 86 0.0515 86 0.7586
0.6 86 0.0534 86 0.7643
0.7 173 0.0517 73 0.7125
0.8 80 0.0522 80 0.7473
09 80 0.0545 80 0.7242
1 87 0.0522 87 0.8208

100 A T T T T T T T T
i Algorithm 1
= = Scheme (1.6) | 3
107
B 107F 3
\
IS
=
N ]
SR
108
10-10 L 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Number of Iterations

Figure 2. Comparison between the number of iterations of Algorithm 1 and scheme (1.6) for
Example 4.2 with p = 0.5.
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]_OO E T T A T T T T
i N Algorithm 1
S S - == == :Scheme (1.6)
e
2L ] 4
10 RS
o,
\
_ Ve RA
& 10 iy, E
| : /
e ‘ 1 A
8 i 4
:‘ : [TA\
6 ; [ | A A
5 107 I \,‘
F l' VA ]
! *1a
[ |l |
-8 L 4
1
10-10 I 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Elapsed Time [sec]

Figure 3. Comparison between elapsed time of Algorithm 1 and scheme (1.6) for
Example 4.2 with p = 0.5.

5. Conclusions

In this work, we developed a method for solving the SFP and the fixed-point problem involving
demicontractive mapping. In Algorithm 1, we have expanded the nonexpansive mapping to the
demicontractive mapping, selected a new step size and added the inertial method based on scheme
(1.4). Our Algorithm 1 exhibits better convergence behavior than scheme (1.4). Additionally, we have
extended the quasi-nonexpansive mapping to the demicontractive mapping, applied projection onto a
half-space and selected a new step size in our Algorithm 1 based on scheme (1.6). Our Algorithm 1
also demonstrated superior convergence behavior compared to scheme (1.6). From the above, our
algorithm exhibits a superior convergence rate and a wider range for the operator, thus making it
applicable in a broader range of scenarios. Furthermore, we have presented two numerical results that
demonstrate the feasibility and effectiveness of our method. In the following work, we intend to
extend the demicontractive mapping to the quasi-pseudocontractive mapping and extend the SFP to
the multiple-set split feasibility problem.
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